WO 2017/181183 Al 19 October 2017 (19.10.2017) P O P C T

Total Page:16

File Type:pdf, Size:1020Kb

WO 2017/181183 Al 19 October 2017 (19.10.2017) P O P C T (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/181183 Al 19 October 2017 (19.10.2017) P O P C T (51) International Patent Classification: (74) Agents: KARNAKIS, Jennifer A. et al; COOLEY LLP, C12Q 1/68 (2006.01) Attn: Patent Group, 1299 Pennsylvania Avenue, NW, Suite 700, Washington, District of Columbia 20004 (US). (21) International Application Number: PCT/US20 17/027944 (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, (22) International Filing Date: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, 17 April 2017 (17.04.2017) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, (25) Filing Language: English DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN, (26) Publication Language: English KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, (30) Priority Data: MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, 62/322,982 15 April 2016 (15.04.2016) US NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, (71) Applicant: EXOSOME DIAGNOSTICS, INC. [US/US]; TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, Riverside Technology Center, 840 Memorial Drive, Suite ZA, ZM, ZW. 3, Cambridge, Massachusetts 02139 (US). (84) Designated States (unless otherwise indicated, for every (72) Inventors: SKOG, Johan Karl Olov; c/o Exosome Dia kind of regional protection available): ARIPO (BW, GH, gnostics, Inc., 840 Memorial Drive, Suite 3, Cambridge, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, Massachusetts 02139 (US). NOERHOLM, Mikkel; c/o TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, Exosome Diagnostics GmbH, Am Klopferspitz 19a, 82152 TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, Martinsried (DE). BRINKMAN, Kay; c/o Exosome Dia DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, gnostics, Inc., 840 Memorial Drive, Suite 3, Cambridge, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, Massachusetts 02139 (US). CASTELLANOS-RIZAL- SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, DOS, Elena; c/o Exosome Diagnostics, Inc., 840 Memori GW, KM, ML, MR, NE, SN, TD, TG). al Drive, Suite 3, Cambridge, Massachusetts 021 39 (US). HURLEY, James; c/o Exosome Diagnostics, Inc., 840 Published: Memorial Drive, Suite 3, Cambridge, Massachusetts 021 39 — with international search report (Art. 21(3)) (US). (54) Title: PLASMA-BASED DETECTION OF ANAPLASTIC LYMPHOMA KINASE (ALK) NUCLEIC ACIDS AND ALK FU SION TRANSCRIPTS AND USES THEREOF IN DIAGNOSIS AND TREATMENT OF CANCER (57) Abstract: The present invention relates generally to the field of biomarker analysis, particularly determining gene expression signatures from biological samples, including plasma samples. PLASMA-BASED DETECTION OF ANAPLASTIC LYMPHOMA KINASE (ALK) NUCLEIC ACIDS AND ALK FUSION TRANSCRIPTS AND USES THEREOF IN DIAGNOSIS AND TREATMENT OF CANCER RELATED APPLICATIONS [0001] This application claims the benefit of U.S. Provisional Application No. 62/322,982, filed April 15, 2016, the contents of which are incorporated herein by reference in their entirety. FIELD OF THE INVENTION [0002] The present invention relates generally to the field of biomarker analysis, particularly determining gene expression signatures from biological samples, including plasma samples. BACKGROUND [0003] Increasing knowledge of the genetic and epigenetic changes occurring in cancer cells provides an opportunity to detect, characterize, and monitor tumors by analyzing tumor-related nucleic acid sequences and profiles. These changes can be observed by detecting any of a variety of cancer-related biomarkers. Various molecular diagnostic assays are used to detect these biomarkers and produce valuable information for patients, doctors, clinicians and researchers. So far, these assays primarily have been performed on cancer cells derived from surgically removed tumor tissue or from tissue obtained by biopsy. [0004] However, the ability to perform these tests using a bodily fluid sample is oftentimes more desirable than using a patient tissue sample. A less invasive approach using a bodily fluid sample has wide ranging implications in terms of patient welfare, the ability to conduct longitudinal disease monitoring, and the ability to obtain expression profiles even when tissue cells are not easily accessible. [0005] Accordingly, there exists a need for new, noninvasive methods of reliably detecting biomarkers, for example, biomarkers in plasma microvesicles, to aid in diagnosis, prognosis, monitoring, or therapy selection for a disease or other medical condition. SUMMARY OF THE INVENTION [0006] The present invention is in the technical field of biotechnology. More particularly, the present invention is in the technical field of molecular biology. [0007] In molecular biology, molecules, such as nucleic acids, can be isolated from human sample