<<

NGC 7212: Large-scale Extended X-ray Emission

MACKENZIE JONES, G. FABBIANO (PI), MARTIN ELVIS, A. PAGGI, M. KAROVSKA, W. P. MAKSYM, A. SIEMIGINOWSKA, J. RAYMOND 30.0 30.0 g-band 0.3-7.0 keV N 25.0 25.0 E 20.0 20.0 15.0 15.0 NGC 7212 NGC 7212 10.0 10.0 05.0 05.0 10:14:00.0 10:14:00.0 55.0 55.0 13:50.0 13:50.0 10’’ = 5.56 kpc Pan-STARRs Deep Stack Chandra 45.0 45.0 03.0 02.5 22:07:02.0 01.5 01.0 03.0 02.5 22:07:02.0 01.5 01.0

Mackenzie Jones — 20 YEARS OF CHANDRA [email protected] 0.019 0.057 0.13 0.29 0.59 1.2 2.4 4.8 9.7 19 NGC 7212: Large-scale Extended X-ray Emission 30.0 30.0 g-band 0.3-7.0 keV N 25.0 25.0 E 1 NGC 7212 & the AGN unified model What does it mean to have Compton thick 20.0 20.0 obscuration AND extended emission? 15.0 15.0 NGC 7212 NGC 7212 10.0 10.0 2 Measuring the extended emission 05.0 05.0 Radial profiles outside of the central nucleus FWHM as a function of energy 10:14:00.0 10:14:00.0 55.0 55.0 3 Spectral Fitting 13:50.0 13:50.0 10’’ = 5.56 kpc Best fit emission line models Chandra Pan-STARRs Deep Stack Best fit photoionization and thermal models 45.0 45.0 03.0 02.5 22:07:02.0 01.5 01.0 03.0 02.5 22:07:02.0 01.5 01.0

1.5e-05 0.019 0.057 0.13 0.29 0.59 1.2 2.4 4.8 9.7 19

Mackenzie Jones — 20 YEARS OF CHANDRA [email protected] 1 Extended NGC 4151 CT AGN

ESO 428

NGC 5643 NGC 1386

NGC 2110

Mrk 573 NGC 1448

NGC 1068

e.g., Wang+ 2011, Paggi+ 2012, Bauer+ 2015, Annuar+ 2017, Gómez-Guijarro+ 2017, Fabbiano+ 2017, Fabbiano+ 2018a, Fabbiano+ 2018b, Fabbiano 2019

Mackenzie Jones — 20 YEARS OF CHANDRA [email protected] 1 Extended NGC 4151 CT AGN ESO 428 ESO 428

NGC 5643 NGC 1386 NGC 2110

Mrk 573 NGC 1448

NGC 1068

Fabbiano+ 2017, Fabbiano+ 2018a, Fabbiano+ 2018b, Fabbiano 2019

Mackenzie Jones — 20 YEARS OF CHANDRA [email protected] AA56CH15_Hickox ARI 21 August 2018 13:11

the obscuring medium is typically composed of dust and/or gas. Dust is the common term used to describe solid-state structures, which are typically carbonaceous grains and amorphous silicate grains (for a review, see Draine 2003). Gas is the term used to describe a broad range of gaseous states, from fully ionized gas, including electrons and protons, to neutral gas and molecular com- pounds. Dust is the dominant source of obscuration at UV–IR wavelengths, while gas dominates the absorption at X-ray energies. The impact of the obscuring material on the detection of the accretion-disk emission is dependent on the wavelength. Physically, this is referred to as the optical

depth, which is the product of the opacity (κλ)anddensity(ρ) of the material and the path length (s); for a general overview, see, e.g., Rybicki & Lightman (1986). A low optical depth indicates that a small fraction of the emission will be absorbed, whereas a high optical depth implies the converse. For many (probably the majority of ) obscured AGN, the obscuration occurs in the close vicinity of the accretion disk and lies within the gravitational influence of the SMBH. In the favored picture 1 for the physical structure of AGN (termed the unified model of AGN; e.g., Antonucci 1993, Urry The AGN & Padovani 1995, Netzer 2015), the accretion disk is surrounded by a geometrically and optically thick dusty and molecularHOW torus CAN (often referredAN AGN to as the dustyBE torus);BOTH for a schematicCOMPTON of the AGN THICK UNIFIED MODEL physical model, see Figure 2. The torus is expected to be within the gravitational influence of the SMBH and could be considered,AND in a broad HAVE sense, toEXTENDED be the cool outer regions EMISSION of the accretion? disk where molecules and dust grains can form. The anisotropic nature of the torus means that,

z Type 1 log(pc)

