Mychonastes Afer HSO-3-1 As a Potential New Source of Biodiesel Cheng Yuan1,2, Junhan Liu1, Yong Fan1, Xiaohui Ren2, Guangrong Hu1 and Fuli Li1*

Total Page:16

File Type:pdf, Size:1020Kb

Mychonastes Afer HSO-3-1 As a Potential New Source of Biodiesel Cheng Yuan1,2, Junhan Liu1, Yong Fan1, Xiaohui Ren2, Guangrong Hu1 and Fuli Li1* Yuan et al. Biotechnology for Biofuels 2011, 4:47 http://www.biotechnologyforbiofuels.com/content/4/1/47 RESEARCH Open Access Mychonastes afer HSO-3-1 as a potential new source of biodiesel Cheng Yuan1,2, Junhan Liu1, Yong Fan1, Xiaohui Ren2, Guangrong Hu1 and Fuli Li1* Abstract Background: Biodiesel is considered to be a promising future substitute for fossil fuels, and microalgae are one source of biodiesel. The ratios of lipid, carbohydrates and proteins are different in different microalgal species, and finding a good strain for oil production remains a difficult prospect. Strains producing valuable co-products would improve the viability of biofuel production. Results: In this study, we performed sequence analysis of the 18S rRNA gene and internal transcribed spacer (ITS) of an algal strain designated HSO-3-1, and found that it was closely related to the Mychonastes afer strain CCAP 260/6. Morphology and cellular structure observation also supported the identification of strain HSO-3-1 as M. afer. We also investigated the effects of nitrogen on the growth and lipid accumulation of the naturally occurring M. afer HSO-3-1, and its potential for biodiesel production. In total, 17 fatty acid methyl esters (FAMEs) were identified in M. afer HSO-3-1, using gas chromatography/mass spectrometry. The total lipid content of M. afer HSO-3-1 was 53.9% of the dry cell weight, and we also detected nervonic acid (C24:1), which has biomedical applications, making up 3.8% of total fatty acids. The highest biomass and lipid yields achieved were 3.29 g/l and 1.62 g/l, respectively, under optimized conditions. Conclusion: The presence of octadecenoic and hexadecanoic acids as major components, with the presence of a high-value component, nervonic acid, renders M. afer HSO-3-1 biomass an economic feedstock for biodiesel production. Background order for microalgae to become an economically viable To meet the rising demand for energy resources and the biofuel feedstock, the cost of producing biodiesel from need to protect the environment, renewable biofuels are microalgae needs to be reduced [6]. Identifying a good needed to replace petroleum-derived transport fuels. strain for oil production, which should feature high lipid Biodiesel, from sources such as microalgae, has received content, high biomass and tolerance to extreme environ- extensive attention in recent years, owing to its biode- ments, remains a difficult prospect [6]. gradability, renewability, and lack of toxicity, among It has been suggested that strains producing valuable other advantages. However, technical and economic bar- co-products, such as feed, fertilizers or pharmaceuticals, riers must be overcome to realize the potential of this would further improve the viability of biofuel production energy source [1-3]. [1,7,8]. To date, omega-3 fatty acid, eicosapentanoic Despite decades of development, the technology acid, decosahexaenoic acid and chlorophyll have been remains in its infancy. For example, problems remain shown to be potentially valuable co-products of microal- with algal culture methods, inefficient harvesting of and gal biodiesel production [9-11]. bioenergy extraction from microalgae cells, and poor The ratios of lipid, carbohydrates and proteins are dif- light penetration in dense microalgal cultures [1,4,5]. In ferent in different microalgal species. In some species, lipids can be up to 60% of the algal dry weight [12,13]. In one exceptional case, a lipid content of 86% dry * Correspondence: [email protected] 1Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute weight was reported for the brown resting state colonies