Hvps41 and VAMP7 Function in Direct TGN to Late Endosome Transport of Lysosomal Membrane Proteins
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
RANDY SCHEKMAN Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, USA
GENES AND PROTEINS THAT CONTROL THE SECRETORY PATHWAY Nobel Lecture, 7 December 2013 by RANDY SCHEKMAN Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, USA. Introduction George Palade shared the 1974 Nobel Prize with Albert Claude and Christian de Duve for their pioneering work in the characterization of organelles interrelated by the process of secretion in mammalian cells and tissues. These three scholars established the modern field of cell biology and the tools of cell fractionation and thin section transmission electron microscopy. It was Palade’s genius in particular that revealed the organization of the secretory pathway. He discovered the ribosome and showed that it was poised on the surface of the endoplasmic reticulum (ER) where it engaged in the vectorial translocation of newly synthesized secretory polypeptides (1). And in a most elegant and technically challenging investigation, his group employed radioactive amino acids in a pulse-chase regimen to show by autoradiograpic exposure of thin sections on a photographic emulsion that secretory proteins progress in sequence from the ER through the Golgi apparatus into secretory granules, which then discharge their cargo by membrane fusion at the cell surface (1). He documented the role of vesicles as carriers of cargo between compartments and he formulated the hypothesis that membranes template their own production rather than form by a process of de novo biogenesis (1). As a university student I was ignorant of the important developments in cell biology; however, I learned of Palade’s work during my first year of graduate school in the Stanford biochemistry department. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
4 Membrane Trafficking
Trafficking 1 MCB 110 - Spring 2008- Nogales 4 MEMBRANE TRAFFICKING I Introduction: secretory pathway A. Protein Synthesis and sorting B. Methods to study cytomembranes II Endoplasmic Reticulum A. Smooth ER B. Rough ER C. Synthesis of proteins in membrane-bound ribosomes • The signal hypothesis • Synthesis of membrane proteins D. Glycosylation in the ER III Golgi IV Vesicle Transport A. COPII-coated Vesicles B. COPI-coated Vesoicles C. Clathrin-coated Vesicles V Lisosomes A. Phagocytosis B. Autophagy VI Endocytosis Suggested Reading: Lodish, Chapter 5, 5.3; Chapter 16, 16.1 to 16.3; Chapter 17 Alberts, Chapters 12 and 13 Trafficking 2 MCB 110 - Spring 2008- Nogales I Introduction to the Secretory Pathway The eukaryotic cell is filled with membranous organelles that form part of an integrated and dynamic system shuttling material across the cell Trafficking 3 MCB 110 - Spring 2008- Nogales The biosynthetic or secretory pathway includes the synthesis of proteins in the ER, their modification in the ER and Golgi, and their transport to different destinations such as the plasma membrane, lysosomes, vacuoles, etc. In constitutive secretion materials are transported in a continual manner. In regulated secretion , materials are stored in secretory granules in the periphery of the cell and discarded in response to a particular stimulus (e.g. nerve cells, cells producing hormones or digestive enzymes). Materials are transported in vesicles that move along microtubules, powered by motor proteins. Sorting is facilitated by receptors localized in particular membranes. Trafficking 4 MCB 110 - Spring 2008- Nogales Methods to Study Cytomembranes Visualization by electron microscopy Dynamic localization by autoradiography and pulse-chase Trafficking 5 MCB 110 - Spring 2008- Nogales Trafficking 6 MCB 110 - Spring 2008- Nogales Use of GFP constructs Movement of proteins through the secretory pathway has been followed using a Green Flourescence Protein (GFP). -
Clathrin-Dependent Mechanisms Modulate the Subcellular Distribution of Class C Vps/HOPS Tether Subunits in Polarized and Nonpolarized Cells Stephanie A