material, such as plasma and other biofluids, and further analyzed with a wide range of methodologies. [0008] Human biofluids contain cells and also cell free sources of molecules shed by all cells of the body. Cell free sources include extracellular vesicles (EVs) and the molecules carried within (e.g. RNA, DNA, lipids, small metabolites and proteins) and also cell free DNA, which is likely to be derived from apoptotic and necrotic tissue. [0009] Since cell free nucleic acids, such as the RNA contained in exosomes and other EVs (exoRNA), DNA contained in exosomes and other EVs (exoDNA), free circulating or cell free DNA (cfDNA) are shed not only by normal somatic cells, but also aberrant cancer cells, an isolation of exosomal nucleic acids and DNA from human blood samples can reveal the existence and type of cancer cells in a patient. [00010] Non-small cell lung cancer (NSCLC) comprises -85% of all diagnosed lung cancers. Obtaining tissue biopsies from NSCLC is challenging, and as many as 30% of patients have no tissue for molecular analysis of genes, therefore monitoring the mutations in blood as a liquid biopsy have proven useful. The compositions and methods provided herein use the information derived from cellular living processes such as exosomal RNA (exoRNA) release, which leads to an extremely sensitive assay. It is understood that while the examples provided herein demonstrate the isolation of exoRNA, the methods and kits provided herein are useful for co-isolating any combination of exosomal nucleic acids, e.g., exoRNA and/or exoDNA, found in the sample. [00011] The existence and quantity of an ALK fusion transcript, e.g., an EML-ALK fusion transcript, in a patient can be used to guide or select the treatment options. [00012] Here we describe the application of a PCR-based assay on exoRNA and isolated from human biofluids that detects an ALK fusion transcript, e.g., an EML-ALK fusion transcript, with high sensitivity and specificity. [00013] The present invention is a complete workflow from sample extraction to nucleic acid analysis using exosomal RNA. State-of-the -art machine learning and data- mining techniques are applied to the qPCR data generated by the real time instrument to discriminate between positive and negative samples or to quantify the strength of positive or negative samples. [00014] The present disclosure provides methods of detecting one or more biomarkers in a biological sample to aid in diagnosis, prognosis, monitoring, or therapy selection for a disease such as, for example, cancer. The methods and kits provided herein are useful in detecting one or more biomarkers from plasma samples. The methods and kits provided herein are useful in detecting one or more biomarkers from the microvesicle fraction of plasma samples. [00015] The methods and kits provided herein are useful for detecting an anaplastic lymphoma kinase (ALK) fusion transcript in a biological sample. In some embodiments, the ALK fusion transcript is an EML-ALK fusion transcript. In some embodiments, the ALK fusion transcript is an EML4-ALK fusion transcript. In some embodiments, the EML4-ALK fusion transcript is EML4-ALK vl, EML4-ALK v2, EML4-ALK v3, and any combination thereof. [00016] The present disclosure provides methods and kits for detecting a EML4-ALK fusion transcript in a biological sample. In some embodiments, the biological sample is plasma. [00017] The present disclosure provides a reaction designed to capture and concentrate EVs, isolate the corresponding nucleic acids, and to simultaneously detect the presence of an ALK fusion transcript, e.g., an EML-ALK fusion transcript. [00018] Generally, the methods and kits of the disclosure include the following steps: 1) Isolation of exoRNA from a biofluid sample: a. Binding of microvesicles and other extracellular vesicles (EVs) to columns or beads; i. In some embodiments, the binding step is performed using the methods as described in PCT applications WO 2016/007755 and WO 2014/107571. b. Release from matrix using lysing conditions; c. Isolation of total nucleic acids from lysate using silica columns or beads i. In some embodiments, the isolating step is performed using the methods as described in PCT applications WO 2016/007755 and WO 2014/107571; 2) Detection and quantification of one or more EML-ALK fusion transcript(s); ) Analyzing the detected and quantified EML-ALK fusion transcript(s) using the following procedure: a. Step 1: Each sample is checked for passing the acceptance criteria for the Sample Integrity Control and the Sample Inhibition Control. i. In some embodiments, the Sample Integrity Control is the expression level of the housekeeping gene RPL4 tested by qPCR. ii. For RPL4 the acceptance criteria are defined by a cycle threshold (CT) value <28. iii. In some embodiments, the Sample Inhibition Control is the expression level of Qbeta RNA spiked into the reverse transcription reaction of each sample and tested by qPCR.
