The Insect Wing, Part IV. Venational Trends and the Phylogeny of The
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fossil Record of Stem Groups Employed In
www.nature.com/scientificreports OPEN Fossil record of stem groups employed in evaluating the chronogram of insects (Arthropoda: Received: 07 April 2016 Accepted: 16 November 2016 Hexapoda) Published: 13 December 2016 Yan-hui Wang1,2,*, Michael S. Engel3,*, José A. Rafael4,*, Hao-yang Wu2, Dávid Rédei2, Qiang Xie2, