Page 1 of 22 1

Total Page:16

File Type:pdf, Size:1020Kb

Page 1 of 22 1 SMART WAT+ Abstract ………………………………………………………..Page 2 Problem to be Addressed……………………………………...Page 2 Analysis…………………………………………………………Page 3 Technical Solution……………………………………………...Page 5 Demonstration…………………………………………………..Page 10 Conclusion……………………………………………………....Page 10 Reference………………………………………………………...Page 11 Appendix A……………………………………………………...Page 12 Appendix B………………………………………………………Page 13 Appendix C………………………………………………………Page 14 Page 1 of 22 1. Abstract As the number of people with access to electricity around the world rises, electricity meters have grown in significance. Today, standard electromechanical energy meters enabling the monitoring of electricity usage are still a market leader in terms of absolute install base. The technology, established more than a century ago, is very limited in terms of data communication, forcing the majority of energy supply companies to perform manual meter readings or energy bill estimation. These methods either lower company profit margins or increase energy bills for the consumer. To address these problems, two major technologies have appeared in the commercial market, namely automatic meter reading (AMR) meters and meters using advanced metering infrastructure (AMI). Both wirelessly transmit data to the energy supplier; however have various limitations, the most significant being the cost. This is mainly due to the many other new functions these technologies provide, that are useless to the energy supplier simply wishing to reduce the cost of data collection. Due to the high costs, the absolute penetration of these technologies is low in most countries. SmartWat+ aims to provide companies and related consumers with a solution that aims to satisfy the wireless data transmission requirement. This is done using a simple and cheap add-on that can be fixed onto existing electromechanical energy meters. The add-on is programmed to take a photo of the analogue display of numbers on the old meters at a given time interval, process the image and then wirelessly transmit the converted data to the company. A low-cost camera, a microcontroller equipped with image recognition software, and a Global System for Mobile (GSM) transmitter are responsible for this action. The cost of the add-on device is significantly lower than those using AMR and AMI technologies in most countries, solving the problem described. Considering the number of currently operating electromechanical meters around the world, there is great potential for such a product. Even as major developing countries roll out AMI technology, new potential markets in Africa will emerge as electrification rates in the continent increase. This process, however, is relatively slow, in the range of multiple decades. The following feasibility report on the new energy meter add-on details the research and results concerning the potential need, and hence market for this product. In addition an overview of the technology needed for such a product to be built is presented. Finally, a conclusion is drawn based on the cost and performance estimations of the product, where these are compared to the original design specifications derived from the initial problem presented above. 2. Problem to be addressed The most widely used technology[2] indicating the electricity usage of a customer is the electromechanical watt-hour induction meter. It contains a disk rotating at a speed proportional to the power passing through it. The numerical value indicating the power usage rotates along with the disk, resulting in an analogue display, which must be read manually. Meter readings are costly, subject to error, slow, hence unpractical in an industry where a fast, reliable update to user’s consumption is invaluable to energy companies. Due to the significant advancement of wireless communication standards, coupled with worldwide wireless coverage, new electricity meter technologies have emerged with wireless data transmission capabilities. Nevertheless, their additional functions and complexity result in a high cost, limiting their install base in most countries. The problem therefore lies in finding a means to provide electricity meters with wireless capabilities to the majority of electricity users at a low cost and time frame. Page 2 of 22 3 Analysis The proposed solution is an electricity meter add-on, which adds data transmission functionality to the already installed electromechanical electricity meters. In order to develop suitable design specifications for the product, research into possible markets (countries) has been undertaken. The feasibility of implementing such a product is highly dependent on the country under consideration. Identifying the correct market, the competitors in those markets (modern electricity meters), in addition to their prices in these markets is of pivotal importance. These analyses are presented in the following sections. 