Tungsten Transport and Deposition in Magmatic-Hydrothermal Environments : the Example of Panasqueira (Portugal) Eleonora Carocci

Total Page:16

File Type:pdf, Size:1020Kb

Tungsten Transport and Deposition in Magmatic-Hydrothermal Environments : the Example of Panasqueira (Portugal) Eleonora Carocci Tungsten transport and deposition in magmatic-hydrothermal environments : the example of Panasqueira (Portugal) Eleonora Carocci To cite this version: Eleonora Carocci. Tungsten transport and deposition in magmatic-hydrothermal environments : the example of Panasqueira (Portugal). Earth Sciences. Université de Lorraine, 2019. English. NNT : 2019LORR0315. tel-02880627 HAL Id: tel-02880627 https://hal.univ-lorraine.fr/tel-02880627 Submitted on 25 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. AVERTISSEMENT Ce document est le fruit d'un long travail approuvé par le jury de soutenance et mis à disposition de l'ensemble de la communauté universitaire élargie. Il est soumis à la propriété intellectuelle de l'auteur. Ceci implique une obligation de citation et de référencement lors de l’utilisation de ce document. D'autre part, toute contrefaçon, plagiat, reproduction illicite encourt une poursuite pénale. Contact : [email protected] LIENS Code de la Propriété Intellectuelle. articles L 122. 4 Code de la Propriété Intellectuelle. articles L 335.2- L 335.10 http://www.cfcopies.com/V2/leg/leg_droi.php http://www.culture.gouv.fr/culture/infos-pratiques/droits/protection.htm logos Ecole Doctorale SIReNa (Science et ingénierie des Ressources Naturelles) Thèse Présentée et soutenue publiquement pour l’obtention du titre de Docteur de l’Université de Lorraine (Nancy) Mention : « Géosciences » par Eleonora CAROCCI Transport et dépôt du tungstène dans les environnements magmatiques-hydrothermaux : exemple de Panasqueira (Portugal) Tungsten transport and deposition in magmatic-hydrothermal environments: the example of Panasqueira (Portugal) 13 décembre 2019 Membres du jury : Rapporteurs : Mr Johann G. RAITH Professeur, Montanuniversität Leoben, Austria Mr Jean-Louis HAZEMANN Directeur de Recherche CNRS, Institut NEEL, Grenoble, France Examinateurs : Mme Mercedes FUERTES FUENTE Professeur, Université de Oviedo, Espagne Mme Cécile FABRE Maître de Conférences, Université de Lorraine, Nancy, France Mr Michel CATHELINEAU Directeur de Recherche, Université de Lorraine, Nancy, France, directeur de thèse Mr Laurent TRUCHE Professeur, Université Grenoble Alpes, Grenoble, France, co- directeur de thèse Membres invités : Mr Christian MARIGNAC Professeur Emérite, Université de Lorraine, Nancy, France Mr Filipe PINTO Ingenieur géologue, BERALT TIN and WOLFRAM, Barroca Grande, Portugal 1 2 « Le cose sono unite da legami invisibili. Non puoi cogliere un fiore senza turbare una stella. » Galileo Galilei 3 CONTENTS: Résumé Étendu 12 Abstract 18 Introduction 22 1. STATE OF ART 24 1.1 Genetic Model of Deposits Associated with Veins-Stockworks 25 1.2 W-Sn- (Cu) Panasqueira Deposit 27 1.3 Common Types of Fluids Characterizing Transport and Deposition of W: Fluid Inclusions Data 30 2. SET OF ISSUES AND SUBJECT OF THE THESIS 33 3. OBJECTIVES AND EXPECTED RESULTS 34 4. MATERIALS AND METHODS 36 4.1 Geological Part- Data Collection 36 4.2 Geochemical Collection Data 39 Major elements conditions 39 Trace, Rare Earth elements 39 Dating 39 Fluid Inclusions 40 4.3 Experimental Part- Dataset 41 5. MANUSCRIPT ORGANIZATION 48 Part One 49 First Depositional Stage 49 Paragenetic succession at Panasqueira 50 General characteristics of the paragenetic succession 50 At the pillar scale 50 Later stages 51 At the sample scale 51 Revised Panasqueira paragenetic chart 53 4 Li-Fe-muscovite 54 Arsenopyrite 56 Topaz 58 Phosphates 61 Siderite 62 CHAPTER ONE 63 INCIPIENT DEPOSITION STAGE OF WOLFRAMITE: W-RUTILE AND TOURMALINE CHEMISTRY AS PROXIES FOR EARLY FLUIDS AT PANASQUEIRA (PORTUGAL) 63 Abstract 63 Introduction 64 Regional background 65 Geological setting and previous work 68 Samples and methods 70 Results 72 Petrography of the tourmalinized wallrocks 72 Tourmaline textures 73 Rutile textures 78 Tourmaline chemical composition 79 Rutile chemical composition: 88 Dating 88 Discussion 91 Age of the early hydrothermal stage 91 Tourmaline evidence for the involvement of two fluids 92 The boron problem and the feasibility of a magmatic source of fluids 95 Metasedimentary source(s) of the fluids: the contribution of REE data 96 Contrasted compositions of F1 and F2 end-members 97 Rutile evidence for short term fluid dynamics and mixing 98 Proposed conceptual model 98 Conclusions 101 5 CHAPTER TWO 112 RUTILE FROM PANASQUEIRA (CENTRAL PORTUGAL): AN EXCELLENT PATHFINDER FOR WOLFRAMITE DEPOSITION 112 Abstract 112 1. Introduction 113 2. Geological Setting 114 3. Material and Methods 115 4. Results 115 4.1. Petrography 115 4.2. Rutile Chemical Composition 118 5. Interpretation 120 5.1. Crystal Chemistry 120 5.2. Compositional Zoning: Sector Zoning 122 5.3. Compositional Zoning: Oscillatory Zoning 126 6. Discussion 129 6.1. Oscillatory Zoning: External or Internal Control? 129 6.2. Open or Closed System Evolution? 130 6.3. Oscillatory Zoning as a Consequence of Seismic Activity? 131 6.4. Nature of the Fluid(s) 131 7. Conclusions 132 Part Two 141 Panasqueira Chemical Fluid Evolution 141 CHAPTER THREE 142 FLUID EVOLUTION IN THE PANASQUEIRA DEPOSIT: THE ROLE OF EXHUMATION AND MULITPLE FLUID PULSES IN THE TRANSPORT AND DEPOSITION OF W-Sn-Cu 142 Abstract 142 1 Introduction 143 2 Methods 146 6 Paragenetic associations 146 Fluid inclusions 147 3 Paragenetic succession at Panasqueira 148 General characteristics of the paragenetic succession 148 Revised Panasqueira paragenetic chart 156 4 Fluid inclusions results 166 Fluid characterization 166 5 Bulk chemical evolution 183 6 P-T estimation 188 Thermal gradients and proximity to magma intrusions: the convective fluid system 189 Long-lived hydrothermal systems likely related to multiple intrusions 189 7 Conclusions 192 Part Three 197 Experimental Part On W-Beahviour 197 CHAPTER FOUR 198 TUNGSTEN (VI) SPECIATION IN HYDROTHERMAL SOLUTION UP TO 400°C AS REVEALED BY IN- SITU RAMAN SPECTROSCOPY 198 Abstract 198 1 Introduction 199 2 Methods 200 2.1 Experiments 200 2.2 Spectroscopic cell and Raman data acquisition 201 2.3 Fitting procedure of Raman spectra 202 3 Results 206 3.1 Effect of temperature and pH on W speciation 206 3.2. Stability and reversible formation of W-species 208 3.3. Effect of carbonate and chloride 209 4 Discussion 211 7 4.1. Identification of W-species 211 4.2. Tungsten speciation 214 4.3. Geological implications 216 5. Conclusion 216 Part Four 222 Discussion Upon a Possible Panasqueira Model and Open Questions 222 4.1 IMPLICATIONS FROM THE PARAGENETIC SUCCESSION: GEOCHEMICAL INTERPRETATION, PROBLEMS TO BE SOLVED 223 4.2 NATURE AND ORIGIN OF THE FLUIDS 224 A- Fluid origin 224 Predominance of Pseudo-Metamorphic Fluids 224 Introduction of Magmatic Fluids in the System 225 B- Fluid Migration and Exhumation 225 C- Quartz vein formation 226 4.3 METAL SOURCES (W and other RM) 227 A- Granite source of fluids and metals? A connected question: the role of “greisen” and “greisenization” 227 The G1, G2, G3, G4 Granites 229 Greisenization versus Episyenitization 234 Protolithionite (-) and the Silicification Events 235 HYPOTHESIS UPON CONCEALED RMG BODIES 237 B- Metamorphic Source of Metals 238 Magmatic-metamorphic variant: 238 4.4 THE TIME CHART AT PANASQUEIRA 239 4.5 MECHANISMS OF WOLFRAMITE PRECIPITATION 242 A- The Transport of W in Solution, State of the Art 242 B- The New Data on Complexation 243 C- The Potential Mechanisms for W-Species Destabilization 244 8 4.6 APPLICATION TO PANASQUEIRA CASE 247 A- Previous Works 247 B- Constraints Issued from the Present Work/Critics of Previous Works 247 CONSTRAINTS FROM THE PARAGENETIC SUCCESSION: INCONSISTENCY OF THE LECUMBERRI-SANCHEZ ET AL. (2017) MODEL 247 CONSTRAINTS FROM THE TOURMALINE STUDY 247 THE MAIN STAGE OF WOLFRAMITE DEPOSITION: CONSTRAINTS FROM FI DATA 248 Part Five 250 Conclusions 250 250 CONCLUSION 251 THE PANASQUEIRA METALLOGENIC (MINERAL) SYSTEM : THE EVIDENCE FOR A PROTRACTED CRUSTAL-SCALE SYSTEM 251 5.1 Proposition of a Conceptual Model for the Early Stages (I-II) 251 5.3. A long-lived crustal scale system 257 Appendix 263 APPENDIX PART ONE: CHAPTER ONE 264 Table A1: Operating conditions for the LA-ICP-MS equipment 264 Appendix A2: Ar-Ar dating of muscovite (methodology) 265 Appendix A0: 266 1. Problems in measuring Tur compositions by EPMA 266 2. Reality and extent of a Si apfu bias in SEM-EDS analyses 266 3. SEM-EPMA comparison 267 4. Internal consistency of SEM-EDS analyses 270 5. The case for F 271 6. Conclusion 272 Appendix A3-Table A3: Major element analyses of the early tourmaline from Panasqueira 273 Appendix A4- Table A4: Major element analyses of the early tourmaline from Panasqueira 273 9 Appendix A6- Table A6: LA-ICP-MS U-Pb data for the Panasqueira Rutile - All errrors are listed at 1 sigma 273 Appendix A7- Table A7: 40Ar/39Ar dating of a muscovite selvage from Panasqueria 273 Appendix A8: 273 Boron mass balance calculations 273 Volume of magmatic water required for boron transportation 274 Possible water yield by the granite system 274 Appendix A9: Oscillatory zoning: a (micro)seismic connection? 276 APPENDIX PART ONE: CHAPTER TWO 278 Supplementary Data: Table S1 278 APPENDIX PART THREE: CHAPTER FOUR 278 Annex 2: Table 1, k calibration, Table 3, Table 4 278 Annex 1: Table 5, Table 6, Table 7 278 Acknowledgments 280 10 11 Résumé Étendu L’importance accordée aux métaux rares a augmenté considérablement au cours des les trois dernières décennies, en raison de la demande croissante provenant de l’industrie, de la technologie et des économies émergentes. Parmi ces métaux rares, le tungstène (W) a a été l’objet d’attention puisqu’il est utilisé dans des produits couvrant une large gamme d’objectifs dans l’industrie de haute technologie.