3 NLR Ionization NLR coneIonization 2 Cone 1

0 Polar Polardust Dust Torus –1 Outfow Torus Outflow –2 Torus BLR –3 BLR Type Access provided by Harvard University on 06/07/19. For personal use only. 2 –4

Annu. Rev. Astron. Astrophys. 2018.56:625-671. Downloaded from www.annualreviews.org CoronaCorona ––55 Disk SMBH Disk –5 –4 –3 –2 –10 1 2 log( r ) Adapted from Hickox+ 2018 e.g., Antonucci 1993, Urry & Padovani 1995, Netzer 2015 pc Figure 2 Mackenzie Jones — 20 YEARS OF CHANDRA Schematic representation of the AGN physical model, broadly illustrating the scales of the key regions. The [email protected] accretion disk, corona, broad-line region (BLR), and dusty torus reside within the gravitational influence of the (SMBH). The disk, corona, and torus (including polar dust clouds) are colored in a manner corresponding to the lines showing their contributions to the spectral energy distribution in Figure 1. The narrow-line region (NLR) is on a larger scale and is under the gravitational influence of the host . Figure adapted from Ramos Almeida & Ricci (2017), courtesy of C. Ramos Almeida and C. Ricci.

628 Hickox Alexander · AA56CH15_Hickox ARI 21 August 2018 13:11

the obscuring medium is typically composed of dust and/or gas. Dust is the common term used to describe solid-state structures, which are typically carbonaceous grains and amorphous silicate grains (for a review, see Draine 2003). Gas is the term used to describe a broad range of gaseous states, from fully ionized gas, including electrons and protons, to neutral gas and molecular com- pounds. Dust is the dominant source of obscuration at UV–IR wavelengths, while gas dominates the absorption at X-ray energies. The impact of the obscuring material on the detection of the accretion-disk emission is dependent on the wavelength. Physically, this is referred to as the optical

depth, which is the product of the opacity (κλ)anddensity(ρ) of the material and the path length (s); for a general overview, see, e.g., Rybicki & Lightman (1986). A low optical depth indicates that a small fraction of the emission will be absorbed, whereas a high optical depth implies the converse. For many (probably the majority of ) obscured AGN, the obscuration occurs in the close vicinity of the accretion disk and lies within the gravitational influence of the SMBH. In the favored picture 1 for the physical structure of AGN (termed the unified model of AGN; e.g., Antonucci 1993, Urry The AGN & Padovani 1995, Netzer 2015), the accretion disk is surrounded by a geometrically and optically thick dusty and molecularHOW torus CAN (often referredAN AGN to as the dustyBE torus);BOTH for a schematicCOMPTON of the AGN THICK UNIFIED MODEL physical model, see Figure 2. The torus is expected to be within the gravitational influence of the SMBH and could be considered,AND in a broad HAVE sense, toEXTENDED be the cool outer regions EMISSION of the accretion? disk where molecules and dust grains can form. The anisotropic nature of the torus means that,

z A Clumpy Torus? Type 1 log(pc)

3 NLR Ionization NLR coneIonization 2 Cone 1

0 Transmission Polar Polardust Dust Torus Buchner UXCLUMPY –1 Outfow Outflow –2 Reflection BLR –3 BLR Type Access provided by Harvard University on 06/07/19. For personal use only. 2 –4

Annu. Rev. Astron. Astrophys. 2018.56:625-671. Downloaded from www.annualreviews.org CoronaCorona ––55 Disk SMBH Disk –5 –4 –3 –2 –10 1 2 log( r ) e.g., Hickox+ 2018, See also Ramos, Almeida, & Ricci 2017 pc Adapted from Hickox+ 2018 Figure 2 Mackenzie Jones — 20 YEARS OF CHANDRA Schematic representation of the AGN physical model, broadly illustrating the scales of the key regions. The [email protected] accretion disk, corona, broad-line region (BLR), and dusty torus reside within the gravitational influence of the supermassive black hole (SMBH). The disk, corona, and torus (including polar dust clouds) are colored in a manner corresponding to the lines showing their contributions to the spectral energy distribution in Figure 1. The narrow-line region (NLR) is on a larger scale and is under the gravitational influence of the host galaxy. Figure adapted from Ramos Almeida & Ricci (2017), courtesy of C. Ramos Almeida and C. Ricci.

