The Godel¨ and the Splitting Translations David Pearce1 Universidad Politecnica´ de Madrid, Spain,
[email protected] Abstract. When the new research area of logic programming and non-monotonic reasoning emerged at the end of the 1980s, it focused notably on the study of mathematical relations between different non-monotonic formalisms, especially between the semantics of stable models and various non-monotonic modal logics. Given the many and varied embeddings of stable models into systems of modal logic, the modal interpretation of logic programming connectives and rules be- came the dominant view until well into the new century. Recently, modal inter- pretations are once again receiving attention in the context of hybrid theories that combine reasoning with non-monotonic rules and ontologies or external knowl- edge bases. In this talk I explain how familiar embeddings of stable models into modal log- ics can be seen as special cases of two translations that are very well-known in non-classical logic. They are, first, the translation used by Godel¨ in 1933 to em- bed Heyting’s intuitionistic logic H into a modal provability logic equivalent to Lewis’s S4; second, the splitting translation, known since the mid-1970s, that al- lows one to embed extensions of S4 into extensions of the non-reflexive logic, K4. By composing the two translations one can obtain (Goldblatt, 1978) an ade- quate provability interpretation of H within the Goedel-Loeb logic GL, the sys- tem shown by Solovay (1976) to capture precisely the provability predicate of Peano Arithmetic. These two translations and their composition not only apply to monotonic logics extending H and S4, they also apply in several relevant cases to non-monotonic logics built upon such extensions, including equilibrium logic, non-monotonic S4F and autoepistemic logic.