Recommended publications
  • Overview of Tungsten Indicator Minerals Scheelite and Wolframite with Examples from the Sisson W-Mo Deposit, Canada
    Overview of tungsten indicator minerals scheelite and wolframite with examples from the Sisson W-Mo deposit, Canada M. Beth McClenaghan1, M.A. Parkhill2, A.A. Seaman3, A.G. Pronk3, M. McCurdy1 & D.J. Kontak4 1Geological Survey of Canada, 601 Booth Street, Ottawa, Ontario, Canada K1A 0E8 (e-mail: [email protected]) 2New Brunswick Department of Energy and Mines, Geological Surveys Branch, P.O. Box 50, Bathurst, New Brunswick, Canada E2A 3Z1 3New Brunswick Department of Energy and Mines, Geological Surveys Branch, P.O. Box 6000, Fredericton, New Brunswick, Canada E3B 5H1 4Department of Earth Sciences, Laurentian University, Sudbury, Ontario, Canada P3E 2C6 These short course notes provide an overview of published lit- Table 1. List of regional surveys and case studies conducted around erature on the use of scheelite and wolframite as indicator min- the world in which scheelite and/or wolframite in surficial sediments erals for W, Mo, and Au exploration. The use of scheelite and have been used as indicator minerals. wolframite in stream sediments is well documented for mineral Mineral Media Location Source of Information exploration but less so for using glacial sediments (Table 1). scheelite stream sediments Pakistan Asrarullah (1982) wolframite stream sediments Burma ESCAP Scretariat (1982) The Geological Survey of Canada has recently conducted a scheelite, wolframite stream sediments USA Theobald & Thompson (1960) glacial till and stream sediment indicator mineral case study scheelite stream sediments, soil Thailand Silakul (1986) around the Sisson W-Mo deposit in eastern Canada. scheelite stream sediments Greenland Hallenstein et al. (1981) Preliminary indicator mineral results from this ongoing study scheelite stream sediments Spain Fernández-Turiel et al.
    [Show full text]
  • The H/F Ratio As an Indicator of Contrasted Wolframite Deposition Mechanisms
    Ore Geology Reviews 104 (2019) 266–272 Contents lists available at ScienceDirect Ore Geology Reviews journal homepage: www.elsevier.com/locate/oregeorev Short communication The H/F ratio as an indicator of contrasted wolframite deposition T mechanisms ⁎ Julie Anne-Sophie Michaud , Michel Pichavant Université d'Orléans/CNRS/ISTO/BRGM, UMR 7327, 1A rue de la Férollerie, 45100 Orléans, France ARTICLE INFO ABSTRACT Keywords: Understanding wolframite deposition mechanisms is a key to develop reliable exploration guides for W. In quartz Wolframite veins from the Variscan belt of Europe and elsewhere, wolframites have a wide range of compositions, from Hübnerite hübnerite- (MnWO4) to ferberite-rich (FeWO4). Deposition style, source of Mn and Fe, distance from the heat/ W deposition fluid source and temperature have been proposed to govern the wolframite H/F (hübnerite/ferberite ratio) Magmatic control defined as 100 at. Mn/(Fe + Mn). The Argemela mineralized district, located near the world-class Panasqueira W ore deposit W mine in Portugal, exposes a quartz-wolframite vein system in close spatial and genetic association with a rare- Veins metal granite. Wolframite is absent as a magmatic phase, but W-rich whole-rock chemical data suggest that the granite magma is the source of W. Wolframite occurs as large homogeneous hübnerites (H/F = 64–75%) co- existing with montebrasite, K-feldspar and cassiterite in the latest generation of intragranitic veins corre- sponding to magmatic fluids exsolved from the granite. Locally, early hübnerites evolve to late more Fe-rich compositions (H/F = 45–55%). In a country rock vein, an early generation of Fe-rich hübnerites (H/ F = 50–63%) is followed by late ferberites (H/F = 6–23%).