Recommended publications
  • Lemur Tyrosine Kinase 2 Acts As a Positive Regulator of NF-Κb Activation and Colon Cancer Cell Proliferation T
    Cancer Letters 454 (2019) 70–77 Contents lists available at ScienceDirect Cancer Letters journal homepage: www.elsevier.com/locate/canlet Original Articles Lemur tyrosine kinase 2 acts as a positive regulator of NF-κB activation and colon cancer cell proliferation T ∗ Rongjing Zhanga,1, Xiuxiu Lia,1, Lumin Weib, Yanqing Qina, Jing Fangc,d, a CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institute for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China b Ruijin Hospital, Shanghai Jiaotong University, Shanghai, 200025, China c Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, 266061, China d Cancer Institute, Qingdao University, 26601, Qingdao, 266061, China ARTICLE INFO ABSTRACT Keywords: Lemur tyrosine kinase 2 (LMTK2) belongs to both protein kinase and tyrosine kinase families. LMTK2 is less LMTK2 studied and little is known about its function. Here we demonstrate that LMTK2 modulates NF-κB activity and NF-κB functions to promote colonic tumorigenesis. We found that LMTK2 protein was abundant in colon cancer cells Colon cancer and LMTK2 knockdown (LMTK2-KD) inhibited proliferation of colon cancer cells through inactivating NF-κB. In unstimulated condition, LMTK2 modulated NF-κB through inhibiting phosphorylation of p65 at Ser468. Mechanistically, LMTK2 phosphorylated protein phosphatase 1A (PP1A) to prevent PP1A from depho- sphorylating p-GSK3β(Ser9). The p-GSK3β(Ser9) could not phosphorylate p65 at Ser468, which maintained the basal NF-κB activity. LMTK2 also modulated TNFα-activated NF-κB. LMTK2-KD repressed TNFα-induced IKKβ phosphorylation, IκBα degradation and NF-κB activation, implying that LMTK2 modulates TNFα-activated NF- κB via IKK.
