Geologic Map of Nevada

Total Page:16

File Type:pdf, Size:1020Kb

Geologic Map of Nevada Geologic Map of Nevada By A. Elizabeth Jones Crafford1 With a section on A Digital Conodont Database of Nevada By Anita G. Harris2 and A. Elizabeth Jones Crafford1 Prepared in cooperation with the Nevada Bureau of Mines and Geology Pamphlet to accompany Data Series 249 1GeoLogic, 9501 Nettleton Drive, Anchorage, Alaska 2U.S. Geological Survey, Denver, Colo. U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior DIRK KEMPTHORNE, Secretary U.S. Geological Survey Mark D. Myers, Director U.S. Geological Survey, Reston, Virginia: 2007 Version 1.0 For sale by U.S. Geological Survey Information Services Box 25286, Denver Federal Center Denver, Colo. 80225 For more information about the USGS and its products: Telephone: 1-888-ASK-USGS World Wide Web: http//www.usgs.gov/ Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested citation: Crafford, A.E.J., 2007, Geologic Map of Nevada: U.S. Geological Survey Data Series 249, 1 CD-ROM, 46 p., 1 plate. Library of Congress Cataloging-in-Publication Data Crafford, A. Elizabeth Jones, Geologic Map of Nevada p. cm. –(U.S. Geological Survey data series ; 249) Includes bibliographic references. 1. Geology—Nevada. ISBN: 978-141131812-0 iii Contents Introduction.....................................................................................................................................................1 The Digital Map ..............................................................................................................................................1 Components of the Digital Map ...................................................................................................................2 Biostratigraphy ......................................................................................................................................2 Cities ....................................................................................................................................................2 Contours .................................................................................................................................................2 Counties ..................................................................................................................................................3 Geology ...................................................................................................................................................3 Lakes ....................................................................................................................................................3 Public Land Survey ...............................................................................................................................3 Quadrangles...........................................................................................................................................3 Resources ..............................................................................................................................................3 Rivers ....................................................................................................................................................3 Roads ....................................................................................................................................................3 Summary of Regional Geologic Interpretation .........................................................................................3 Detailed Explanation of Geologic Units ......................................................................................................7 Quaternary Sediments and Rocks (Holocene and Pleistocene) ...................................................7 Sediments and Sedimentary Rocks ..........................................................................................7 Volcanic Rocks .............................................................................................................................8 Quaternary and Pliocene Sediments and Rocks .............................................................................8 Sediments and Sedimentary Rocks ..........................................................................................8 Volcanic Rocks .............................................................................................................................8 Tertiary and Upper Cretaceous(?) Rocks ..........................................................................................8 Volcanic and Sedimentary Rocks .............................................................................................8 Intrusive Rocks ...........................................................................................................................11 Miocene(?) to Jurassic(?) Intrusive Rocks .....................................................................................11 Mesozoic Intrusive and Volcanic Rocks .........................................................................................11 Intrusive Rocks ...........................................................................................................................11 Volcanic Rocks ...........................................................................................................................12 Mesozoic