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Minerals and Mineral Products in Our Bedroom Bed Hematite
    Minerals and Mineral Products in our Bedroom Make-Up Kit Muscovite Bed Talc Hematite: hinges, handles, Mica mattress springs Hematite: for color Chromite: chrome plating Bismuth Radio Barite Copper: wiring Plastic Pail Quartz: clock Mica Gold: connections Cassiterite: solder Toilet Bowl / Tub Closet Feldspar: porcelain Chromite: chrome plating Pyrolusite: coloring Hematite: hinges, handles (steel) Chromite: plumbing fixtures Quartz : mirror on door Copper: tubing Desk Toothpaste Hematite: hinges, handles (steel) Apatite: teeth Chromite: chrome plating Fluorite: toothpaste Mirror Rutile: to color false Hematite: handle, frame teeth yellow Chromite: plating Gold: fillings Gold: plating Cinnabar: fillings Quartz: mirror Towels Table Lamp Sphalerite: dyes Brass (an alloy of copper and Chromite: dyes zinc): base Quartz: bulb Water Pipe/Faucet/Shower bulb Wolframite: lamp filament Brass Copper: wiring Iron Nickel Minerals and Mineral Products in our Bedroom Chrome: stainless steel Bathroom Cleaner Department of Environment and Natural Resources Borax: abrasive, cleaner, and antiseptic MINES AND GEOSCIENCES BUREAU Deodorant Spray Can Cassiterite Chromite Copper Carpet Quartz Sphalerite: dyes Telephone Chromite: dyes Drinking Glasses Copper: wiring Sulfur: foam padding Quartz Chromite: plating Gold: red color Clock Silver: electronics Pentlandite: spring Graphite: batteries Refrigerator Quartz: glass, time keeper Hematite Television Chromite: stainless steel Chromite: plating Computer Galena Wolframite: monitor Wolframite: monitor Copper Copper:
    [Show full text]
  • Panasqueira Mine (Portugal) Amelo R, Acandeias C, A,Bávila P F, Asalgueiro a R, A,Bferreira A, Aferreira Da Silva E
    46 Heavy metal pollution in Mine-Soil-Plant System in S.Francisco de Assis - Panasqueira mine (Portugal) aMelo R, aCandeias C, a,bÁvila P F, aSalgueiro A R, a,bFerreira A, aFerreira da Silva E The active Panasqueira mine is a Sn-W mineraliza- open impoundments are the main source of pollu- tion hosted by metasediments with quartz veins rich tion in the surrounding area once the oxidation of in ferberite. The economic exploitation has been sulphides can result in the mobilization and migra- focused on wolframite, cassiterite and chalcopyrite. tion of trace metals from the mining wastes into the The mineralization also comprises several sulphides, environment, releasing contaminants into the eco- carbonates and silver sulphosalts. The mining and system. beneficiation processes produces arsenic-rich mine In order to investigate the environmental contamina- wastes laid up in two huge tailings and open im- tion impact on agricultural and residential soils of the poundments, one deactivated and the other (Barroca nearest village, S. Francisco de Assis, due to the min- Grande tailing) still active. the rejected materials from ing activities, a soil geochemical survey was under- the ore processing, containing high concentrations taken. Seventeen rhizosphere soil samples were col- of metals, stored in the open-air impoundments lected and their median reveal higher contents (mg are responsible for the continuous generation of kg-1) of As=224, Cd=1.3, Cu=164, Pb=59, Zn=323 acid drainage. Average contents (mg kg-1) in Bar- then the national median concentrations proposed roca Grande impoundment of As=44252, Cd=491, by Ferreira (2004) As=11, Cd=0.1, Cu=16, Pb=21, Cu=4029 and Zn=3738 and in Rio impoundment Zn=54.5.