    [Show full text]
  • Ponatinib Shows Potent Antitumor Activity in Small Cell Carcinoma of the Ovary Hypercalcemic Type (SCCOHT) Through Multikinase Inhibition Jessica D
    Published OnlineFirst February 9, 2018; DOI: 10.1158/1078-0432.CCR-17-1928 Cancer Therapy: Preclinical Clinical Cancer Research Ponatinib Shows Potent Antitumor Activity in Small Cell Carcinoma of the Ovary Hypercalcemic Type (SCCOHT) through Multikinase Inhibition Jessica D. Lang1,William P.D. Hendricks1, Krystal A. Orlando2, Hongwei Yin1, Jeffrey Kiefer1, Pilar Ramos1, Ritin Sharma3, Patrick Pirrotte3, Elizabeth A. Raupach1,3, Chris Sereduk1, Nanyun Tang1, Winnie S. Liang1, Megan Washington1, Salvatore J. Facista1, Victoria L. Zismann1, Emily M. Cousins4, Michael B. Major4, Yemin Wang5, Anthony N. Karnezis5, Aleksandar Sekulic1,6, Ralf Hass7, Barbara C. Vanderhyden8, Praveen Nair9, Bernard E. Weissman2, David G. Huntsman5,10, and Jeffrey M. Trent1 Abstract Purpose: Small cell carcinoma of the ovary, hypercalcemic type three SWI/SNF wild-type ovarian cancer cell lines. We further (SCCOHT) is a rare, aggressive ovarian cancer in young women identified ponatinib as the most effective clinically approved that is universally driven by loss of the SWI/SNF ATPase subunits RTK inhibitor. Reexpression of SMARCA4 was shown to confer SMARCA4 and SMARCA2. A great need exists for effective targeted a 1.7-fold increase in resistance to ponatinib. Subsequent therapies for SCCOHT. proteomic assessment of ponatinib target modulation in Experimental Design: To identify underlying therapeutic vul- SCCOHT cell models confirmed inhibition of nine known nerabilities in SCCOHT, we conducted high-throughput siRNA ponatinib target kinases alongside 77 noncanonical ponatinib and drug screens. Complementary proteomics approaches pro- targets in SCCOHT. Finally, ponatinib delayed tumor dou- filed kinases inhibited by ponatinib. Ponatinib was tested for bling time 4-fold in SCCOHT-1 xenografts while reducing efficacy in two patient-derived xenograft (PDX) models and one final tumor volumes in SCCOHT PDX models by 58.6% and cell-line xenograft model of SCCOHT.
    [Show full text]
  • Logic Programming for Big Data in Computational Biology
    Logic Programming for Big Data in Computational Biology Nicos Angelopoulos Wellcome Sanger Institute Hinxton, Cambridge [email protected] 18.9.18 overview I knowledge for Bayesian machine learning over model structure I applied knowledge representation for biological data analytics Bayesian inference of model structure (Bims) A Bayesian machine learning system that can model prior knowledge by means of a probabilistic logic programming. Nonmeclature I DLPs = Distributional logic programs I Bims = Bayesian inference of model structure Timeline I Theory (York, 2000-5) I Applications (Edinburgh, 2006-8, IAH 2009, NKI 2013) I Bims library and theory paper 2015-2017 Bims Overview I syntax of DLPs I a succinct classification tree prior program I Bayesian learning of model structure I learning classification and regression trees I Bayesian learning of Bayesian networks I thebims library DLPs- description We extend LP's clausal syntax with probabilistic guards that associate a resolution step using a particular clause with a probability whose value is computed on-the-fly. The intuition is that this value can be used as the probability with which the clause is selected for resolution. Thus in addition to the logical relation, a clause defines over the objects that appear as arguments in its head, it also defines a probability distribution over aspects of this relation. DLPs example member(H; [Hj T ]): member(El; [ HjT ]) :− (C1) member(El; T ): L :: length(List; L) ∼ El :: umember(El; List)(G1) 1 :: L :: umember(El; [EljTail]): (C ) L 2 1 1 − :: L :: umember(El; [HjTail]) :− (C ) L 3 umember(El; Tail): DLPs probabilistic goals 1 :: L :: umember(El; [EljTail]): (C ) L 4 1 1 − :: L :: umember(El; [HjTail]) :− (C ) L 5 K is L − 1; K :: umember(El; Tail): DLPs query ? − umember(X ; [a; b; c]): X = a (1=3 of the times = 1=3); X = b (1=3 of the times = 2=3 ∗ 1=2); X = c (1=3 of the times = 2=3 ∗ 1=2 ∗ 1): simple tree prior ?- cart( ζ, ξ, A,M).