3.1 Appropriate Markets A country where the implementation of an energy meter add-on is feasible has to meet several criteria for economic and technical purposes. These include: high electromechanical meter install base (in terms of percentage and volume), no governmental plans to introduce modern electricity meter technology on a national scale in the next 10 years[2], relatively high competitor prices, and reliable country-wide communications infrastructure. Research into 51 countries representing the world’s most significant energy meter markets has been undertaken using data from energy research companies[2]. Data from countries meeting all of these criteria are shown in Graph 1. Graph 1: Install Base of Electromechnaical Meters by 160 Country 140 Millions 120 All Electricity Meters 100 80 60 Electromechanical Install Base Electricity Meters 40 20 0 United States Germany Japan Romania Country There are numerous country-specific reasons why modern electricity meter technologies have not been undertaken. In the United States, energy meter markets are in private hands, and due to the recent housing crisis and lower than expected revenues; companies have not invested in the technology[2]. In Romania, the situation is similar, as recently privatised former national companies cannot afford to invest in such technology[2]. In some highly developed countries, consulting firms have not recommended nation-wide modern electricity meter investment, due to the high reliability and economy of installed electromechanical meters. This was the recommendation by Ernst & Young to Germany[1]. On the other hand, delays in plans to implement the technology have occurred in certain countries, namely Japan[2]. An add-on with the correct design specifications would be feasible to implement in these countries. 3.2 Competing Technologies 3.2.1 Automatic Meter Reading (AMR) AMR technology enables the wireless transmission of electricity usage from the energy meter to the energy supplier. There are two ways in which it can be applied to electricity meters. Page 3 of 22 Option 1: Adding a communications module to existing electromechanical meters. Option 2: Implementing the technology in a new digital solid-state electricity meter. Communication modules use optical sensors that detect the number of revolutions of the rotating disk of the electromechanical meter, while in the second option AMR electricity meters use digital current and voltage sensors to measure the power. Both options use simplex (one-way) communication between users and energy providers, and simply match the digital data with a user account. Limitations Option 1 – Small market share, can cost more than replacing existing electromechanical meter with a new AMR meter Option 2 – Costs still range between 46-80 EUR[2] in most countries, gives utility providers power to remotely deny users energy. 3.2.2 Advanced Meter Infrastructure (AMI) This technology is a more advanced version of AMR. The key difference is that it involves a duplex (two-way) communication between the users and energy providers. This allows for more advanced functions such as electricity readings on demand, and energy forecasting using built-in software. Limitations Due to its advanced functions, energy meters using AMI technology are more expensive than AMR meters or AMR communication modules (price range typically between 80 to 150 EUR). In addition, sensitive user data can be collected leading to privacy issues including the vulnerability of that data if hackers gain access through the built-in software. 3.3 Development of Constraints The most important design constraint involves the target price of the add-on, as the main purpose of the technology is to provide a sought after function at a lower price. To set a price target, the price of the competing technologies must be assessed in each of the proposed countries. This is shown in Graph 2. Graph 2: Unit Price of Electricity Meter using AMR and AMI Technology Romania 236 *Note: AMR is Japan 80 not widely available in Romania and 68 AMI Germany Country Germany AMR United States 83 46 0 50 100 150 200 250 Unit Price (EUR) Page 4 of 22 From Graph 2, it is evident that the cost of competing electricity meter technology significantly varies depending on the country under consideration. Note that AMR is not present in Romania and Germany. The deductions are that a target price can be set at approximately 30 EUR to give high enough price margin. Considering countries rollout new meter technologies to 80%[2] of the consumer base in approximately 8 years [2] and add-ons are simpler to install, we can estimate 5 years to 80% of consumer base. Table 1 gives the
Recommended publications
  • OCR Pwds and Assistive Qatari Using OCR Issue No
    Arabic Optical State of the Smart Character Art in Arabic Apps for Recognition OCR PWDs and Assistive Qatari using OCR Issue no. 15 Technology Research Nafath Efforts Page 04 Page 07 Page 27 Machine Learning, Deep Learning and OCR Revitalizing Technology Arabic Optical Character Recognition (OCR) Technology at Qatar National Library Overview of Arabic OCR and Related Applications www.mada.org.qa Nafath About AboutIssue 15 Content Mada Nafath3 Page Nafath aims to be a key information 04 Arabic Optical Character resource for disseminating the facts about Recognition and Assistive Mada Center is a private institution for public benefit, which latest trends and innovation in the field of Technology was founded in 2010 as an initiative that aims at promoting ICT Accessibility. It is published in English digital inclusion and building a technology-based community and Arabic languages on a quarterly basis 07 State of the Art in Arabic OCR that meets the needs of persons with functional limitations and intends to be a window of information Qatari Research Efforts (PFLs) – persons with disabilities (PWDs) and the elderly in to the world, highlighting the pioneering Qatar. Mada today is the world’s Center of Excellence in digital work done in our field to meet the growing access in Arabic. Overview of Arabic demands of ICT Accessibility and Assistive 11 OCR and Related Through strategic partnerships, the center works to Technology products and services in Qatar Applications enable the education, culture and community sectors and the Arab region. through ICT to achieve an inclusive community and educational system. The Center achieves its goals 14 Examples of Optical by building partners’ capabilities and supporting the Character Recognition Tools development and accreditation of digital platforms in accordance with international standards of digital access.