    [Show full text]
  • Tin, Tungsten, and Tantalum Deposits of South Dakota
    TIN, TUNGSTEN, AND TANTALUM DEPOSITS OF SOUTH DAKOTA. By FRANK L. HESS. INTRODUCTION. Many articles have been written 011 the tin deposits of the Black Hills, and an excellent paper by J. D. Irving a on the tungsten deposits at Lead was published in 1901. Nothing is known to have been pub­ lished on the tungsten deposits of the southern Black Hills, but several articles have been written on the deposits of tantalum. Nearly all the papers on these different deposits, however, are a num­ ber of years old, and later developments have given several of the deposits an aspect somewhat different from their appearance at the time they were described. It therefore seems well to give a brief account of observations made by the writer during a short reconnais­ sance trip in September, 1908, together with such reviews of the his­ tory and the literature of the region as may seem advisable. All the known deposits of tin, tungsten, and tantalum in South Dakota occur in the Black Hills, in Lawrence and Pennington coun­ ties, in the southwestern part of the State. Although designated as "hills," these elevations reach a height of 7,216 feet in Harney Peak, 500 feet above the highest of the Appalachians (Mount Mitchell, 6,711 feet) and almost a thousand feet above the highest of the White Mountains (Mount Washington, 6,279 feet). They are about 60 to 75 miles long by 50 miles wide, the longer axis lying nearly north and south. There is a considerable diversity of topography in the different parts of the area to be considered.
    [Show full text]
  • The Mineral Potential in Centro Region of Portugal: Geology, Industry and Challenges
    The Mineral Potential in Centro Region of Portugal: Geology, Industry and Challenges José A. Almeida José C. Kullberg Frederico Martins Vanda Lopes Alexandra Ribeiro 8th Peer Review, Fundão, Portugal, Dec. 11th, 2018 Critical Raw Materials (EU) 2017 Risk in: Sn (Tin) Li (Lithium) Mn (Manganese) Mo (Molybdenum) Supply Risk Supply Legend : Critical raw materials Non-critical raw materials (The highlighted raw materials are known to occur in the Centro region of Portugal) Economic Importance Source: European Commission, 2017 2 Critical Raw Materials Industries Source: Criticalrawmaterials, 2018 3 Portugal Centro region Wolframite and cassiterite , Panasqueira Mineral Resources Abundance: • Metallic (Tungsten, Lithium, Tin) • Energetic (Uranium) • Non-Metallic (Quartz, Feldspar, Kaolin) • Ornamental Rocks (Granite, Limestone) Uraninite , Urgeiriça Lepidolite , Guarda 4 Mineral occurrences and deposits Mineral occurrence= knowledge of a mineral´s trace or evidence that might be economically interesting Mineral deposit = body with significant dimensions and whose substances within, show interesting economic values; confirmed by mineral resources and reserves calculations Chalcopyrite (Copper) TOP 5 Nº Anthracite Phosphor Substance Occurrences Arsenium Lead /Deposits Gold Petroleum U 409 Barium Quartz Sn 153 Beryllium Salt rock W 116 Bitumen Antimony Si 78 Kaolin Silicium Au 51 Copper Tin Iron Tellurium Wolframite Fluorine (Tungsten) Graphite Turf Coal Uranium Lithium Tungsten Lignite Zinc Manganese Cassiterite Gold (Tin) 5 Source: LNEG, 2018
    [Show full text]
  • Colorado Ferberite and the Wolframite Series A
    DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY GEORGE OT1S SMITH, DIRECTOR .jf BULLETIN 583 \ ' ' COLORADO FERBERITE AND THE r* i WOLFRAMITE SERIES A BY FRANK L. HESS AND WALDEMAR T. SCHALLER WASHINGTON GOVERNMENT FEINTING OFFICE 1914 CONTENTS. THE MINERAL RELATIONS OF FERBERiTE, by Frank L. Hess.................. 7 Geography and production............................................. 7 Characteristics of the ferberite.......................................... 8 " Geography and geology of the Boulder district........................... 8 Occurrence, vein systems, and relations................................. 9 Characteristics of the ore.............................................. 10 Minerals associated with the ferberite................................... 12 Adularia.......................................................... 12 Calcite........................................................... 12 Chalcedony....................................................... 12 Chalcopyrite...................................................... 12 Galena........................................................... 12 Gold and silver.................................................... 12 Hamlinite (?).................................................... 14 Hematite (specular)................................................ 15 Limonite........................................................ 16 Magnetite........................................................ 17 Molybdenite..................................................... 17 Opal............................................................