Terranes, Sedimentary Rocks, and Assemblages ......................................................13 Terranes .......................................................................................................................................14 Walker Lake Terrane ........................................................................................................14 Black Rock-Jackson Terrane ..........................................................................................15 Sand Springs Terrane .......................................................................................................15 Quartz Mountain Terrane .................................................................................................16 Jungo Terrane ...................................................................................................................16 Sedimentary Rocks and Assemblages ...................................................................................16 Localized Clastic Rocks ...................................................................................................16 Gold Range Assemblage .................................................................................................17 Humboldt Assemblage .....................................................................................................18 Siliciclastic Overlap Assemblage ..................................................................................18 Cratonal Sequence ...........................................................................................................19 iv Paleozoic Rocks ..................................................................................................................................20 Sedimentary and Metamorphic Rocks ...................................................................................21 Carbonate Shelf Sequence .............................................................................................21 Undivided and Metamorphosed Carbonate Shelf Sequence Rocks ........................24 Terranes and Assemblages ......................................................................................................24 Golconda Terrane .............................................................................................................24 Siliciclastic Overlap Assemblage ..................................................................................26 Foreland Basin Assemblage ...........................................................................................27 Dutch Flat Terrane ............................................................................................................28 Slope Assemblage ............................................................................................................29 Basin Assemblage ............................................................................................................32 Nolan Belt ..........................................................................................................................33 Precambrian and Other Rocks .........................................................................................................34 Lower Cambrian to Latest Proterozoic Clastic Rocks .........................................................34 Proterozoic Basement Rocks ..................................................................................................35 Other Rocks.................................................................................................................................35 Map References...........................................................................................................................................36 References ....................................................................................................................................................37
Recommended publications
  • Lovelock-Cave-Back-Country-Byway
    Back Country Byways . An Invitation to Discover There is an axiom among seasoned travelers advising that the best way to get to know a new place is to get off the highway and visit the back roads, the side trails and the hidden, out-of-the-way corners where the true qualities wait to be discovered. The same axiom holds true for America’s public lands, the vast reaches of our nation that are all too often seen only from the windows of speeding cars or the tiny portholes of airliners. The Bureau of Land Management, America’s largest land managing agency, is providing an exciting opportunity for more Americans to get to know their lands by getting off the main roads for leisurely trips on a series of roads and trails being dedicated as Back Country Byways. The Back Country Byways Program, an outgrowth of the national Scenic Byways Program, is designed to encourage greater use of these existing back roads through greater public awareness. The system is BUREAUREAU OOFF LANDLAND MANMANAGEMENTGEMENT expected to expand to 100 roads when completed. In Nevada, each byway has a character and beauty of its own, taking travelers through scenery that is uniquely Nevadan, into historic areas that helped shape our state and near areas that have been largely untouched by man. They can see the multiple uses of their lands and come to a greater awareness of the need for the conservation and wise use of these resources. And all this can be accomplished at little cost to the taxpayer. Because the roads are already in place, only interpretive signs and limited facilities are needed to better serve the public.
