bioRxiv preprint doi: https://doi.org/10.1101/2020.08.18.255778; this version posted August 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Quantitative phosphoproteomics 2 uncovers dysregulated kinase 3 networks in Alzheimer’s disease 4 Nader Morshed1,2, Meelim Lee1 , Felicia H. Rodriguez3, Douglas A. Lauffenburger1, Diego 5 Mastroeni4 , Forest White1,2,5,* 6 1 Department of Bioengineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA 7 2 Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 8 02139, USA 9 3 Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, NM 10 88003, USA 11 4 Arizona State University-Banner Neurodegenerative Disease Research Center, Tempe, Arizona 85287, 12 USA 13 5 Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, 14 USA 15 * Correspondence:
[email protected] 16 Abstract 17 Alzheimer’s disease (AD) is a form of dementia characterized by amyloid-β plaques and Tau 18 neurofibrillary tangles that progressively disrupt neural circuits in the brain. The signaling networks 19 underlying the pathological changes in AD are poorly characterized at the level phosphoproteome. Using 20 mass spectrometry, we performed a combined analysis of the tyrosine, serine, and threonine 21 phosphoproteome, and proteome of temporal cortex tissue from AD patients and aged matched 22 controls. We identified several co-correlated peptide modules that were associated with varying levels 23 of phospho-Tau, oligodendrocyte, astrocyte, microglia, and neuronal pathologies in AD patients.