    [Show full text]
  • Taqman® Human Protein Kinase Array
    TaqMan® Gene Signature Arrays TaqMan® Human Protein Kinase Array This array is part of a collection of TaqMan® Gene Signature these kinases are from receptor protein-tyrosine kinase (RPTK) Arrays that enable analysis of hundreds of TaqMan® Gene families: EGFR, InsulinR, PDGFR, VEGFR, FGFR, CCK, NGFR, Expression Assays on a micro fluidic card with minimal effort. HGFR, EPHR, AXL, TIE, RYK, DDR, RET, ROS, LTK, ROR and MUSK. The remaining 15 kinases are Ser/Thr kinases from the Protein kinases are one of the largest families of genes in kinase families: CAMKL, IRAK, Lmr, RIPK and STKR. eukaryotes. They belong to one superfamily containing a eukaryotic protein kinase catalytic domain. The ability of kinases We have also selected assays for 26 non-kinase genes in the to reversibly phosphorylate and regulate protein function Human Protein Kinase Array. These genes are involved in signal has been a subject of intense investigation. Kinases are transduction and mediate protein-protein interaction, transcrip- responsible for most of the signal transduction in eukaryotic tional regulation, neural development and cell adhesion. cells, affecting cellular processes including metabolism, References: angiogenesis, hemopoiesis, apoptosis, transcription and Manning, G., Whyte, D.B., Martinez, R., Hunter, T., and differentiation. Protein kinases are also involved in functioning Sudarsanam, S. 2002. The Protein Kinase Complement of the of the nervous and immune systems, in physiologic responses Human Genome. Science 298:1912–34. and in development. Imbalances in signal transduction due to accumulation of mutations or genetic alterations have Blume-Jensen, P. and Hunter, T. 2001. Oncogenic kinase been shown to result in malignant transformation.
    [Show full text]
  • UNIVERSITY of CALIFORNIA Los Angeles Non-Mutated Kinases in Metastatic Prostate Cancer
    UNIVERSITY OF CALIFORNIA Los Angeles Non-mutated kinases in metastatic prostate cancer: drivers and therapeutic targets A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Molecular Biology by Claire Faltermeier 2016 © Copyright by Claire Faltermeier 2016 ABSTRACT OF THE DISSERTATION Non-mutated kinases in prostate cancer: drivers and therapeutic targets by Claire Faltermeier Doctor of Philosophy in Molecular Biology University of California, Los Angeles, 2016 Professor Hanna K. A. Mikkola, Chair Metastatic prostate cancer lacks effective treatments and is a major cause of death in the United States. Targeting mutationally activated protein kinases has improved patient survival in numerous cancers. However, genetic alterations resulting in constitutive kinase activity are rare in metastatic prostate cancer. Evidence suggests that non-mutated, wild-type kinases are involved in advanced prostate cancer, but it remains unknown whether kinases contribute mechanistically to metastasis and should be pursued as therapeutic targets. Using a mass- spectrometry based phosphoproteomics approach, we identified tyrosine, serine, and threonine kinases that are differentially activated in human metastatic prostate cancer tissue specimens compared to localized disease. To investigate the functional role of these kinases in prostate cancer metastasis, we screened over 100 kinases identified from our phosphoproteomic and previously-published transcriptomic studies for their ability to drive metastasis. In a primary ii screen using a lung colonization assay, we identified 20 kinases that when overexpressed in murine prostate cancer cells could promote metastasis to the lungs with different latencies. We queried these 20 kinases in a secondary in vivo screen using non-malignant human prostate cells.
    [Show full text]
  • Quantitative Phosphoproteomics Uncovers Dysregulated
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.18.255778; this version posted August 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Quantitative phosphoproteomics 2 uncovers dysregulated kinase 3 networks in Alzheimer’s disease 4 Nader Morshed1,2, Meelim Lee1 , Felicia H. Rodriguez3, Douglas A. Lauffenburger1, Diego 5 Mastroeni4 , Forest White1,2,5,* 6 1 Department of Bioengineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA 7 2 Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 8 02139, USA 9 3 Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, NM 10 88003, USA 11 4 Arizona State University-Banner Neurodegenerative Disease Research Center, Tempe, Arizona 85287, 12 USA 13 5 Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, 14 USA 15 * Correspondence: [email protected] 16 Abstract 17 Alzheimer’s disease (AD) is a form of dementia characterized by amyloid-β plaques and Tau 18 neurofibrillary tangles that progressively disrupt neural circuits in the brain. The signaling networks 19 underlying the pathological changes in AD are poorly characterized at the level phosphoproteome. Using 20 mass spectrometry, we performed a combined analysis of the tyrosine, serine, and threonine 21 phosphoproteome, and proteome of temporal cortex tissue from AD patients and aged matched 22 controls. We identified several co-correlated peptide modules that were associated with varying levels 23 of phospho-Tau, oligodendrocyte, astrocyte, microglia, and neuronal pathologies in AD patients.