    [Show full text]
  • Northern Paiute and Western Shoshone Land Use in Northern Nevada: a Class I Ethnographic/Ethnohistoric Overview
    U.S. DEPARTMENT OF THE INTERIOR Bureau of Land Management NEVADA NORTHERN PAIUTE AND WESTERN SHOSHONE LAND USE IN NORTHERN NEVADA: A CLASS I ETHNOGRAPHIC/ETHNOHISTORIC OVERVIEW Ginny Bengston CULTURAL RESOURCE SERIES NO. 12 2003 SWCA ENVIROHMENTAL CON..·S:.. .U LTt;NTS . iitew.a,e.El t:ti.r B'i!lt e.a:b ~f l-amd :Nf'arat:1.iern'.~nt N~:¥G~GI Sl$i~-'®'ffl'c~. P,rceP,GJ r.ei l l§y. SWGA.,,En:v,ir.e.m"me'Y-tfol I €on's.wlf.arats NORTHERN PAIUTE AND WESTERN SHOSHONE LAND USE IN NORTHERN NEVADA: A CLASS I ETHNOGRAPHIC/ETHNOHISTORIC OVERVIEW Submitted to BUREAU OF LAND MANAGEMENT Nevada State Office 1340 Financial Boulevard Reno, Nevada 89520-0008 Submitted by SWCA, INC. Environmental Consultants 5370 Kietzke Lane, Suite 205 Reno, Nevada 89511 (775) 826-1700 Prepared by Ginny Bengston SWCA Cultural Resources Report No. 02-551 December 16, 2002 TABLE OF CONTENTS List of Figures ................................................................v List of Tables .................................................................v List of Appendixes ............................................................ vi CHAPTER 1. INTRODUCTION .................................................1 CHAPTER 2. ETHNOGRAPHIC OVERVIEW .....................................4 Northern Paiute ............................................................4 Habitation Patterns .......................................................8 Subsistence .............................................................9 Burial Practices ........................................................11
    [Show full text]
  • Central Nevada
    University of Nevada Reno LATE CENOZOIC GEOLOGY AND TECTONICS OF STEWART AND MONTE CRISTO VALLEYS, WEST - CENTRAL NEVADA A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science .I by Mark Philip Molinari fit ; December, 1984 ii ABSTRACT Discontinuous right-normal-slip faults comprise the N30 0W trending, 45 kilometer long Stewart - Monte Cristo fault zone (SMCFZ). Initiation of the SMCFZ postdates the 15.5 to 11.0 m.y. Esmeralda Formation. Right-normal-slip >1 meter occurred on the southern segment of the SMCFZ during the 1932 Cedar Mountain earthquake (Ms= 7.2-7.3). Geomor- phic evidence supports at least three and possibly five or six surface faulting events on the southern segment during the latest Pleistocene and Holocene. Gentle folds in the Esmeralda Formation east of and sub-parallel to the SMCFZ are coeval with and genetically related to faulting. Structural development of the SMCFZ is similar to other right-lateral wrench faults and is consistent with labora- tory wrench fault models. The SMCFZ is the youngest and southeasternmost fault of a system of major late Cenozoic, left-stepping, en echelon right-slip faults in the central Walker Lane. - .~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ iii TABLE OF CONTENTS page ABSTRACT .................. S S ii INTRODUCTION . 0 0 1 0 * I Location and Extent of Study Area . S S S S 1 Regional Tectonic and Geologic Setting. S. S a * 0 1 Purpose and Scope ...... a a * a 5 Methodology . 6 Previous Work . 8 Physiography. 10 MESOZOIC STRATIGRAPHY. 13 Sedimentary Rocks . & 13 Mina Formation . 13 Luning Formation . 13 Plutonic Rocks .
    [Show full text]
  • Gravity Modeling of the Rye Patch Known Geothermal Resource Area, Rye Patch, Nevada
    GRC Transactions, Vol. 38, 2014 Gravity Modeling of the Rye Patch Known Geothermal Resource Area, Rye Patch, Nevada Mark R. McDonald1 and William D. Gosnold2 1North Dakota Geological Survey, Bismarck ND 2Department of Geology and Geological Engineering, University of North Dakota, Grand Forks ND Keywords A gravity study was performed at the Rye Patch KGRA in an Rye Patch, gravity, modeling, geophysics, exploration attempt to further define the geothermal reservoir and/or to identify potential drilling targets in the area by delineating approximate fault locations, lengths, trends and dip angles. The gravity survey ABSTRACT was augmented with existing seismic, aeromagnetic, remote sens- ing, and geochemical data. A gravity survey was conducted at the Rye Patch Known Geo- thermal Resource Area located at Rye Patch, Nevada. The purpose Geology of the study was to attempt to further delineate the geothermal reservoir and/or to identify potential drilling targets. The survey The Rye Patch geothermal area is located in the Humboldt Riv- consisted of collecting data at 264 new stations to augment data er Valley in Pershing County, Nevada. As previously mentioned, from 203 stations collected in 2008. Information from previous the study area is bounded by the Humboldt Range on the east seismic, aeromagnetic and geochemical investigations was also examined and incorporated. After filtering the data to remove the strong regional overprint caused by the large density contrast between the low density alluvium within the valley versus the near-surface higher density rock in the higher elevations, 2-D models were created across three profiles. Based on estimates arrived at by using 2nd derivative methods, fault dip angles are on the order of 80o and are consistent with previous conceptual models of the site.