Clathrin-dependent mechanisms modulate the subcellular distribution of class C Vps/HOPS tether subunits in polarized and nonpolarized cells Stephanie A. Zlatic, Emory University Karine Tornieri, Emory University Steven L'Hernault, Emory University Victor Faundez, Emory University Journal Title: Molecular Biology of the Cell Volume: Volume 22, Number 10 Publisher: American Society for Cell Biology | 2011-05-15, Pages 1699-1715 Type of Work: Article | Final Publisher PDF Publisher DOI: 10.1091/mbc.E10-10-0799 Permanent URL: http://pid.emory.edu/ark:/25593/f71wm Final published version: http://www.molbiolcell.org/content/22/10/1699 Copyright information: © 2011 Zlatic et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License This is an Open Access work distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (http://creativecommons.org/licenses/by-nc-sa/3.0/). Accessed September 26, 2021 8:16 AM EDT M BoC | ARTICLE Clathrin-dependent mechanisms modulate the subcellular distribution of class C Vps/HOPS tether subunits in polarized and nonpolarized cells Stephanie A. Zlatica,b, Karine Tornierib, Steven W. L’Hernaulta,c,d, and Victor Faundeza,b,d aGraduate Program in Biochemistry, Cell, and Developmental Biology, bDepartment of Cell Biology, cBiology Department, and dCenter for Neurodegenerative Diseases, Emory University, Atlanta, GA 30322 ABSTRACT Coats define the composition of carriers budding from organelles. In addition, Monitoring Editor coats interact with membrane tethers required for vesicular fusion. -
Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase -
Identifying Potential Binding Partners of VPS16B and VPS33B in Mammalian Cells
Identifying Potential Binding Partners of VPS16B and VPS33B in Mammalian Cells by Shao Zun Chen A thesis submitted in conformity with the requirements for the degree of Master of Science Department of Biochemistry University of Toronto © Copyright by Shao Zun Chen 2013 Identifying Potential Binding Partners of VPS16B and VPS33B in Mammalian Cells Shao Zun Chen Master of Science Department of Biochemistry University of Toronto 2013 Abstract Platelets contain specialized granules that are required for platelet function in hemostasis. These granules are formed in the megakaryocyte precursor, and VPS33B and VPS16B are essential for this process as mutations in them cause arthrogryposis, renal dysfunction and cholestasis syndrome, where platelets lack α-granules. Here, it is shown that VPS33B and VPS16B exist as part of two complexes (480 kDa and 720 kDa). My project entailed the identification of the components of these complexes that could be required for platelet granule biogenesis. It was found that these complexes are distinct from the VPS33A HOPS complex as they are not associated with VPS11 or VPS18, but are formed through self- oligomerization. Yeast three hybrid and co-immunoprecipitation experiments suggest that VPS52, COG5 and ATP6AP2 may interact with VPS33B and VPS16B. In addition, VPS33B and VPS16B likely interact with Rab5 and/or Rab7, but not with Rab11A, based on both GST-pulldown assays and co-immunoprecipitation experiments. ii Acknowledgments I would like to express my deepest appreciation to my supervisor, Dr. Walter Kahr, for providing guidance and inspiration during my studies; to my supervisory committee Dr. Allen Volchuk and Dr. David Williams for their helpful inputs and guidance; to all members of the Kahr lab: Dr. -
The Role of SNAP29 During Epidermal Differentiation
The role of SNAP29 during epidermal differentiation Doctoral Thesis In partial fulfillment of the requirements for the degree “Doctor rerum naturalium (Dr. rer. nat.)“ in the Molecular Medicine Study Program at the Georg-August University Göttingen submitted by Christina Seebode born in Göttingen, Germany Göttingen, 28.06.2015 Members of the thesis committee Supervisors: Prof. Dr. med. Steffen Emmert and Dr. Stina Schiller University Medical Center, Dept. of Dermatology, Venereology and Allergology Georg-August University Göttingen First member of the thesis committee: Prof. Dr. med. Michael P. Schön University Medical Center, Dept. of Dermatology, Venereology and Allergology Georg-August University Göttingen Second member of the thesis committee: Prof. Dr. Jürgen Brockmöller University Medical Center, Dept. of Clinical Pharmacology Georg-August University Göttingen Third member of the thesis committee: Prof. Dr. med. Heidi Hahn Department for Human Genetics, Section of Developmental Genetics Georg-August University Göttingen Date of Disputation: AFFIDAVIT AFFIDAVIT Here I declare that my doctoral thesis entitled “The role of SNAP29 during epidermal differentiation” has been written independently with no other sources and aids than quoted. Date Signature (Christina Seebode) I Acknowledgements Firstly, I would like to thank my supervisor Prof. Dr. med. Steffen Emmert for giving me the opportunity to write this thesis in his lab and for all the successful publications during this time. I am very thankful for his inspiring guidance, and his constructive and critical support for this thesis project. Furthermore, I owe thanks to Dr. Stina Schiller for her advice and support as my thesis supervisor. She was always available to discuss my research and willing to help with even the smallest of problems. -