628 Hickox Alexander · 30.0 30.0 2 30.0 30.0 NGC 7212 0.3-7.0 keV N g-band N WITH CHANDRA 25.0 25.0 25.0 25.0 E E Extended Emission in NGC 7212 Submitted 20.0 20.0 20.0 20.0 15.0 15.0 15.0 15.0 NGC 7212 10.0 10.0 10.0 10.0 05.0 05.0 05.0 05.0 10:14:00.0 10:14:00.0 10:14:00.0 10:14:00.0 55.0 55.0 55.0 55.0 13:50.0 13:50.0 13:50.0 10’’ = 5.56 kpc Chandra 13:50.0 10’’ = 5.56 kpc Pan-STARRs Deep Stack 45.0 45.0 45.0 45.0 03.0 02.5 22:07:02.0 01.5 01.0 03.0 02.5 22:07:02.0 01.5 01.0 03.0 02.5 22:07:02.0 01.5 01.0 03.0 02.5 22:07:02.0 01.5 01.0

Mackenzie Jones — 20 YEARS OF CHANDRA 1.5e-05 0.019 [email protected] 0.29 0.59 1.2 2.4 4.8 9.7 1.5e-05 19 0.019 0.057 0.13 0.29 0.59 1.2 2.4 4.8 9.7 19 2 NGC 7212 0.3-7.0 keV 1.5” = 0.834 kpc WITH CHANDRA Extended Emission in NGC 7212 Submitted Radio

8.0” = 4.448 kpc

Mackenzie Jones — 20 YEARS OF CHANDRA [email protected] 0.3 - 1.5 keV 1.5 - 3.0 keV 3.0 - 4.0 keV

4.0 - 5.0 keV 5.0 - 6.0 keV 6.1 - 6.5 keV

Mackenzie Jones — 20 YEARS OF CHANDRA [email protected] 0.3 - 1.5 keV 1.5 - 3.0 keV 3.0 - 4.0 keV Fe Kα 6.1-6.5 keV

4.0 - 5.0 keV 5.0 - 6.0 keV 6.1 - 6.5 keV

~3.8 kpc

Mackenzie Jones — 20 YEARS OF CHANDRA [email protected] 2 NGC 7212 RADIAL PROFILES Two Extraction Regions Extended Emission in NGC 7212 Submitted

N

E W

S

➤ S-N Cone Region ➤ W-E Cross-Cone Region

Mackenzie Jones — 20 YEARS OF CHANDRA [email protected] 2 NGC 7212 RADIAL PROFILES S-N Cone Region

0.3 - 7.0 keV 3.0 - 6.0 keV (Fe Kα) 6.1 - 6.5 keV

S - N S - N S - N 0.3 - 7.0 keV 100 3.0 - 6.0 keV 6.1 - 6.5 keV

100 Chandra PSF Chandra PSF 10 Chandra PSF

10

2 10 2 2 1

1

1 cts / pixel cts / pixel cts / pixel 0.1

0.1 0.1 0.01

0.01

-5 0 5 -5 0 5 -5 0 5 R (arcsec) R (arcsec) R (arcsec) 570 ± 24 counts over Chandra PSF 83 ± 9 counts 11 ± 3 counts

Mackenzie Jones — 20 YEARS OF CHANDRA [email protected] 2 NGC 7212 RADIAL PROFILES W-E Cross-Cone Region

0.3 - 7.0 keV 3.0 - 6.0 keV (Fe Kα) 6.1 - 6.5 keV

W - E 100 W - E W - E 0.3 - 7.0 keV 3.0 - 6.0 keV 6.1 - 6.5 keV 100 Chandra PSF Chandra PSF 10 Chandra PSF

10

2 10 2 2 1

1

1 0.1 cts / pixel cts / pixel cts / pixel

0.1 0.1 0.01

0.01 0.01 -5 0 5 -5 0 5 -5 0 5 R (arcsec) R (arcsec) R (arcsec) 242 ± 15 counts over Chandra PSF 39 ± 6 counts 4 ± 2 counts