    [Show full text]
  • Quaternary Fault and Fold Database of the United States
    Jump to Navigation Quaternary Fault and Fold Database of the United States As of January 12, 2017, the USGS maintains a limited number of metadata fields that characterize the Quaternary faults and folds of the United States. For the most up-to-date information, please refer to the interactive fault map. Western Humboldt Range fault zone (Class A) No. 1635 Last Review Date: 2006-03-22 citation for this record: Adams, K., Sawyer, T.L., and Haller, K.M., compilers, 2006, Fault number 1635, Western Humboldt Range fault zone, in Quaternary fault and fold database of the United States: U.S. Geological Survey website, https://earthquakes.usgs.gov/hazards/qfaults, accessed 12/14/2020 02:35 PM. Synopsis This long, mostly continuous zone is comprised of range-front normal faults and piedmont faults along the prominent western fronts of the Humboldt and West Humboldt Ranges. The zone includes short piedmont faults on slopes adjacent to these ranges. The Humboldt ranges have been tilted about 10–15° east since Tertiary time. The entire length of the fault zone shows evidence of rupture since the highstand of Lake Lahontan at about 13 ka. Sources of data include detailed topical studies of the fault zone involving detailed photogeologic mapping, scarp morphology studies, and trenching; regional and detailed geologic mapping; and reconnaissance photogeologic mapping. Name Refers to faults on the western side of the Humboldt Range and comments West Humboldt Range that were mapped by more than a century comments ago by Russell (1885 #3549). More recent mapping has been conducted by Silberling and Wallace (1967 #3025), Wallace and others (1969 #3027), Slemmons (1968, unpublished Reno 1:250,000-scale map; 1974, unpublished Lovelock 1:250,000- scale map), Johnson (1977 #2569), Wallace (1979 #203), Davis (1983 #3026), Anderson and others (1983 #416), Bell (1984 #105), and Dohrenwend and others (1991 #285).
    [Show full text]
  • Eocene–Early Miocene Paleotopography of the Sierra Nevada–Great Basin–Nevadaplano Based on Widespread Ash-Flow Tuffs and P
    Origin and Evolution of the Sierra Nevada and Walker Lane themed issue Eocene–Early Miocene paleotopography of the Sierra Nevada–Great Basin–Nevadaplano based on widespread ash-fl ow tuffs and paleovalleys Christopher D. Henry1, Nicholas H. Hinz1, James E. Faulds1, Joseph P. Colgan2, David A. John2, Elwood R. Brooks3, Elizabeth J. Cassel4, Larry J. Garside1, David A. Davis1, and Steven B. Castor1 1Nevada Bureau of Mines and Geology, University of Nevada, Reno, Nevada 89557, USA 2U.S. Geological Survey, Menlo Park, California 94025, USA 3California State University, Hayward, California 94542, USA 4Department of Earth and Environment, Franklin & Marshall College, Lancaster, Pennsylvania 17604, USA ABSTRACT the great volume of erupted tuff and its erup- eruption fl owed similar distances as the mid- tion after ~3 Ma of nearly continuous, major Cenozoic tuffs at average gradients of ~2.5–8 The distribution of Cenozoic ash-fl ow tuffs pyroclastic eruptions near its caldera that m/km. Extrapolated 200–300 km (pre-exten- in the Great Basin and the Sierra Nevada of probably fi lled in nearby topography. sion) from the Pacifi c Ocean to the central eastern California (United States) demon- Distribution of the tuff of Campbell Creek Nevada caldera belt, the lower gradient strates that the region, commonly referred and other ash-fl ow tuffs and continuity of would require elevations of only 0.5 km for to as the Nevadaplano, was an erosional paleovalleys demonstrates that (1) the Basin valley fl oors and 1.5 km for interfl uves. The highland that was drained by major west- and Range–Sierra Nevada structural and great eastward, upvalley fl ow is consistent and east-trending rivers, with a north-south topographic boundary did not exist before with recent stable isotope data that indicate paleodivide through eastern Nevada.