    [Show full text]
  • Reconocimiento De Escritura Lecture 4/5 --- Layout Analysis
    Reconocimiento de Escritura Lecture 4/5 | Layout Analysis Daniel Keysers Jan/Feb-2008 Keysers: RES-08 1 Jan/Feb-2008 Outline Detection of Geometric Primitives The Hough-Transform RAST Document Layout Analysis Introduction Algorithms for Layout Analysis A `New' Algorithm: Whitespace Cuts Evaluation of Layout Analyis Statistical Layout Analysis OCR OCR - Introduction OCR fonts Tesseract Sources of OCR Errors Keysers: RES-08 2 Jan/Feb-2008 Outline Detection of Geometric Primitives The Hough-Transform RAST Document Layout Analysis Introduction Algorithms for Layout Analysis A `New' Algorithm: Whitespace Cuts Evaluation of Layout Analyis Statistical Layout Analysis OCR OCR - Introduction OCR fonts Tesseract Sources of OCR Errors Keysers: RES-08 3 Jan/Feb-2008 Detection of Geometric Primitives some geometric entities important for DIA: I text lines I whitespace rectangles (background in documents) Keysers: RES-08 4 Jan/Feb-2008 Outline Detection of Geometric Primitives The Hough-Transform RAST Document Layout Analysis Introduction Algorithms for Layout Analysis A `New' Algorithm: Whitespace Cuts Evaluation of Layout Analyis Statistical Layout Analysis OCR OCR - Introduction OCR fonts Tesseract Sources of OCR Errors Keysers: RES-08 5 Jan/Feb-2008 Hough-Transform for Line Detection Assume we are given a set of points (xn; yn) in the image plane. For all points on a line we must have yn = a0 + a1xn If we want to determine the line, each point implies a constraint yn 1 a1 = − a0 xn xn Keysers: RES-08 6 Jan/Feb-2008 Hough-Transform for Line Detection The space spanned by the model parameters a0 and a1 is called model space, parameter space, or Hough space.
    [Show full text]
  • An Accuracy Examination of OCR Tools
    International Journal of Innovative Technology and Exploring Engineering (IJITEE) ISSN: 2278-3075, Volume-8, Issue-9S4, July 2019 An Accuracy Examination of OCR Tools Jayesh Majumdar, Richa Gupta texts, pen computing, developing technologies for assisting Abstract—In this research paper, the authors have aimed to do a the visually impaired, making electronic images searchable comparative study of optical character recognition using of hard copies, defeating or evaluating the robustness of different open source OCR tools. Optical character recognition CAPTCHA. (OCR) method has been used in extracting the text from images. OCR has various applications which include extracting text from any document or image or involves just for reading and processing the text available in digital form. The accuracy of OCR can be dependent on text segmentation and pre-processing algorithms. Sometimes it is difficult to retrieve text from the image because of different size, style, orientation, a complex background of image etc. From vehicle number plate the authors tried to extract vehicle number by using various OCR tools like Tesseract, GOCR, Ocrad and Tensor flow. The authors in this research paper have tried to diagnose the best possible method for optical character recognition and have provided with a comparative analysis of their accuracy. Keywords— OCR tools; Orcad; GOCR; Tensorflow; Tesseract; I. INTRODUCTION Optical character recognition is a method with which text in images of handwritten documents, scripts, passport documents, invoices, vehicle number plate, bank statements, Fig.1: Functioning of OCR [2] computerized receipts, business cards, mail, printouts of static-data, any appropriate documentation or any II. OCR PROCDURE AND PROCESSING computerized receipts, business cards, mail, printouts of To improve the probability of successful processing of an static-data, any appropriate documentation or any picture image, the input image is often ‘pre-processed’; it may be with text in it gets processed and the text in the picture is de-skewed or despeckled.