Mackenzie Jones — 20 YEARS OF CHANDRA [email protected] 2 NGC 7212 Measuring the Extended X-rays RADIAL PROFILES

S-N N 8 4.448 S - N W - E

6 1% Peak 3.336 FWHM (kpc) FWHM

S 4 2.224 W-E

FWHM (arcsec) 2 1.112 FWHM E W

0 0 2 4 6 Energy (keV)

Mackenzie Jones — 20 YEARS OF CHANDRA [email protected] 3 NGC 7212 SPECTRAL FITS Three Extraction Regions Extended Emission in NGC 7212 Submitted

➤ 8.0” Circular Region ➤ 1.5” Nuclear Region ➤ 1.5-8.0” Annular Region (4.448 kpc) (0.834 kpc)

Mackenzie Jones — 20 YEARS OF CHANDRA [email protected] 0.014

0.012 3 NGC0.01 7212 The Nuclear Region SPECTRAL FITS 0.008 ➤ Emission Line Spectra: 0.014 Photoelectric Absorption * PEXRAV 0.006 0.012 + Gaussian Emission Lines 0.004 Counts/sec/keV 0.01 0.002 0.008 0 0.006 0.004 0.004 Counts/sec/keV 0.002

0.0020 - 0.002

Counts/sec/keV - 0.0040 0.006 0 2 4 6 0.004 Energy (keV) 0.002 Mackenzie Jones — 20 YEARS OF CHANDRA [email protected] - 0.002

Counts/sec/keV - 0.004 0 2 4 6 Energy (keV) 0.014

0.012 3 NGC0.01 7212 The Nuclear Region SPECTRAL FITS 0.008 ➤ Emission Line Spectra: 0.014 Photoelectric Absorption * PEXRAV 0.006 0.012 + Gaussian Emission Lines 0.004 Counts/sec/keV 0.01 0.002 ➤ Soft X-ray Emission 0.008 Blended emission typically 0 observed in nearby AGN 0.006 0.006 ‣ N VII Lyα, O VII 0.004 ‣ Fe XVII 0.004 ‣ Counts/sec/keV 0.002 Ne IX, Fe XIX ‣ Fe XX, Fe 0 0.002 XXIV - 0.002 ‣ Mg XI, Mg XII ‣ Si XIII Counts/sec/keV - 0.0040 0.006 0 2 4 6 0.004 Energy (keV) 0.002 Mackenzie Jones — 20 YEARS OF CHANDRA [email protected] - 0.002

Counts/sec/keV - 0.004 0 2 4 6 Energy (keV) 0.014

0.012 3 NGC0.01 7212 The Nuclear Region SPECTRAL FITS 0.008 ➤ Emission Line Spectra: 0.014 Photoelectric Absorption * PEXRAV 0.006 0.012 + Gaussian Emission Lines 0.004 Counts/sec/keV 0.01 0.002 ➤ Hard X-ray Emission 0.008 Typical emission observed 0 in nearby AGN 0.006 0.006 ‣ S Kα, S XV 0.004 ‣ Fe Kα 0.004 ‣ Counts/sec/keV 0.002 Fe Kα wings, Fe

0.0020 - 0.002

Counts/sec/keV - 0.0040 0.006 0 2 4 6 0.004 Energy (keV) 0.002 Mackenzie Jones — 20 YEARS OF CHANDRA [email protected] - 0.002

Counts/sec/keV - 0.004 0 2 4 6 Energy (keV) 0.014

0.012 3 NGC0.01 7212 The Nuclear Region SPECTRAL FITS 0.008 ➤ Emission Line Spectra: 0.014 Photoelectric Absorption * PEXRAV 0.006 0.012 + Gaussian Emission Lines 0.004 Counts/sec/keV 0.01 0.002 ➤ Hard X-ray Emission 0.008 NOT typical AGN emission lines 0 Tentative Identifications 0.006 0.004 ‣ Species of Argon 0.004 ‣ Species of Calcium Counts/sec/keV 0.002

0.0020 - 0.002

Counts/sec/keV - 0.0040 0.006 0 2 4 6 0.004 Energy (keV) 0.002 Mackenzie Jones — 20 YEARS OF CHANDRA [email protected] - 0.002