    [Show full text]
  • The Geology and Paleontology of Tule Springs Fossil Beds National Monument, Nevada
    The Geology and Paleontology of Tule Springs Fossil Beds National Monument, Nevada On December 19, 2014, Tule Springs Fossil Beds National Monument in Nevada was established by Congress as the 405th unit of the National Park Service to “conserve, protect, interpret, and enhance for the benefit of present and future generations the unique and nationally important paleontological, scientific, educational, and recreational resources and values of the land” (P.L. 113-291, sec. 3092). Photograph by Eric Scott, Cogstone Resource Management, Inc., used with permission. The upper Las Vegas Wash cuts through sediments formed by ancient springs and marshes that blanketed the Las Vegas Valley floor during the Pleistocene Epoch. These deposits have yielded thousands of vertebrate fossils and contain valuable information on past climatic and environmental conditions. This is Tule Springs Fossil Beds National Monument. A Brief History of Tule Springs techniques with massive earth-moving animals (Haynes, 1967). Consequently, activities. Heavy construction equipment the hypothesis that early humans coexisted Vertebrate fossils have been known carved enormous trenches into the sedi- with Pleistocene megafauna at Tule from the Las Vegas Valley for more than ments at Tule Springs to expose vertical Springs was disproven, and interest in the a century, beginning in 1903 when Josiah walls as deep as 13 meters (nearly site faded. A long intermission in scientific Spurr of the U.S. Geological Survey 43 feet!), which allowed the sediments to research followed, lasting until the 2000s reported teeth and bones in the sedi- be studied in detail. Geologist C. Vance when museum scientists conducted com- ments exposed in the wash between Corn Haynes, Jr., directed the geological inves- prehensive and systematic paleontological Creek Springs and Tule Springs (Spurr, tigations and subdivided the fossil-rich excavations of the area.
    [Show full text]
  • Carlin-Type Gold Deposits in Nevada: Critical Geologic Characteristics and Viable Models
    ©2005 Society of Economic Geologists, Inc. Economic Geology 100th Anniversary Volume pp. 451–484 Carlin-Type Gold Deposits in Nevada: Critical Geologic Characteristics and Viable Models JEAN S. CLINE,† University of Nevada, Las Vegas, 4505 Maryland Parkway, Box 454010, Las Vegas, Nevada 89154-4010 ALBERT H. HOFSTRA, Mineral Resources Program, U.S. Geological Survey, Mail Stop 973, Box 25046, Denver, Colorado 80225 JOHN L. MUNTEAN, Nevada Bureau of Mines and Geology, Mail Stop 178, University of Nevada, Reno, Nevada 89557-0088 RICHARD M. TOSDAL, AND KENNETH A. HICKEY Mineral Deposit Research Unit, University of British Columbia, 6339 Stores Road, Vancouver, British Columbia, Canada V6T 1Z4 Abstract Carlin-type Au deposits in Nevada have huge Au endowments that have made the state, and the United States, one of the leading Au producers in the world. Forty years of mining and numerous studies have pro- vided a detailed geologic picture of the deposits, yet a comprehensive and widely accepted genetic model re- mains elusive. The genesis of the deposits has been difficult to determine owing to difficulties in identifying and analyzing the fine-grained, volumetrically minor, and common ore and gangue minerals, and because of postore weathering and oxidation. In addition, other approximately contemporaneous precious metal deposits have overprinted, or are overprinted by, Carlin-type mineralization. Recent geochronological studies have led to a consensus that the Nevada deposits formed ~42 to 36 m.y. ago, and the deposits can now be evaluated in the context of their tectonic setting. Continental rifting and deposi- tion of a passive margin sequence followed by compressional orogenies established a premineral architecture of steeply dipping fluid conduits, shallow, low dipping “traps” and reactive calcareous host rocks.