Cldn19 Clic2 Clmp Cln3
NewbornDx™ Advanced Sequencing Evaluation When time to diagnosis matters, the NewbornDx™ Advanced Sequencing Evaluation from Athena Diagnostics delivers rapid, 5- to 7-day results on a targeted 1,722-genes. A2ML1 ALAD ATM CAV1 CLDN19 CTNS DOCK7 ETFB FOXC2 GLUL HOXC13 JAK3 AAAS ALAS2 ATP1A2 CBL CLIC2 CTRC DOCK8 ETFDH FOXE1 GLYCTK HOXD13 JUP AARS2 ALDH18A1 ATP1A3 CBS CLMP CTSA DOK7 ETHE1 FOXE3 GM2A HPD KANK1 AASS ALDH1A2 ATP2B3 CC2D2A CLN3 CTSD DOLK EVC FOXF1 GMPPA HPGD K ANSL1 ABAT ALDH3A2 ATP5A1 CCDC103 CLN5 CTSK DPAGT1 EVC2 FOXG1 GMPPB HPRT1 KAT6B ABCA12 ALDH4A1 ATP5E CCDC114 CLN6 CUBN DPM1 EXOC4 FOXH1 GNA11 HPSE2 KCNA2 ABCA3 ALDH5A1 ATP6AP2 CCDC151 CLN8 CUL4B DPM2 EXOSC3 FOXI1 GNAI3 HRAS KCNB1 ABCA4 ALDH7A1 ATP6V0A2 CCDC22 CLP1 CUL7 DPM3 EXPH5 FOXL2 GNAO1 HSD17B10 KCND2 ABCB11 ALDOA ATP6V1B1 CCDC39 CLPB CXCR4 DPP6 EYA1 FOXP1 GNAS HSD17B4 KCNE1 ABCB4 ALDOB ATP7A CCDC40 CLPP CYB5R3 DPYD EZH2 FOXP2 GNE HSD3B2 KCNE2 ABCB6 ALG1 ATP8A2 CCDC65 CNNM2 CYC1 DPYS F10 FOXP3 GNMT HSD3B7 KCNH2 ABCB7 ALG11 ATP8B1 CCDC78 CNTN1 CYP11B1 DRC1 F11 FOXRED1 GNPAT HSPD1 KCNH5 ABCC2 ALG12 ATPAF2 CCDC8 CNTNAP1 CYP11B2 DSC2 F13A1 FRAS1 GNPTAB HSPG2 KCNJ10 ABCC8 ALG13 ATR CCDC88C CNTNAP2 CYP17A1 DSG1 F13B FREM1 GNPTG HUWE1 KCNJ11 ABCC9 ALG14 ATRX CCND2 COA5 CYP1B1 DSP F2 FREM2 GNS HYDIN KCNJ13 ABCD3 ALG2 AUH CCNO COG1 CYP24A1 DST F5 FRMD7 GORAB HYLS1 KCNJ2 ABCD4 ALG3 B3GALNT2 CCS COG4 CYP26C1 DSTYK F7 FTCD GP1BA IBA57 KCNJ5 ABHD5 ALG6 B3GAT3 CCT5 COG5 CYP27A1 DTNA F8 FTO GP1BB ICK KCNJ8 ACAD8 ALG8 B3GLCT CD151 COG6 CYP27B1 DUOX2 F9 FUCA1 GP6 ICOS KCNK3 ACAD9 ALG9 -
ER-To-Golgi Trafficking and Its Implication in Neurological Diseases
cells Review ER-to-Golgi Trafficking and Its Implication in Neurological Diseases 1,2, 1,2 1,2, Bo Wang y, Katherine R. Stanford and Mondira Kundu * 1 Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; [email protected] (B.W.); [email protected] (K.R.S.) 2 Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA * Correspondence: [email protected]; Tel.: +1-901-595-6048 Present address: School of Life Sciences, Xiamen University, Xiamen 361102, China. y Received: 21 November 2019; Accepted: 7 February 2020; Published: 11 February 2020 Abstract: Membrane and secretory proteins are essential for almost every aspect of cellular function. These proteins are incorporated into ER-derived carriers and transported to the Golgi before being sorted for delivery to their final destination. Although ER-to-Golgi trafficking is highly conserved among eukaryotes, several layers of complexity have been added to meet the increased demands of complex cell types in metazoans. The specialized morphology of neurons and the necessity for precise spatiotemporal control over membrane and secretory protein localization and function make them particularly vulnerable to defects in trafficking. This review summarizes the general mechanisms involved in ER-to-Golgi trafficking and highlights mutations in genes affecting this process, which are associated with neurological diseases in humans. Keywords: COPII trafficking; endoplasmic reticulum; Golgi apparatus; neurological disease 1. Overview Approximately one-third of all proteins encoded by the mammalian genome are exported from the endoplasmic reticulum (ER) and transported to the Golgi apparatus, where they are sorted for delivery to their final destination in membrane compartments or secretory vesicles [1]. -
CORVET, CHEVI and HOPS – Multisubunit Tethers of the Endo
© 2019. Published by The Company of Biologists Ltd | Journal of Cell Science (2019) 132, jcs189134. doi:10.1242/jcs.189134 REVIEW SUBJECT COLLECTION: CELL BIOLOGY AND DISEASE CORVET, CHEVI and HOPS – multisubunit tethers of the endo-lysosomal system in health and disease Jan van der Beek‡, Caspar Jonker*,‡, Reini van der Welle, Nalan Liv and Judith Klumperman§ ABSTRACT contact between two opposing membranes and pull them close Multisubunit tethering complexes (MTCs) are multitasking hubs that together to allow interactions between SNARE proteins (Murray form a link between membrane fusion, organelle motility and signaling. et al., 2016). SNARE assembly then provides additional fusion CORVET, CHEVI and HOPS are MTCs of the endo-lysosomal system. specificity and drives the actual fusion process (Ohya et al., 2009; They regulate the major membrane flows required for endocytosis, Stroupe et al., 2009). In this Review, we focus on the role of tethering lysosome biogenesis, autophagy and phagocytosis. In