    [Show full text]
  • Porphyry Deposits
    PORPHYRY DEPOSITS W.D. SINCLAIR Geological Survey of Canada, 601 Booth St., Ottawa, Ontario, K1A 0E8 E-mail: [email protected] Definition Au (±Ag, Cu, Mo) Mo (±W, Sn) Porphyry deposits are large, low- to medium-grade W-Mo (±Bi, Sn) deposits in which primary (hypogene) ore minerals are dom- Sn (±W, Mo, Ag, Bi, Cu, Zn, In) inantly structurally controlled and which are spatially and Sn-Ag (±W, Cu, Zn, Mo, Bi) genetically related to felsic to intermediate porphyritic intru- Ag (±Au, Zn, Pb) sions (Kirkham, 1972). The large size and structural control (e.g., veins, vein sets, stockworks, fractures, 'crackled zones' For deposits with currently subeconomic grades and and breccia pipes) serve to distinguish porphyry deposits tonnages, subtypes are based on probable coproduct and from a variety of deposits that may be peripherally associat- byproduct metals, assuming that the deposits were econom- ed, including skarns, high-temperature mantos, breccia ic. pipes, peripheral mesothermal veins, and epithermal pre- Geographical Distribution cious-metal deposits. Secondary minerals may be developed in supergene-enriched zones in porphyry Cu deposits by weathering of primary sulphides. Such zones typically have Porphyry deposits occur throughout the world in a series significantly higher Cu grades, thereby enhancing the poten- of extensive, relatively narrow, linear metallogenic tial for economic exploitation. provinces (Fig. 1). They are predominantly associated with The following subtypes of porphyry deposits are Mesozoic to Cenozoic orogenic belts in western North and defined according to the metals that are essential to the eco- South America and around the western margin of the Pacific nomics of the deposit (metals that are byproducts or poten- Basin, particularly within the South East Asian Archipelago.
    [Show full text]
  • Stable Isotope Studies of Quartz-Vein Type Tungsten Deposits in Dajishan Mine, Jiangxi Province, Southeast China
    Stable Isotope Geochemistry: A Tribute to Samuel Epstein © The Geochemical Society, Special Publication No.3, 1991 Editors: H. P. Taylor, Jr., J. R. O'Neil and I. R. Kaplan Stable isotope studies of quartz-vein type tungsten deposits in Dajishan Mine, Jiangxi Province, Southeast China YUCH-NING SHIEH Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, IN 47907, U.S.A. and GUO-XIN ZHANG Institute of Geochemistry (Guangzhou Branch), Academia Sinica, Guangzhou, Guangdong 510640, People's Republic of China Abstract-The Dajishan tungsten deposits belong to the wolframite-quartz vein type. These occur as fissure-fillings in the contact zone between the Jurassic Yenshanian granites and Cambrian meta- sandstones and slates. Quartz, beryl, muscovite, wolframite, scheelite, and sulfides are the major minerals formed in the main stage of mineralization. Late-stage minerals include calcite, dolomite, quartz, fluorite, and scheelite (replacing wolframite). No granitic rocks are exposed at the surface, but drilling has revealed hidden granitic bodies ranging in composition from biotite granite and two- mica granite to muscovite granite and pegmatite. These may represent a differentiation series from a common magma. Exceedingly uniform 0180 values are found in the minerals from the main-stage veins: quartz = 11.1-12.7 (n = 27), muscovite = 8.4-10.0 (n = 22), wolframite = 4.1-5.3 (n = 15), scheelite = 4.2-5.5 (n = 4), suggesting that isotopic equilibrium apparently has attained and that relatively constant physico-chemical conditions prevailed throughout the main-stage of mineralization. Oxygen isotope fractionations for .quartz-wolframite, quartz-scheelite, and quartz-muscovite pairs give concordant isotopic temperatures of 320-390°C, consistent with results from fluid inclusion 018 oD studies.