    [Show full text]
  • Crossing Into Vancouver, BC, Is Easy. Don't Forget Your Passport
    Crossing into Vancouver, BC, is easy. Don’t forget your passport. Tourism Vancouver / Capilano Suspension Bridge Park. JUNE | VOL. 24, 2014 6 NO. A PUBLICATION OF THE GEOLOGICAL SOCIETY OF AMERICA® JUNE 2014 | VOLUME 24, NUMBER 6 Featured Article GSA TODAY (ISSN 1052-5173 USPS 0456-530) prints news and information for more than 26,000 GSA member readers and subscribing libraries, with 11 monthly issues (April/ May is a combined issue). GSA TODAY is published by The SCIENCE: Geological Society of America® Inc. (GSA) with offices at 3300 Penrose Place, Boulder, Colorado, USA, and a mail- 4 An anthropogenic marker horizon in the future ing address of P.O. Box 9140, Boulder, CO 80301-9140, USA. rock record GSA provides this and other forums for the presentation of diverse opinions and positions by scientists worldwide, Patricia L. Corcoran, Charles J. Moore, and regardless of race, citizenship, gender, sexual orientation, Kelly Jazvac religion, or political viewpoint. Opinions presented in this publication do not reflect official positions of the Society. Cover: Plastiglomerate fragments interspersed with plastic debris, © 2014 The Geological Society of America Inc. All rights organic material, and sand on Kamilo Beach, Hawaii. Photo by K. Jazvac. reserved. Copyright not claimed on content prepared See related article, p. 4–8. wholly by U.S. government employees within the scope of their employment. Individual scientists are hereby granted permission, without fees or request to GSA, to use a single figure, table, and/or brief paragraph of text in subsequent work and to make/print unlimited copies of items in GSA TODAY for noncommercial use in classrooms to further education and science.
    [Show full text]
  • Geologic Time, Concepts, and Principles
    GEOLOGIC TIME, CONCEPTS, AND PRINCIPLES Sources: www.google.com en.wikipedia.org Thompson Higher Education 2007; Monroe, Wicander, and Hazlett, Physical orgs.usd.edu/esci/age/content/failed_scientific_clocks/ocean_salinity.html https://web.viu.ca/earle/geol305/Radiocarbon%20dating.pdf TCNJ PHY120 2013 GCHERMAN GEOLOGIC TIME, CONCEPTS, AND PRINCIPLES • Early estimates of the age of the Earth • James Hutton and the recognition of geologic time • Relative dating methods • Correlating rock units • Absolute dating methods • Development of the Geologic Time Scale • Geologic time and climate •Relative dating is accomplished by placing events in sequential order with the aid of the principles of historical geology . •Absolute dating provides chronometric dates expressed in years before present from using radioactive decay rates. TCNJ PHY120 2013 GCHERMAN TCNJ PHY120 2013 GCHERMAN Geologic time on Earth • A world-wide relative time scale of Earth's rock record was established by the work of many geologists, primarily during the 19 th century by applying the principles of historical geology and correlation to strata of all ages throughout the world. Covers 4.6 Ba to the present • Eon – billions to hundreds of millions • Era - hundreds to tens of millions • Period – tens of millions • Epoch – tens of millions to hundreds of thousands TCNJ PHY120 2013 GCHERMAN TCNJ PHY120 2013 GCHERMAN EARLY ESTIMATES OF EARTH’S AGE • Scientific attempts to estimate Earth's age were first made during the 18th and 19th centuries. These attempts all resulted in ages far younger than the actual age of Earth. 1778 ‘Iron balls’ Buffon 1710 – 1910 ‘salt clocks’ Georges-Louis Leclerc de Buffon • Biblical account (1600’S) 26 – 150 Ma for the oceans to become 74,832 years old and that as salty as they are from streams humans were relative newcomers.