    [Show full text]
  • Gradu04243.Pdf
    Paperilomakkeesta tietomalliin Kalle Malin Tampereen yliopisto Tietojenkäsittelytieteiden laitos Tietojenkäsittelyoppi Pro gradu -tutkielma Ohjaaja: Erkki Mäkinen Toukokuu 2010 i Tampereen yliopisto Tietojenkäsittelytieteiden laitos Tietojenkäsittelyoppi Kalle Malin: Paperilomakkeesta tietomalliin Pro gradu -tutkielma, 61 sivua, 3 liitesivua Toukokuu 2010 Tässä tutkimuksessa käsitellään paperilomakkeiden digitalisointiin liittyvää kokonaisprosessia yleisellä tasolla. Prosessiin tutustutaan tarkastelemalla eri osa-alueiden toimintoja ja laitteita kokonaisjärjestelmän vaatimusten näkökul- masta. Tarkastelu aloitetaan paperilomakkeiden skannaamisesta ja lopetetaan kerättyjen tietojen tallentamiseen tietomalliin. Lisäksi luodaan silmäys markki- noilla oleviin valmisratkaisuihin, jotka sisältävät prosessin kannalta oleelliset toiminnot. Avainsanat ja -sanonnat: lomake, skannaus, lomakerakenne, lomakemalli, OCR, OFR, tietomalli. ii Lyhenteet ADRT = Adaptive Document Recoginition Technology API = Application Programming Interface BAG = Block Adjacency Graph DIR = Document Image Recognition dpi= Dots Per Inch ICR = Intelligent Character Recognition IFPS = Intelligent Forms Processing System IR = Information Retrieval IRM = Image and Records Management IWR = Intelligent Word Recognition NAS = Network Attached Storage OCR = Optical Character Recognition OFR = Optical Form Recognition OHR = Optical Handwriting Recognition OMR = Optical Mark Recognition PDF = Portable Document Format SAN = Storage Area Networks SDK = Software Development Kit SLM
    [Show full text]
  • Integral Estimation in Quantum Physics
    INTEGRAL ESTIMATION IN QUANTUM PHYSICS by Jane Doe A dissertation submitted to the faculty of The University of Utah in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematical Physics Department of Mathematics The University of Utah May 2016 Copyright c Jane Doe 2016 All Rights Reserved The University of Utah Graduate School STATEMENT OF DISSERTATION APPROVAL The dissertation of Jane Doe has been approved by the following supervisory committee members: Cornelius L´anczos , Chair(s) 17 Feb 2016 Date Approved Hans Bethe , Member 17 Feb 2016 Date Approved Niels Bohr , Member 17 Feb 2016 Date Approved Max Born , Member 17 Feb 2016 Date Approved Paul A. M. Dirac , Member 17 Feb 2016 Date Approved by Petrus Marcus Aurelius Featherstone-Hough , Chair/Dean of the Department/College/School of Mathematics and by Alice B. Toklas , Dean of The Graduate School. ABSTRACT Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah.
    [Show full text]
  • JETIR Research Journal
    © 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162) IMAGE TEXT CONVERSION FROM REGIONAL LANGUAGE TO SPEECH/TEXT IN LOCAL LANGUAGE 1Sayee Tale,2Manali Umbarkar,3Vishwajit Singh Javriya,4Mamta Wanjre 1Student,2Student,3Student,4Assistant Professor 1Electronics and Telecommunication, 1AISSMS, Institute of Information Technology, Pune, India. Abstract: The drivers who drive in other states are unable to recognize the languages on the sign board. So this project helps them to understand the signs in different language and also they will be able to listen it through speaker. This paper describes the working of two module image processing module and voice processing module. This is done majorly using Raspberry Pi using the technology OCR (optical character recognition) technique. This system is constituted by raspberry Pi, camera, speaker, audio playback module. So the system will help in decreasing the accidents causes due to wrong sign recognition. Keywords: Raspberry pi model B+, Tesseract OCR, camera module, recording and playback module,switch. 1. Introduction: In today’s world life is too important and one cannot loose it simply in accidents. The accident rates in today’s world are increasing day by day. The last data says that 78% accidents were because of driver’s fault. There are many faults of drivers and one of them is that they are unable to read the signs and instructions written on boards when they drove into other states. Though the instruction are for them only but they are not able to make it. So keeping this thing in mind we have proposed a system which will help them to understand the sign boards written in regional language.