    [Show full text]
  • Combinational Blockade of MET and PD-L1 Improves Pancreatic Cancer
    Li et al. Journal of Experimental & Clinical Cancer Research (2021) 40:279 https://doi.org/10.1186/s13046-021-02055-w RESEARCH Open Access Combinational blockade of MET and PD-L1 improves pancreatic cancer immunotherapeutic efficacy Enliang Li1,2,3,4,5,6†, Xing Huang1,2,3,4,5,6*†, Gang Zhang1,2,3,4,5,6† and Tingbo Liang1,2,3,4,5,6* Abstract Background: Dysregulated expression and activation of receptor tyrosine kinases (RTKs) are associated with a range of human cancers. However, current RTK-targeting strategies exert little effect on pancreatic cancer, a highly malignant tumor with complex immune microenvironment. Given that immunotherapy for pancreatic cancer still remains challenging, this study aimed to elucidate the prognostic role of RTKs in pancreatic tumors with different immunological backgrounds and investigate their targeting potential in pancreatic cancer immunotherapy. Methods: Kaplan–Meier plotter was used to analyze the prognostic significance of each of the all-known RTKs to date in immune “hot” and “cold” pancreatic cancers. Gene Expression Profiling Interactive Analysis-2 was applied to assess the differential expression of RTKs between pancreatic tumors and normal pancreatic tissues, as well as its correlation with immune checkpoints (ICPs). One hundred and fifty in-house clinical tissue specimens of pancreatic cancer were collected for expression and correlation validation via immunohistochemical analysis. Two pancreatic cancer cell lines were used to demonstrate the regulatory effects of RTKs on ICPs by biochemistry and flow cytometry. Two in vivo models bearing pancreatic tumors were jointly applied to investigate the combinational regimen of RTK inhibition and immune checkpoint blockade for pancreatic cancer immunotherapy.
    [Show full text]
  • Supporting Information
    Supporting Information Faltermeier et al. 10.1073/pnas.1521674112 A. FU-R1-R2-V5-SV40-BlasƟ-CGW UbiquiƟn-C CMV 5’ LTR R1 Kinase R2 V5 SV40 BlastiR 3’ LTR promoter promoter GFP B. Kinase (kDa) 210 CMV GFP WPR 105 promot E er 78 49 38 28 V5 293t cells Fig. S1. Lentivirus-mediated overexpression of V5-tagged kinases. (A) Full-length kinases were cloned into the FU-R1-R2-V5-SV40-Blasti-CGW lentiviral vector shown. R1 and R2 represent recombination sites required for recombination-based Gateway cloning. LTR, Long-terminal repeat. (B) Western blot showing expression of selected kinases in 293t cells detected by a V5 antibody. The molecular mass of each kinase is indicated in parentheses. A. vector SrcY529F 3 Cap8 cells 2 weeks 2 x107 Tail vein Y529F Src injecƟon SCID 1 Luciferase reporter BLI Radiance (p/sec/cm3/sr) B. Lungs from mice injected with Cap8-SrcY529F cells Mouse 1 Mouse 2 Fig. S2. SrcY529F promotes lung colonization when overexpressed in murine prostate cells. (A) Experimental design to demonstrate that expression of mu- tationally activated kinase SrcY529F in Cap8 cells promotes lung colonization. (B) Bright-field images of lungs removed from mice 3 wk after being injected with Cap8-SrcY529F cells. (Scale bars, 5 mm.) Faltermeier et al. www.pnas.org/cgi/content/short/1521674112 1of5 A. Lungs-NTRK2 210 105 NTRK2 78 49 38 V5 293t cells Metastases Ɵssue Lungs-EGFR 210 EGFR 105 78 49 38 V5 293t cells Metastases Ɵssues Lungs-Her2 210 105 HER2 78 49 38 V5 293t cells Metastases Ɵssues B.