Counts/sec/keV - 0.004 0 2 4 6 Energy (keV) 0.014

0.012 3 NGC0.01 7212 The Nuclear Region SPECTRAL FITS 0.008 ➤ Emission Line Spectra: 0.014 Photoelectric Absorption * PEXRAV 0.006 0.012 + Gaussian Emission Lines 0.004 Counts/sec/keV 0.01 0.002 ➤ Hard X-ray Emission 0.008 NOT typical AGN emission lines 0 0.006 The emission at 0.004 ~5.2 keV is puzzling 0.004 and not yet identified Counts/sec/keV 0.002

0.0020 - 0.002

Counts/sec/keV - 0.0040 0.006 0 2 4 6 0.004 Energy (keV) 0.002 Mackenzie Jones — 20 YEARS OF CHANDRA [email protected] - 0.002

Counts/sec/keV - 0.004 0 2 4 6 Energy (keV) 0.014

0.012 3 NGC0.01 7212 The Nuclear Region SPECTRAL FITS 0.008 ➤ Physical Spectral Model: 0.014 Photoelectric Absorption * PEXRAV 0.006 0.012 Best Fit 0.004 Counts/sec/keV 0.01 ➤ 1 Photoionization Model 0.002 (2 Preferred) 0.008 0 ➤ 1 Thermal Model 0.006 0.004 0.004

Counts/sec/keV 0.002 0 0.002 - 0.002

Counts/sec/keV - 0.0040 0.006 0 2 4 6 0.004 Energy (keV) Mackenzie0.002 Jones — 20 YEARS OF CHANDRA [email protected]

Sigma 0 - 0.002 - 0.004 0 2 4 6 Energy (keV) 0.014

0.012 3 NGC0.01 7212 The Annular Region SPECTRAL FITS 0.008 ➤ Emission Line Spectra: Photoelectric Absorption * PEXRAV 0.006 + Gaussian Emission Lines 0.004 Counts/sec/keV 0.006 0.002

0 0.004 0.006 0.004 0.002

Counts/sec/keV 0 - 0.002

Counts/sec/keV - 0.0040

0.004 0 2 4 6 0.003 Energy (keV) Mackenzie0.002 Jones — 20 YEARS OF CHANDRA [email protected] 0 - 0.001

Counts/sec/keV - 0.002 0 2 4 6 Energy (keV) 0.014

0.012 3 NGC0.01 7212 The Annular Region SPECTRAL FITS 0.008 ➤ Emission Line Spectra: Photoelectric Absorption * PEXRAV 0.006 + Gaussian Emission Lines 0.004 Counts/sec/keV 0.006 0.002 ➤ Soft X-ray Emission Blended emission typically 0 observed in nearby AGN 0.004 0.006 ‣ N VII Lyα, O VII 0.004 ‣ Fe XVII ‣ Ne IX, Fe XIX 0.002 ‣ Fe XX, Fe Counts/sec/keV 0 XXIV - 0.002 ‣ Mg XI, Mg XII

Counts/sec/keV - 0.0040

0.004 0 2 4 6 0.003 Energy (keV) Mackenzie0.002 Jones — 20 YEARS OF CHANDRA [email protected] 0 - 0.001

Counts/sec/keV - 0.002 0 2 4 6 Energy (keV) 0.014

0.012 3 NGC0.01 7212 The Annular Region SPECTRAL FITS 0.008 ➤ Emission Line Spectra: Photoelectric Absorption * PEXRAV 0.006 + Gaussian Emission Lines 0.004 Counts/sec/keV 0.006 0.002 ➤ Hard X-ray Emission Typical emission observed 0 in nearby AGN 0.004 0.006 ‣ S Kα, S XV 0.004 ‣ Fe Kα ‣ Fe Kα wings, Fe 0.002

Counts/sec/keV 0 - 0.002

Counts/sec/keV - 0.0040

0.004 0 2 4 6 0.003 Energy (keV) Mackenzie0.002 Jones — 20 YEARS OF CHANDRA [email protected] 0 - 0.001