    [Show full text]
  • Optical Character Recognition As a Cloud Service in Azure Architecture
    International Journal of Computer Applications (0975 – 8887) Volume 146 – No.13, July 2016 Optical Character Recognition as a Cloud Service in Azure Architecture Onyejegbu L. N. Ikechukwu O. A. Department of Computer Science, Department of Computer Science, University of Port Harcourt. University of Port Harcourt. Port Harcourt. Rivers State. Nigeria. Port Harcourt. Rivers State. Nigeria ABSTRACT The dawn of digital computers has made it unavoidable that Cloud computing and Optical Character Recognition (OCR) everything processed by the digital computer must be technology has become an extremely attractive area of processed in digital form. For example, most famous libraries research over the last few years. Sometimes it is difficult to in the world like the Boston public library has over 6 million retrieve text from the image because of different size, style, books, for public consumption, inescapably has to change all orientation and complex background of image. There is need its paper-based books into digital documents in order that they to convert paper books and documents into text. OCR is still could be stored on a storage drive. It can also be projected that imperfect as it occasionally mis-recognizes letters and falsely every year over 200 million books are being published[22], identifies scanned text, leading to misspellings and linguistics many of which are disseminated and published on papers [6]. errors in the OCR output text. A cloud based Optical Thus, for several document-input jobs, Opitcal Character Character Recognition Technology was used. This was Reconigtion is the utmost economical and swift process powered on Microsoft Windows Azure in form of a Web obtainable.
    [Show full text]
  • Representation of Web Based Graphics and Equations for the Visually Impaired
    TH NATIONAL ENGINEERING CONFERENCE 2012, 18 ERU SYMPOSIUM, FACULTY OF ENGINEERING, UNIVERSITY OF MORATUWA, SRI LANKA Representation of Web based Graphics and Equations for the Visually Impaired C.L.R. Gunawardhana, H.M.M. Hasanthika, T.D.G.Piyasena,S.P.D.P.Pathirana, S. Fernando, A.S. Perera, U. Kohomban Abstract With the extensive growth of technology, it is becoming prominent in making learning more interactive and effective. Due to the use of Internet based resources in the learning process, the visually impaired community faces difficulties. In this research we are focusing on developing an e-Learning solution that can be accessible by both normal and visually impaired users. Accessibility to tactile graphics is an important requirement for visually impaired people. Recurrent expenditure of the printers which support graphic printing such as thermal embossers is beyond the budget for most developing countries which cannot afford such a cost for printing images. Currently most of the books printed using normal text Braille printers ignore images in documents and convert only the textual part. Printing images and equations using normal text Braille printers is a main research area in the project. Mathematical content in a forum and simple images such as maps in a course page need to be made affordable using the normal text Braille printer, as these functionalities are not available in current Braille converters. The authors came up with an effective solution for the above problems and the solution is presented in this paper. 1 1. Introduction In order to images accessible to visually impaired people the images should be converted into a tactile In this research our main focus is to make e-Learning format.
    [Show full text]
  • Manual Archivista 2009/I
    Manual Archivista 2009/I c 18th January 2009 by Archivista GmbH, CH-8118 Pfaffhausen Web pages: www.archivista.ch Contents I Introduction 8 4.4 Accessing the manual . 26 4.5 Login WebClient . 26 1 Introduction 9 4.6 Scanning and entering keywords . 26 1.1 Welcome to Archivista . 9 4.7 Rotating pages . 26 1.2 Notes on the manual . 9 4.8 Title search . 27 1.3 Our address . 9 4.9 Full text search . 27 1.4 Previous versions . 9 4.10 Login WebAdmin . 27 1.5 Licensing . 12 4.11 Adding users . 27 4.12 Adding/deleting fields . 27 2 First Steps 18 4.13 Editing the input/search mask . 27 2.1 Introduction . 18 4.14 Activating SSH . 27 2.2 The digital archive . 18 4.15 Activating VNC . 27 2.3 Database, server and client . 18 4.16 Enabling print server (CUPS) . 28 2.4 Tables, records and fields . 19 4.17 Password, Unlock & Restart OCR . 28 2.5 Archivista and working method . 19 4.18 Activating HTTPS . 28 2.6 Tips for archiving . 20 2.7 Archive, pages and documents . 20 5 Tutorial RichClient 29 2.8 The Archivista document . 20 5.1 Archivista in 90 Seconds . 29 5.2 Adding Documents . 29 3 Installation 22 5.3 Search . 29 3.1 ArchivistaBox . 22 5.4 Extended Functions . 30 3.2 Virtual (Box) . 22 5.5 Users & Fields . 31 3.3 OpenSource (Box) . 22 5.6 Databases, fields and barcodes . 31 3.4 OpenSource (Windows) . 22 III ArchivistaBox 33 II Tutorials 25 6 Introduction 34 4 Introduction 26 6.1 Advantages .