    [Show full text]
  • Gene Symbol Accession Alias/Prev Symbol Official Full Name AAK1 NM 014911.2 KIAA1048, Dkfzp686k16132 AP2 Associated Kinase 1
    Gene Symbol Accession Alias/Prev Symbol Official Full Name AAK1 NM_014911.2 KIAA1048, DKFZp686K16132 AP2 associated kinase 1 (AAK1) AATK NM_001080395.2 AATYK, AATYK1, KIAA0641, LMR1, LMTK1, p35BP apoptosis-associated tyrosine kinase (AATK) ABL1 NM_007313.2 ABL, JTK7, c-ABL, p150 v-abl Abelson murine leukemia viral oncogene homolog 1 (ABL1) ABL2 NM_007314.3 ABLL, ARG v-abl Abelson murine leukemia viral oncogene homolog 2 (arg, Abelson-related gene) (ABL2) ACVR1 NM_001105.2 ACVRLK2, SKR1, ALK2, ACVR1A activin A receptor ACVR1B NM_004302.3 ACVRLK4, ALK4, SKR2, ActRIB activin A receptor, type IB (ACVR1B) ACVR1C NM_145259.2 ACVRLK7, ALK7 activin A receptor, type IC (ACVR1C) ACVR2A NM_001616.3 ACVR2, ACTRII activin A receptor ACVR2B NM_001106.2 ActR-IIB activin A receptor ACVRL1 NM_000020.1 ACVRLK1, ORW2, HHT2, ALK1, HHT activin A receptor type II-like 1 (ACVRL1) ADCK1 NM_020421.2 FLJ39600 aarF domain containing kinase 1 (ADCK1) ADCK2 NM_052853.3 MGC20727 aarF domain containing kinase 2 (ADCK2) ADCK3 NM_020247.3 CABC1, COQ8, SCAR9 chaperone, ABC1 activity of bc1 complex like (S. pombe) (CABC1) ADCK4 NM_024876.3 aarF domain containing kinase 4 (ADCK4) ADCK5 NM_174922.3 FLJ35454 aarF domain containing kinase 5 (ADCK5) ADRBK1 NM_001619.2 GRK2, BARK1 adrenergic, beta, receptor kinase 1 (ADRBK1) ADRBK2 NM_005160.2 GRK3, BARK2 adrenergic, beta, receptor kinase 2 (ADRBK2) AKT1 NM_001014431.1 RAC, PKB, PRKBA, AKT v-akt murine thymoma viral oncogene homolog 1 (AKT1) AKT2 NM_001626.2 v-akt murine thymoma viral oncogene homolog 2 (AKT2) AKT3 NM_181690.1
    [Show full text]
  • Dynamics of Dual Specificity Phosphatases and Their Interplay with Protein Kinases in Immune Signaling Yashwanth Subbannayya1,2, Sneha M
    bioRxiv preprint doi: https://doi.org/10.1101/568576; this version posted March 5, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Dynamics of dual specificity phosphatases and their interplay with protein kinases in immune signaling Yashwanth Subbannayya1,2, Sneha M. Pinto1,2, Korbinian Bösl1, T. S. Keshava Prasad2 and Richard K. Kandasamy1,3,* 1Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, N-7491 Trondheim, Norway 2Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore 575018, India 3Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, N-0349 Oslo, Norway *Correspondence: Richard K. Kandasamy ([email protected]) Abstract Dual specificity phosphatases (DUSPs) have a well-known role as regulators of the immune response through the modulation of mitogen activated protein kinases (MAPKs). Yet the precise interplay between the various members of the DUSP family with protein kinases is not well understood. Recent multi-omics studies characterizing the transcriptomes and proteomes of immune cells have provided snapshots of molecular mechanisms underlying innate immune response in unprecedented detail. In this study, we focused on deciphering the interplay between members of the DUSP family with protein kinases in immune cells using publicly available omics datasets. Our analysis resulted in the identification of potential DUSP- mediated hub proteins including MAPK7, MAPK8, AURKA, and IGF1R. Furthermore, we analyzed the association of DUSP expression with TLR4 signaling and identified VEGF, FGFR and SCF-KIT pathway modules to be regulated by the activation of TLR4 signaling.