Counts/sec/keV - 0.002 0 2 4 6 Energy (keV) 0.014

0.012 3 NGC0.01 7212 The Annular Region SPECTRAL FITS 0.008 ➤ Emission Line Spectra: Photoelectric Absorption * PEXRAV 0.006 + Gaussian Emission Lines 0.004 Counts/sec/keV 0.006 0.002 ➤ Hard X-ray Emission NOT typical AGN emission lines 0 0.004 0.006 Tentative Identifications 0.004 ‣ Species of Argon ‣ Species of Calcium 0.002

Counts/sec/keV 0 - 0.002

Counts/sec/keV - 0.0040

0.004 0 2 4 6 0.003 Energy (keV) Mackenzie0.002 Jones — 20 YEARS OF CHANDRA [email protected] 0 - 0.001

Counts/sec/keV - 0.002 0 2 4 6 Energy (keV) 0.014

0.012 3 NGC0.01 7212 The Annular Region SPECTRAL FITS 0.008 ➤ Emission Line Spectra: Photoelectric Absorption * PEXRAV 0.006 + Gaussian Emission Lines 0.004 Counts/sec/keV 0.006 0.002 ➤ Hard X-ray Emission

0 We do not find the 0.004 0.006 ~5.2 keV emission in 0.004 the annular region! 0.002

Counts/sec/keV 0 - 0.002

Counts/sec/keV - 0.0040

0.004 0 2 4 6 0.003 Energy (keV) Mackenzie0.002 Jones — 20 YEARS OF CHANDRA [email protected] 0 - 0.001

Counts/sec/keV - 0.002 0 2 4 6 Energy (keV) 0.014

0.012 3 NGC0.01 7212 The Annular Region SPECTRAL FITS 0.008 ➤ Physical Spectral Model: Photoelectric Absorption * PEXRAV 0.0060.008 Best Fit 0.004 Counts/sec/keV 0.006 1 Photoionization Model 0.002 ➤ ➤ 1 Thermal Model 0.004 0 (2 Preferred) 0.006 0.004 0.002

Counts/sec/keV 0.002 0 - 0.0020

Counts/sec/keV - 0.004 0.006 0 2 4 6 0.004 Energy (keV)

Mackenzie0.002 Jones — 20 YEARS OF CHANDRA [email protected] Sigma 0

- 0.002 0 2 4 6 Energy (keV) 0.014

0.012 3 NGC0.01 7212 The Circular Region SPECTRAL FITS 0.008 ➤ Emission Line Spectra: Photoelectric Absorption * PEXRAV 0.006 + Gaussian Emission Lines 0.0040.015 Counts/sec/keV

0.002 ➤ Consistent with the Nuclear and Annular 0.010 Spectral Fits 0.006 0.004

Counts/sec/keV 0.0020.005 0 - 0.002

Counts/sec/keV - 0.0040 0.006 0 2 4 6 0.004 Energy (keV) 0.002 Mackenzie Jones — 20 YEARS OF CHANDRA [email protected] - 0.002 - 0.004 Counts/sec/keV 0 2 4 6 Energy (keV) 0.014

0.012 3 NGC0.01 7212 The Circular Region SPECTRAL FITS 0.008 ➤ Physical Spectral Model: Photoelectric Absorption * PEXRAV 0.006 Best Fit 0.0150.004 Counts/sec/keV 2 Photoionization Models 0.002 ➤ ➤ 2 Thermal Models 0.010 0.006 Consistent with a 0.004 combination of 0.005 Counts/sec/keV 0.002 Nuclear + Annular 0 Physical Spectral Models - 0.002

Counts/sec/keV - 0.0040 0.008 0 2 4 6 0.006 0.004 Energy (keV) 0.002 Mackenzie Jones — 20 YEARS OF CHANDRA [email protected] Sigma - 0.002 - 0.004 - 0.006 0 2 4 6 Energy (keV) N Contours HST HRC Summary

Radio F330W E ➤ We observe extended X-ray emission 0.3-3.0 keV: ~3.7 kpc 3.0-6.0 keV: ~2.7 kpc FeKa: ~2.7 kpc

➤ We observe emission in the cone and cross-cone regions

➤ We find three emission lines NOT consistent with AGN observations around 2.9 keV, 3.6 keV, 5.2 keV

➤ NGC 7212 requires a complex combination of photoionization and thermal spectral 2’’ = 1.112 kpc models Chandra 0.3-7.0 keV

Mackenzie Jones — 20 YEARS OF CHANDRA [email protected] 0.11 0.44 1.8 7