    [Show full text]
  • Pdf/17/3/932/5319294/932.Pdf 932 by Guest on 28 September 2021 Research Paper
    Research Paper GEOSPHERE Late Pleistocene rates of rock uplift and faulting at the boundary between the southern Coast Ranges and the western Transverse GEOSPHERE, v. 17 no. 3 Ranges in California from reconstruction and luminescence dating https://doi.org/10.1130/GES02274.1 14 figures; 2 tables of the Orcutt Formation CORRESPONDENCE: [email protected] Ian S. McGregor and Nathan W. Onderdonk Department of Geological Sciences, California State University–Long Beach, 1250 Bellflower Boulevard, Long Beach, California 90804, USA CITATION: McGregor, I.S., and Onderdonk, N.W., 2021, Late Pleistocene rates of rock uplift and faulting at the boundary between the southern Coast Ranges ABSTRACT consistent with models that attribute shortening across the Santa Maria Basin and the western Transverse Ranges in California from to accommodation of clockwise rotation of the western Transverse Ranges and reconstruction and luminescence dating of the Orcutt Formation: Geosphere, v. 17, no. 3, p. 932–956, https:// The western Transverse Ranges and southern Coast Ranges of California suggest that rotation has continued into late Quaternary time. doi .org /10.1130 /GES02274.1. are lithologically similar but have very different styles and rates of Quaternary deformation. The western Transverse Ranges are deformed by west-trending Science Editor: Andrea Hampel folds and reverse faults with fast rates of Quaternary fault slip (1–11 mm/yr) ■ INTRODUCTION Associate Editor: Jeff Lee and uplift (1–7 mm/yr). The southern Coast Ranges, however, are primarily deformed by northwest-trending folds and right-lateral strike-slip faults with The Coast Ranges of California are deformed by northwest-striking faults Received 15 April 2020 Revision received 16 November 2020 much slower slip rates (3 mm/yr or less) and uplift rates (<1 mm/yr).
    [Show full text]
  • Significant New Biostratigraphic Horizons in the Qusaiba Member of the Silurian Qalibah Formation of Central Saudi Arabia, and T
    GeoArabia, Vol. 10, No. 1, 2005 Gulf PetroLink, Bahrain Significant new biostratigraphic horizons in the Qusaiba Member of the Silurian Qalibah Formation of central Saudi Arabia, and their sedimentologic expression in a sequence stratigraphic context Merrell A. Miller and John Melvin ABSTRACT Detailed analysis of over 1,000 subsurface Silurian palynology samples from 34 wells has allowed the development of a robust biostratigraphy based on acritarchs, chitinozoans and cryptospores for the Qusaiba Member of the Qalibah Formation, central Saudi Arabia. The new index fossils described herein augment the Arabian Plate Silurian chitinozoan zonation. The high-resolution biostratigraphic zonation consists of nine First Downhole Occurrences (FDOs) from the lower Telychian through Aeronian. In particular, three regionally recognizable palynologic horizons were identified within the lower part of the informally designated Mid-Qusaiba Sandstone (Angochitina hemeri Interval Zone), and above the FDO of Sphaerochitina solutidina. This high level of biostratigraphic resolution provides a framework for the integration of the sedimentology and calibration with global sea level curves, leading to a detailed understanding of the sequence stratigraphic evolution of this part of the Silurian in Saudi Arabia. Sedimentological core studies identify three Depositional Facies Associations (DFAs) within the Mid-Qusaiba Sandstone interval, including: (1) shelfal deposits (DFA-I) characterized by interbedded hummocky cross-stratified sandstones, graded siltstones and bioturbated mudstones; (2) turbiditic deposits (DFA-II); and (3) an association of heavily contorted and re- sedimented sandstones, siltstones and mudstones (DFA-III) that is considered representative of oversteepened slopes upon the Qusaiba shelf. Integration of the newly recognized palynostratigraphic horizons and the sedimentological data facilitates an understanding of the sequence stratigraphic evolution of the Mid-Qusaiba Sandstone interval and its immediate precursors.
    [Show full text]