of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, of Botryococcus braunii [14]. Factors such as tempera- Qingdao 266101, PR China ture, irradiation, and most markedly, nutrient Full list of author information is available at the end of the article © 2011 Yuan et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Yuan et al. Biotechnology for Biofuels 2011, 4:47 Page 2 of 8 http://www.biotechnologyforbiofuels.com/content/4/1/47 availability, have been shown to be crucial to microalgal strains belonging to the genus Mychonastes clade metabolism, and high lipid productivity can therefore be allowed the recognition of lineages attributable to 10 achieved by optimization of these factors [15,16]. different species (Figure 1). On the 18S rRNA gene tree, The aims of this work were to discover new microal- HSO-3-1 was found to be most similar to the M. afer gae species with high lipid content, yield and suitable strain CCAP 260/6 (GQ477044.1). To confirm the fatty acids for biodiesel production. In our previous results of the 18S rRNA gene analyses, the ITS1-5.8S- work, we analyzed the biomass, lipid content and fatty ITS2 sequence of 26 strains belonging to the genus acid (FA) composition of 77 microalgae strains isolated Mychonastes clade was studied, and allowed the recogni- from Shandong province and Beijing, China. Strain tion of lineages attributable to eight different species HSO-3-1 produced lipids up to 53.9% of its dry weight. (Figure 2). Strain HSO-3-1 was again found to have a Meanwhile, fatty acid analysis of strain HSO-3-1 by GC- close relationship with M. afer strain CCAP 260/6 MS indicated the presence of C24:1 (nervonic acid, 14.7 (GQ477044.1) using this analysis. mg/g of total lipid, 3.8% of the total fatty acid content), which has been shown to have potential in biomedical Morphology and cellular structure applications. So we carried out further investigations on Cells of M. afer HSO-3-1 are unicellular, solitary and strain HSO-3-1. spheroidal, and the cell size is very homogeneous, vary- ing from 2 to 3 μm in diameter. The cell wall is smooth, Results and Discussion and has a layer of along the central axis when examined Molecular identification under scanning electron microscopy (Figure 3, left). The The 18S rRNA gene and ITS sequences obtained for cell wall consists of a double layer (Figure 3, right). The strain HSO-3-1 were submitted to the National Center outer layer, which is 50 to 200 nm wide, was found to for Biotechnology Information (NCBI) under accession be a trilaminar sheath, consistent with a previous report numbers JF930340 and JF930341, respectively. The [17]. Each cell has a single chloroplast that is crescent- amplified 18S rRNA gene sequence was found to have > shaped and anchorage-dependent (Figure 4A-D). The 99% identity with that of previously sequenced Mycho- chloroplast consists of thylakoid lamellae arranged in six nastes sp. and Pseudodictyosphaerium sp. strains in the almost parallel rows with pyrenoids (Figure 4A-D). NCBI database. The 18S rRNA gene analyses of 26 Reproduction takes place by the formation of two Figure 1 Phylogenetic tree inferred from 18S rRNA gene sequences. The distances within the tree were constructed using the neighbor- joining method based on Kimura’s correction with the CLUSTAL W computer program. The horizontal lengths are proportional to the evolutionary distances. The numbers above or below the internal nodes indicate bootstrap values (1000 replicates). Yuan et al. Biotechnology for Biofuels 2011, 4:47 Page 3 of 8 http://www.biotechnologyforbiofuels.com/content/4/1/47 Figure 2 Phylogenetic tree inferred from internal transcribed spacer (ITS) sequences. The distances within the tree were constructed using the neighbor-joining method based on Kimura’s correction with the CLUSTAL W computer program. The horizontal lengths are proportional to the evolutionary distances. The numbers above or below the internal nodes indicate bootstrap values (1000 replicates)of > 50%. autospores (Figure 4E-F). Lipid bodies are often present [18] and the species Mychonastes homosphaera [19]. in the cytoplast after cultivation for a significant period However, the autospore formation of HSO-3-1 involves (Figure 4G-H). binary fission, and is different to that of M. h20omo- Cells of strain HSO-3-1 are single (seldom found in sphaera. The size of the cells is more homogeneous, colonies) and planktonic. The adult cells are spherical, 2 and the cell wall is thicker than M. homosphaera.In to 5 μm in diameter, with a thin mucilaginous envelope. contrast to the genus Pseudodictyosphaerium,whichis The shape of HSO-3-1 was found to be similar to that characterized as having a parietal, cup-shaped or gir- reported for M. afer [18]. dle-shaped chloroplast without pyrenoids, the chloro- Morphological features of strain HSO-3-1, including plast of HSO-3-1 consists of thylakoid lamellae with the shape of the cells, the composition of the cell wall, pyrenoids. Based on these molecular and morphology and the shape and composition of the chloroplast, are characteristics, strain HSO-3-1 was therefore identified identical to those reported for the genus Mychonastes as M. afer. Figure 3 Microscopy and morphological appearance. (Left) Scanning electron micrograph and (right) cell-wall morphology of Mychonastes afer strain HSO-3-1. Yuan et al. Biotechnology for Biofuels 2011, 4:47 Page 4 of 8 http://www.biotechnologyforbiofuels.com/content/4/1/47 Figure 4 Organelle morphology of Mychonastes afer HSO-3-1. (A-D) Chloroplast (c), starch grains (s), lastoglobule (p) andmitochondrion (m). (E-F) Autospores in parent cells. (G-H) Lipid droplets (l) in M. afer HSO-3-1. Fatty acid identification (honesty), Borago officinalis (borage), hemp, Acer trun- The doubling time of M. afer HSO-3-1 was found to be catum (Purpleblow maple) and Tropaeolum speciosum about 12.9 hours during the exponential growth phase. (Flame flower). Only Lunaria annua L.
Recommended publications
  • 50 Annual Meeting of the Phycological Society of America
    50th Annual Meeting of the Phycological Society of America August 10-13 Drexel University Philadelphia, PA The Phycological Society of America (PSA) was founded in 1946 to promote research and teaching in all fields of Phycology. The society publishes the Journal of Phycology and the Phycological Newsletter. Annual meetings are held, often jointly with other national or international societies of mutual member interest. PSA awards include the Bold Award for the best student paper at the annual meeting, the Lewin Award for the best student poster at the annual meeting, the Provasoli Award for outstanding papers published in the Journal of Phycology, The PSA Award of Excellence (given to an eminent phycologist to recognize career excellence) and the Prescott Award for the best Phycology book published within the previous two years. The society provides financial aid to graduate student members through Croasdale Fellowships for enrollment in phycology courses, Hoshaw Travel Awards for travel to the annual meeting and Grants-In-Aid for supporting research. To join PSA, contact the membership director or visit the website: www.psaalgae.org LOCAL ORGANIZERS FOR THE 2015 PSA ANNUAL MEETING: Rick McCourt, Academy of Natural Sciences of Drexel University Naomi Phillips, Arcadia University PROGRAM DIRECTOR FOR 2015: Dale Casamatta, University of North Florida PSA OFFICERS AND EXECUTIVE COMMITTEE President Rick Zechman, College of Natural Resources and Sciences, Humboldt State University Past President John W. Stiller, Department of Biology, East Carolina University Vice President/President Elect Paul W. Gabrielson, Hillsborough, NC International Vice President Juliet Brodie, Life Sciences Department, Genomics and Microbial Biodiversity Division, Natural History Museum, Cromwell Road, London Secretary Chris Lane, Department of Biological Sciences, University of Rhode Island, Treasurer Eric W.
    [Show full text]
  • Mychonastes Frigidus Sp. Nov. (Sphaeropleales/Chlorophyceae), a New Species Described from a Mountain Stream in the Subpolar Urals (Russia)
    8 Fottea, Olomouc, 21(1): 8–15, 2021 DOI: 10.5507/fot.2020.012 Mychonastes frigidus sp. nov. (Sphaeropleales/Chlorophyceae), a new species described from a mountain stream in the Subpolar Urals (Russia) Elena Patova 1*, Irina Novakovskaya1, Nikita Martynenko2, Evgeniy Gusev2 & Maxim Kulikovskiy2 1Institute of Biology FRC Komi SC UB RAS, Kommunisticheskaya Street 28, Syktyvkar, 167982, Russia; *Corresponding authore–mail: [email protected] 2К.А. Timiryazev Institute of Plant Physiology RAS, Botanicheskaya Street 35, Moscow, 127276 Russia Abstract: This paper describes a new species from the Class Chlorophyceae, Mychonastes frigidus sp. nov., isolated from a cold–water mountain stream in the north of Russia (Subpolar Ural). The taxon is described us- ing morphological and molecular methods. Mychonastes frigidus sp. nov. belongs to the group of species of the genus Mychonastes with spherical single cells. Comparison of ITS2 rDNA sequences and its secondary structures combined with the compensatory base changes approach confirms the separation betweenMychonastes frigidus sp. nov and other species of the genus. Mychonastes frigidus sp. nov. represents a cryptic species that can only be reliably identified using molecular data. Key words: Mychonastes, new species, SSU rDNA, ITS2 rDNA secondary structure, CBC approach, Subpolar Urals Introduction repeatedly noted in terrestrial habitats in the northern regions of the Urals (Patova & Novakovskaya 2018). The genus Mychonastes P.D. Simpson & Van Valkenburg The Subpolar Urals comprises the northernmost part of 1978 comprises autosporic small–celled organisms that the Ural Mountains in Russia. It is the highest part of live alone, in small groups or organized in colonies, the Ural mountain system, which is a complex folded surrounded by hyaline, mucilaginous envelopes without structure of the Upper Paleozoic age.
    [Show full text]
  • Chlorophyceae Incertae Sedis, Viridiplantae), Described from Europe
    Preslia 87: 403–416, 2015 403 A new species Jenufa aeroterrestrica (Chlorophyceae incertae sedis, Viridiplantae), described from Europe Nový druh Jenufa aeroterrestrica (Chlorophyceae incertae sedis, Viridiplantae), popsaný z Evropy KateřinaProcházková,YvonneNěmcová&JiříNeustupa Department of Botany, Faculty of Science, Charles University of Prague, Benátská 2, CZ-128 01 Prague, Czech Republic, e-mail: [email protected] Procházková K., Němcová Y. & Neustupa J. (2015): A new species Jenufa aeroterrestrica (Chlorophyceae incertae sedis, Viridiplantae), described from Europe. – Preslia 87: 403–416. The chlorophycean genus Jenufa includes chlorelloid green microalgae with an irregularly spher- ical cell outline and a parietal perforated chloroplast with numerous lobes. Two species of the genus are known from tropical microhabitats. However, sequences recently obtained from vari- ous temperate subaerial biofilms indicate that members of the Jenufa lineage do not only occur in the tropics. In this paper, we describe and characterize a new species of the genus Jenufa, J. aero- terrestrica, which was identified in five samples of corticolous microalgal biofilms collected in Europe. These strains shared the general morphological and ultrastructural features of the genus Jenufa, but differed in having a larger average cell size and higher numbers of autospores. Phylo- genetic analyses showed that the strains clustered in a sister position to two previously described tropical species, together with previously published European 18S rDNA sequences. This pattern was also supported by the ITS2 rDNA sequences of the genus Jenufa. Our data and previously published sequences indicate that the newly described species J. aeroterrestrica frequently occurs in temperate and sub-Mediterranean European subaerial biofilms, such as those occurring on tree bark or surfaces of stone buildings.
    [Show full text]
  • Structural Variation and Evolution of Chloroplast Trnas in Green Algae
    Structural variation and evolution of chloroplast tRNAs in green algae Fangbing Qi, Yajing Zhao, Ningbo Zhao, Kai Wang, Zhonghu Li and Yingjuan Wang State Key Laboratory of Biotechnology of Shannxi Province, Key Laboratory of Resource Biology and Biotech- nology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi'an, China ABSTRACT As one of the important groups of the core Chlorophyta (Green algae), Chlorophyceae plays an important role in the evolution of plants. As a carrier of amino acids, tRNA plays an indispensable role in life activities. However, the structural variation of chloroplast tRNA and its evolutionary characteristics in Chlorophyta species have not been well studied. In this study, we analyzed the chloroplast genome tRNAs of 14 species in five categories in the green algae. We found that the number of chloroplasts tRNAs of Chlorophyceae is maintained between 28–32, and the length of the gene sequence ranges from 71 nt to 91 nt. There are 23–27 anticodon types of tRNAs, and some tRNAs have missing anticodons that are compensated for by other types of anticodons of that tRNA. In addition, three tRNAs were found to contain introns in the anti-codon loop of the tRNA, but the analysis scored poorly and it is presumed that these introns are not functional. After multiple sequence alignment, the 9-loop is the most conserved structural unit in the tRNA secondary structure, containing mostly U-U-C-x-A-x-U conserved sequences. The number of transitions in tRNA is higher than the number of transversions. In the replication loss analysis, it was found that green algal chloroplast tRNAs may have undergone substantial gene loss during the course of evolution.
    [Show full text]
  • Chloroplast Phylogenomic Analysis of Chlorophyte Green Algae Identifies a Novel Lineage Sister to the Sphaeropleales (Chlorophyceae) Claude Lemieux*, Antony T
    Lemieux et al. BMC Evolutionary Biology (2015) 15:264 DOI 10.1186/s12862-015-0544-5 RESEARCHARTICLE Open Access Chloroplast phylogenomic analysis of chlorophyte green algae identifies a novel lineage sister to the Sphaeropleales (Chlorophyceae) Claude Lemieux*, Antony T. Vincent, Aurélie Labarre, Christian Otis and Monique Turmel Abstract Background: The class Chlorophyceae (Chlorophyta) includes morphologically and ecologically diverse green algae. Most of the documented species belong to the clade formed by the Chlamydomonadales (also called Volvocales) and Sphaeropleales. Although studies based on the nuclear 18S rRNA gene or a few combined genes have shed light on the diversity and phylogenetic structure of the Chlamydomonadales, the positions of many of the monophyletic groups identified remain uncertain. Here, we used a chloroplast phylogenomic approach to delineate the relationships among these lineages. Results: To generate the analyzed amino acid and nucleotide data sets, we sequenced the chloroplast DNAs (cpDNAs) of 24 chlorophycean taxa; these included representatives from 16 of the 21 primary clades previously recognized in the Chlamydomonadales, two taxa from a coccoid lineage (Jenufa) that was suspected to be sister to the Golenkiniaceae, and two sphaeroplealeans. Using Bayesian and/or maximum likelihood inference methods, we analyzed an amino acid data set that was assembled from 69 cpDNA-encoded proteins of 73 core chlorophyte (including 33 chlorophyceans), as well as two nucleotide data sets that were generated from the 69 genes coding for these proteins and 29 RNA-coding genes. The protein and gene phylogenies were congruent and robustly resolved the branching order of most of the investigated lineages. Within the Chlamydomonadales, 22 taxa formed an assemblage of five major clades/lineages.
    [Show full text]
  • Characterization of a Lipid-Producing Thermotolerant Marine Photosynthetic Pico-Alga in the Genus Picochlorum (Trebouxiophyceae)
    European Journal of Phycology ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tejp20 Characterization of a lipid-producing thermotolerant marine photosynthetic pico-alga in the genus Picochlorum (Trebouxiophyceae) Maja Mucko , Judit Padisák , Marija Gligora Udovič , Tamás Pálmai , Tihana Novak , Nikola Medić , Blaženka Gašparović , Petra Peharec Štefanić , Sandi Orlić & Zrinka Ljubešić To cite this article: Maja Mucko , Judit Padisák , Marija Gligora Udovič , Tamás Pálmai , Tihana Novak , Nikola Medić , Blaženka Gašparović , Petra Peharec Štefanić , Sandi Orlić & Zrinka Ljubešić (2020): Characterization of a lipid-producing thermotolerant marine photosynthetic pico-alga in the genus Picochlorum (Trebouxiophyceae), European Journal of Phycology, DOI: 10.1080/09670262.2020.1757763 To link to this article: https://doi.org/10.1080/09670262.2020.1757763 View supplementary material Published online: 11 Aug 2020. Submit your article to this journal Article views: 11 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=tejp20 British Phycological EUROPEAN JOURNAL OF PHYCOLOGY, 2020 Society https://doi.org/10.1080/09670262.2020.1757763 Understanding and using algae Characterization of a lipid-producing thermotolerant marine photosynthetic pico-alga in the genus Picochlorum (Trebouxiophyceae) Maja Muckoa, Judit Padisákb, Marija Gligora Udoviča, Tamás Pálmai b,c, Tihana Novakd, Nikola Mediće, Blaženka Gašparovićb, Petra Peharec Štefanića, Sandi Orlićd and Zrinka Ljubešić a aUniversity of Zagreb, Faculty of Science, Department of Biology, Rooseveltov trg 6, 10000 Zagreb, Croatia; bUniversity of Pannonia, Department of Limnology, Egyetem u. 10, 8200 Veszprém, Hungary; cDepartment of Plant Molecular Biology, Agricultural Institute, Centre for Agricultural Research, Brunszvik u.
    [Show full text]
  • C3c5e116de51dfa5b9d704879f6
    GBE Gene Arrangement Convergence, Diverse Intron Content, and Genetic Code Modifications in Mitochondrial Genomes of Sphaeropleales (Chlorophyta) Karolina Fucˇı´kova´ 1,*, Paul O. Lewis1, Diego Gonza´lez-Halphen2, and Louise A. Lewis1 1Department of Ecology and Evolutionary Biology, University of Connecticut 2Instituto de Fisiologı´a Celular, Departamento de Gene´tica Molecular Universidad Nacional Auto´ nomadeMe´xico, Ciudad de Me´xico, Mexico *Corresponding author: E-mail: [email protected]. Accepted: August 3, 2014 Data deposition: Nine new complete mitochondrial genome sequences with annotated features have been deposited at GenBank under the accessions KJ806265–KJ806273. Genes from partially sequenced genomes have been deposited at GenBank under the accessions KJ845680– KJ845692, KJ845706–KJ845718, and KJ845693–KJ845705. Gene sequence alignments are available in TreeBase under study number 16246. Abstract The majority of our knowledge about mitochondrial genomes of Viridiplantae comes from land plants, but much less is known about their green algal relatives. In the green algal order Sphaeropleales (Chlorophyta), only one representative mitochondrial genome is currently available—that of Acutodesmus obliquus. Our study adds nine completely sequenced and three partially sequenced mi- tochondrial genomes spanning the phylogenetic diversity of Sphaeropleales. We show not only a size range of 25–53 kb and variation in intron content (0–11) and gene order but also conservation of 13 core respiratory genes and fragmented ribosomal RNA genes. We also report an unusual case of gene arrangement convergence in Neochloris aquatica, where the two rns fragments were secondarily placed in close proximity. Finally, we report the unprecedented usage of UCG as stop codon in Pseudomuriella schumacherensis.In addition, phylogenetic analyses of the mitochondrial protein-coding genes yield a fully resolved, well-supported phylogeny, showing promise for addressing systematic challenges in green algae.
    [Show full text]
  • (Trebouxiophyceae, Chlorophyta), a Green Alga Arises from The
    bioRxiv preprint doi: https://doi.org/10.1101/2020.01.09.901074; this version posted November 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Chroococcidiorella tianjinensis, gen. et sp. nov. (Trebouxiophyceae, 2 Chlorophyta), a green alga arises from the cyanobacterium TDX16 3 Qing-lin Dong* & Xiang-ying Xing 4 Department of Bioengineering, Hebei University of Technology, Tianjin, 300130, China 5 *Corresponding author: Qing-lin Dong ([email protected]) 6 Abstract 7 All algae documented so far are of unknown origin. Here, we provide a taxonomic 8 description of the first origin-known alga TDX16-DE that arises from the 9 Chroococcidiopsis-like endosymbiotic cyanobacterium TDX16 by de novo organelle 10 biogenesis after acquiring its green algal host Haematococcus pluvialis’s DNA. TDX16-DE 11 is spherical or oval, with a diameter of 2.0-3.6 µm, containing typical chlorophyte pigments 12 of chlorophyll a, chlorophyll b and lutein and reproducing by autosporulation, whose 18S 13 rRNA gene sequence shows the highest similarity of 99.7% to that of Chlorella vulgaris. 14 However, TDX16-DE is only about half the size of C. vulgaris and structurally similar to C. 15 vulgaris only in having a chloroplast-localized pyrenoid, but differs from C. vulgaris in that 16 (1) it possesses a double-membraned cytoplasmic envelope but lacks endoplasmic 17 reticulum and Golgi apparatus; and (2) its nucleus is enclosed by two sets of envelopes 18 (four unit membranes). Therefore, based on these characters and the cyanobacterial origin, 19 we describe TDX16-DE as a new genus and species, Chroococcidiorella tianjinensis gen.
    [Show full text]
  • The New Higher Level Classification of Eukaryotes with Emphasis on the Taxonomy of Protists
    J. Eukaryot. Microbiol., 52(5), 2005 pp. 399—451 © 2005 by the International Society of Protistologists DOI: 10.11 ll/j.1550-7408.2005.00053.x The New Higher Level Classification of Eukaryotes with Emphasis on the Taxonomy of Protists SINA M. ADL,a ALASTAIR G. B. SIMPSONI MARK A. FARMER,b ROBERT A. ANDERSENI O. ROGER ANDERSON/ JOHN R. BART A SAMUEL S. BOWSER/ GUY BRUGEROLLE/ ROBERT A. FENSOME/ SUZANNE FREDERICQ/ TIMOTHY Y. JAMES/ SERGEI KARPOV/ PAUL KUGRENS,1 JOHN KRUG,” CHRISTOPHER E. LANE/ LOUISE A. LEW IS/ JEAN LODGE/ DENIS H. LYNN/ DAVID G. MANN/ RICHARD M. MCCOURT/ LEONEL MENDOZA/ 0JVIND MOESTRUP/ SHARON E. MOZLEY-STANDRIDGE/ THOMAS A. NERAD CAROL A. SHEARER/ ALEXEY V. SMIRNOV/ FREDERICK W. SPIEGELZ and MAX F. J. R. TAYLORI aDepartment of Biology, Dalhousie University, Halifax, NS B3H 4J1, Canada, and bCenter for Ultrastructural Research, Department of Cellular Biology, University of Georgia, Athens, Georgia 30602, USA, and cBigelow Laboratory for Ocean Sciences, West Boothbay Harbor, ME 04575, USA, and dLamont-Dogherty Earth Observatory, Palisades, New York 10964, USA, and 0Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON NIG 2W1, Canada, and fWadsworth Center, New York State Department of Health, Albany, New York 12201, USA, and gBiologie des Protistes, Université'Blaise Pascal de Clermont-Ferrand, F63177 Aubiere cedex, France, and 11Natural Resources Canada, Geological Survey of Canada (Atlantic), Bedford Institute of Oceanography, PO Box 1006 Dartmouth, NS B2Y 4A2, Canada, and 1Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana 70504, USA, and 1Department of Biology, Duke University, Durham, North Carolina 27708-0338, USA, and ^Biological Faculty, Herzen State Pedagogical University of Russia, St.
    [Show full text]
  • Trebouxiophyceae, Chlorophyta), with Establishment Of
    bioRxiv preprint doi: https://doi.org/10.1101/2020.01.09.901074; this version posted January 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Chroococcidiorella tianjinensis, gen. et sp. nov. (Trebouxiophyceae, 2 Chlorophyta), a green alga arises from the cyanobacterium TDX16 3 Qing-lin Dong and Xiang-ying Xing 4 Department of Bioengineering, Hebei University of Technology, Tianjin, 300130, China 5 Corresponding author: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.01.09.901074; this version posted January 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 6 ABSTRACT 7 We provide a taxonomic description of the first origin-known alga TDX16-DE that arises from 8 the Chroococcidiopsis-like endosymbiotic cyanobacterium TDX16 by de novo organelle 9 biogenesis after acquiring its green algal host Haematococcus pluvialis’s DNA. TDX16-DE is 10 spherical or oval, with a diameter of 2.9-3.6 µm, containing typical chlorophyte pigments of 11 chlorophyll a, chlorophyll b and lutein and reproducing by autosporulation, whose 18S rRNA 12 gene sequence shows the highest similarity of 99.8% to that of Chlorella vulgaris. However, 13 TDX16-DE is only about half the size of C. vulgaris and structurally similar to C. vulgaris only 14 in having a chloroplast-localized pyrenoid, but differs from C. vulgaris in that (1) it possesses a 15 double-membraned cytoplasmic envelope but lacks endoplasmic reticulum and Golgi apparatus; 16 and (2) its nucleus is enclosed by two sets of envelopes (four unit membranes).
    [Show full text]
  • Chromosome-Level Genome Assembly and Transcriptome of the Green Alga Chromochloris Zofingiensis Illuminates Astaxanthin Producti
    Chromosome-level genome assembly and PNAS PLUS transcriptome of the green alga Chromochloris zofingiensis illuminates astaxanthin production Melissa S. Rotha,1, Shawn J. Cokusb,1, Sean D. Gallaherc, Andreas Walterd,e, David Lopezb, Erika Ericksona,f, Benjamin Endelmana,f, Daniel Westcotta,f, Carolyn A. Larabelld,e, Sabeeha S. Merchantc,2, Matteo Pellegrinib,2, and Krishna K. Niyogia,f,2 aHoward Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102; bDepartment of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095; cDepartment of Chemistry and Biochemistry and Institute for Genomics and Proteomics, University of California, Los Angeles, CA 90095-1569; dDepartment of Anatomy, University of California, San Francisco, CA 94143; eNational Center for X-ray Tomography, Lawrence Berkeley National Laboratory, Berkeley, CA 94720; and fMolecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 Contributed by Krishna K. Niyogi, April 12, 2017 (sent for review December 6, 2016; reviewed by C. Robin Buell and Tomas Morosinotto) Microalgae have potential to help meet energy and food demands C. zofingiensis (division Chlorophyta, class Chlorophyceae, without exacerbating environmental problems. There is interest in order Sphaeropleales) (6) is a simple ∼4-μm, unicellular, hap- the unicellular green alga Chromochloris zofingiensis, because it loid, coccoid alga containing multiple mitochondria, which are produces lipids for biofuels and a highly valuable carotenoid visualized typically as a tubular network, and a single inter- nutraceutical, astaxanthin. To advance understanding of its biol- connected chloroplast that occupies ∼40% of the cell volume ogy and facilitate commercial development, we present a C.
    [Show full text]
  • Temperature Stress Induces Shift from Co-Existence to Competition
    ORIGINAL RESEARCH published: 11 February 2021 doi: 10.3389/fmicb.2021.607601 Temperature Stress Induces Shift From Co-Existence to Competition for Organic Carbon in Microalgae- Bacterial Photobioreactor Community – Enabling Continuous Production of Microalgal Biomass Eva Sörenson 1, Eric Capo 2, Hanna Farnelid 1, Elin Lindehoff 1 and Catherine Legrand 1* 1 Department of Biology and Environmental Science, Centre of Ecology and Evolution and Microbial Model Systems, Linnaeus University, Kalmar, Sweden, 2 Department of Chemistry, Umeå University, Umeå, Sweden To better predict the consequences of environmental change on aquatic microbial ecosystems it is important to understand what enables community resilience. The Edited by: mechanisms by which a microbial community maintain its overall function, for example, Jun Sun, Tianjin University of Science and the cycling of carbon, when exposed to a stressor, can be explored by considering three Technology, China concepts: biotic interactions, functional adaptations, and community structure. Interactions Reviewed by: between species are traditionally considered as, e.g., mutualistic, parasitic, or neutral but Claudia Coleine, University of Tuscia, Italy are here broadly defined as either coexistence or competition, while functions relate to Sarahi L. Garcia, their metabolism (e.g., autotrophy or heterotrophy) and roles in ecosystem functioning Stockholm University, Sweden (e.g., oxygen production, organic matter degradation). The term structure here align with *Correspondence: species richness and diversity, where a more diverse community is though to exhibit a Catherine Legrand [email protected] broader functional capacity than a less diverse community. These concepts have here been combined with ecological theories commonly used in resilience studies, i.e., adaptive Specialty section: This article was submitted to cycles, panarchy, and cross-scale resilience, that describe how the status and behavior Aquatic Microbiology, at one trophic level impact that of surrounding levels.
    [Show full text]