    [Show full text]
  • Analiza I Optičko Prepoznavanje Rukopisa S Herbarijskih Etiketa U Zbirci Herbarium Croaticum
    SVEUČILIŠTE U ZAGREBU FILOZOFSKI FAKULTET ODSJEK ZA INFORMACIJSKE I KOMUNIKACIJSKE ZNANOSTI KATEDRA ZA ARHIVISTIKU I DOKUMENTALISTIKU Marta Dević Hameršmit Analiza i optičko prepoznavanje rukopisa s herbarijskih etiketa u zbirci Herbarium Croaticum Diplomski rad Mentor: dr. sc. Hrvoje Stančić, red. prof. Neposredni voditelj: Vedran Šegota, dipl. ing. bio. (Botanički zavod, Biološki odsjek, PMF) Zagreb, srpanj 2018. Sadržaj 1. Uvod ....................................................................................................................................... 1 1.1. Optičko prepoznavanje .................................................................................................... 2 1.1.1. Optičko prepoznavanje znakova .............................................................................. 2 1.1.2. Inteligentno prepoznavanje znakova ........................................................................ 3 1.1.3. Prepoznavanje rukopisa ............................................................................................ 4 1.2. Herbarij ............................................................................................................................ 5 1.2.1. Herbarijske zbirke .................................................................................................... 6 1.2.2. Herbarijske etikete .................................................................................................... 6 2. Ciljevi ....................................................................................................................................
    [Show full text]
  • A Comparison of OCR Methods on Natural Images in Different Image Domains
    DEGREE PROJECT IN TECHNOLOGY, FIRST CYCLE, 15 CREDITS STOCKHOLM, SWEDEN 2020 A comparison of OCR methods on natural images in different image domains AGNES FORSBERG MELVIN LUNDQVIST KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE En jämförelse av OCR-metoder i olika domäner AGNES FORSBERG MELVIN LUNDQVIST Degree Project in Computer Science, DD142X Date: June 8, 2020 Supervisor: Kevin Smith Examiner: Pawel Herman School of Electrical Engineering and Computer Science Abstract Optical character recognition (OCR) is a blanket term for methods that convert printed or handwritten text into machine-encoded text. As the digital world keeps growing the amount of digital images with text increases, and the need for OCR methods that can handle more than plain text documents as well. There are OCR engines that can convert images of clean documents with an over 99% recognition rate. OCR for natural images is getting more and more attention, but because natural images can be far more diverse than plain text documents it also leads to complications. To combat these issues it needs to be clear in what areas the OCR methods of today struggle. This thesis aims to answer this by testing three popular, readily available, OCR methods on a dataset comprised only of natural images containing text. The results show that one of the methods, GOCR, can not handle natural images as its test results were very far from correct. For the other two methods, ABBYY FineReader and Tesseract, the results were better but also show that there still is a long way to go, especially when it comes to images with special font.
    [Show full text]
  • Design and Implementation of a System for Recording and Remote Monitoring of a Parking Using Computer Vision and Ip Surveillance Systems
    VOL. 11, NO. 24, DECEMBER 2016 ISSN 1819-6608 ARPN Journal of Engineering and Applied Sciences ©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved. www.arpnjournals.com DESIGN AND IMPLEMENTATION OF A SYSTEM FOR RECORDING AND REMOTE MONITORING OF A PARKING USING COMPUTER VISION AND IP SURVEILLANCE SYSTEMS Albeiro Cortés Cabezas, Rafael Charry Andrade and Harrinson Cárdenas Almario Department of Electronic Engineering, Surcolombiana University Grupo de Tratamiento de Señales y Telecomunicaciones, Pastrana Av. Neiva Colombia, Huila E-Mail: [email protected] ABSTRACT This article presents the design and implementation of a system for detection of license plates for a public parking located at the municipality of Altamira at the state of Huila in Colombia. The system includes also, a module of surveillance cameras for remote monitoring. The detection system consists of three steps: the first step consists in locating and cutting the vehicle license plate from an image taken by an IP camera. The second step is an optical character recognition (OCR), responsible for identifying alphanumeric characters included in the license plate obtained in the first step. And the third step consists in the date and time register operation for the vehicles entry and exit. This data base stores also the license plate number, information about the contract between parking and vehicle owner and billing. Keywords: image processing, vision, monitoring, surveillance, OCR. 1. INTRODUCTION vehicles in a parking and store them in digital way to gain In recent years the automatic recognition plates control of the activity in the parking, minimizing errors numbers technology -ANPR- (Automatic Number Plate that entail manual registration and storage of information Recognition) has had a great development in congestion in books accounting and papers.
    [Show full text]