addition, proteins in endo-lysosomal fusion events. individual subunits control complex-independent transport of specific Tethering proteins can be divided into two main groups: long cargoes and exert functions beyond tethering, such as attachment to coiled-coil proteins (Gillingham and Munro, 2003) and microtubules and SNARE activation. Mutations in CHEVI subunits multisubunit tethering complexes (MTCs). MTCs form a lead to arthrogryposis, renal dysfunction and cholestasis (ARC) heterogenic group of protein complexes that consist of up to ten ∼ syndrome, while defects in CORVET and, particularly, HOPS are subunits resulting in a general length of 50 nm (Brocker et al., associated with neurodegeneration, pigmentation disorders, liver 2012; Chou et al., 2016; Hsu et al., 1998; Lürick et al., 2018; Ren malfunction and various forms of cancer. -
Arthrogryposis and Congenital Myasthenic Syndrome Precision Panel
Arthrogryposis and Congenital Myasthenic Syndrome Precision Panel Overview Arthrogryposis or arthrogryposis multiplex congenita (AMC) is a group of nonprogressive conditions characterized by multiple joint contractures found throughout the body at birth. It usually appears as a feature of other neuromuscular conditions or part of systemic diseases. Primary cases may present prenatally with decreased fetal movements associated with joint contractures as well as brain abnormalities, decreased muscle bulk and polyhydramnios whereas secondary causes may present with isolated contractures. Congenital Myasthenic Syndromes (CMS) are a clinically and genetically heterogeneous group of disorders characterized by impaired neuromuscular transmission. Clinically they usually present with abnormal fatigability upon exertion, transient weakness of extra-ocular, facial, bulbar, truncal or limb muscles. Severity ranges from mild, phasic weakness, to disabling permanent weakness with respiratory difficulties and ultimately death. The mode of inheritance of these diseases typically follows and autosomal recessive pattern, although dominant forms can be seen. The Igenomix Arthrogryposis and Congenital Myasthenic Syndrome Precision Panel can be as a tool for an accurate diagnosis ultimately leading to a better management and prognosis of the disease. It provides a comprehensive analysis of the genes involved in this disease using next-generation sequencing (NGS) to fully understand the spectrum of relevant genes involved, and their high or intermediate penetrance. -
Neurosecretory Vesicles Can Be Hybrids of Synaptic Vesicles
Proc. Natl. Acad. Sci. USA Vol. 92, pp. 7342-7346, August 1995 Neurobiology Neurosecretory vesicles can be hybrids of synaptic vesicles and secretory granules (small dense core vesicles/sympathetic neurons) RUDOLF BAUERFEIND, RuTH JELINEK, ANDREA HELLWIG, AND WIELAND B. HUrTNER* Institute for Neurobiology, University of Heidelberg, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany Communicated by Philip Siekevitz, The Rockefeller University, New York, NY, March 27, 1995 ABSTRACT We have investigated the relationship of the This implies that only the regulated, but not the constitutive, so-called small dense core vesicle (SDCV), the major cate- pathway of protein secretion contributes to the biogenesis of cholamine-containing neurosecretory vesicle of sympathetic SDCVs. This concept has been extended to the biogenesis of neurons, to synaptic vesicles containing classic neurotrans- synaptic vesicles in general (4, 9, 10) but has not provided a mitters and secretory granules containing neuropeptides. satisfactory explanation for the very low abundance, in secre- SDCVs contain membrane proteins characteristic of synaptic tory granules, of certain membrane proteins that are major vesicles such as synaptophysin and synaptoporin. However, components of classic synaptic vesicles. The other concept, SDCVs also contain membrane proteins characteristic of which originated from the demonstration that the classic certain secretory granules like the vesicular monoamine synaptic vesicle membrane is distinct from that ofthe secretory transporter and the membrane-bound form of dopamine granule, has viewed the SDCVs, which lack secretory proteins f3-hydroxylase. In neurites of sympathetic neurons, synapto- and morphologically resemble classic synaptic vesicles, as physin and dopamine 8-hydroxylase are found in distinct synaptic vesicles that simply contain vesicular amine transport- vesicles, consistent with their transport from the trans-Golgi ers instead of uptake systems for classic neurotransmitters (1, network to the site of SDCV formation in constitutive secre- 8).