    [Show full text]
  • Exploring BCR-ABL-Independent Mechanisms of TKI-Resistance in Chronic Myeloid Leukaemia
    Mitchell, Rebecca (2017) Exploring BCR-ABL-independent mechanisms of TKI-resistance in chronic myeloid leukaemia. PhD thesis. https://theses.gla.ac.uk/7977/ Copyright and moral rights for this work are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Enlighten: Theses https://theses.gla.ac.uk/ [email protected] Exploring BCR-ABL-independent mechanisms of TKI-Resistance in Chronic Myeloid Leukaemia By Rebecca Mitchell BSc (Hons), MRes Submitted in the fulfilment of the requirements for the degree of Doctor of Philosophy September 2016 Section of Experimental Haematology Institute of Cancer Sciences College of Medical, Veterinary and Life Science University of Glasgow 2 Abstract As the prevalence of Chronic Myeloid Leukaemia (CML) grows, due to the therapeutic success of tyrosine kinase inhibitors (TKI), we are witnessing increased incidences of drug resistance. Some of these patients have failed all currently licensed TKIs and have no mutational changes in the kinase domain that may explain the cause of TKI resistance. This poses a major clinical challenge as there are currently no other drug treatment options available for these patients. Therefore, our aim was to identify and target alternative survival pathways against BCR-ABL in order to eradicate TKI-resistant cells.
    [Show full text]
  • Original Article a RTK-Based Functional Rnai Screen Reveals Determinants of PTX-3 Expression
    Int J Clin Exp Pathol 2013;6(4):660-668 www.ijcep.com /ISSN:1936-2625/IJCEP1301062 Original Article A RTK-based functional RNAi screen reveals determinants of PTX-3 expression Hua Liu*, Xin-Kai Qu*, Fang Yuan, Min Zhang, Wei-Yi Fang Department of Cardiology, Shanghai Chest Hospital affiliated to Shanghai JiaoTong University, Shanghai, China. *These authors contributed equally to this work. Received January 30, 2013; Accepted February 15, 2013; Epub March 15, 2013; Published April 1, 2013 Abstract: Aim: The aim of the present study was to explore the role of receptor tyrosine kinases (RTKs) in the regu- lation of expression of PTX-3, a protector in atherosclerosis. Methods: Human monocytic U937 cells were infected with a shRNA lentiviral vector library targeting human RTKs upon LPS stimuli and PTX-3 expression was determined by ELISA analysis. The involvement of downstream signaling in the regulation of PTX-3 expression was analyzed by both Western blotting and ELISA assay. Results: We found that knocking down of ERBB2/3, EPHA7, FGFR3 and RET impaired PTX-3 expression without effects on cell growth or viability. Moreover, inhibition of AKT, the downstream effector of ERBB2/3, also reduced PTX-3 expression. Furthermore, we showed that FGFR3 inhibition by anti-cancer drugs attenuated p38 activity, in turn induced a reduction of PTX-3 expression. Conclusion: Altogether, our study demonstrates the role of RTKs in the regulation of PTX-3 expression and uncovers a potential cardiotoxicity effect of RTK inhibitor treatments in cancer patients who have symptoms of atherosclerosis or are at the risk of athero- sclerosis.
    [Show full text]