    [Show full text]
  • 39015003286252.Pdf
    raY a ... 3 4 _' J t+..,+1 /y s t O'C4 LOOM lescE NATUML- 010SIS OF THE TUNGSTEN EPOSITS OF THE UNITED STATES 4 Itoag tn February,. 1936 CONTENTS INTRODUCTION .. .. .............................. 1 LOCATION AND DISTRIBUTION ............................... 2 TYPES OF DEPOSITS OF COMMERCIAL TUNGSTEN ORE...........lO1 Pyrometasomatic deposits ................. ........ 10 Hypothermal deposits .................. S......0.12 Mesothermal deposits.......................... .12 Epithermal deposits...............................13 General features .... ............ .. .. .. 16 Non-Commercial Deposits .. .. ... .. ... ... .. .. .. ... .. 19 Segregation deposits .. .. ... .. .. ... .,.. .. .,.. .19 General features . ..... ....... .. .. .. 19 General features ......... ... .. .. .. .. .".". ."20 Associated minerals.. .. .". .. ."..".."""" 21 Commercial Deposits . .... * . .. .29.. Pyrometasomatic or contact-metamorphic deposits... .22 Location of deposits ............. "..... ... "". 23 Intrusive rocks. .. .23 CONTENTS (concluded) Sedimnrta~ry rocks. ... ......9" . 0 . .24 Process of contacte-metamorphism.0........ .... 24 Size and form of the deposits ................. 26 Zones of metamorphism.................. ".O".S" .26 Progression of the contact-metamorphism. ..... .27 General features and classification..g09.....28 Associated minerals............... "." " " ..... "29. Outcrop of tungsten veins.9......0.. 00"03 Downward extent of tungsten ve ins...........3 Gelaeenral.fatur.. .. .. ... .. .. ..... .. ........ 39 General features.......9. .
    [Show full text]
  • Tungsten Minerals and Deposits
    DEPARTMENT OF THE INTERIOR FRANKLIN K. LANE, Secretary UNITED STATES GEOLOGICAL SURVEY GEORGE OTIS SMITH, Director Bulletin 652 4"^ TUNGSTEN MINERALS AND DEPOSITS BY FRANK L. HESS WASHINGTON GOVERNMENT PRINTING OFFICE 1917 ADDITIONAL COPIES OF THIS PUBLICATION MAY BE PROCURED FROM THE SUPERINTENDENT OF DOCUMENTS GOVERNMENT PRINTING OFFICE WASHINGTON, D. C. AT 25 CENTS PER COPY CONTENTS. Page. Introduction.............................................................. , 7 Inquiries concerning tungsten......................................... 7 Survey publications on tungsten........................................ 7 Scope of this report.................................................... 9 Technical terms...................................................... 9 Tungsten................................................................. H Characteristics and properties........................................... n Uses................................................................. 15 Forms in which tungsten is found...................................... 18 Tungsten minerals........................................................ 19 Chemical and physical features......................................... 19 The wolframites...................................................... 21 Composition...................................................... 21 Ferberite......................................................... 22 Physical features.............................................. 22 Minerals of similar appearance.................................
    [Show full text]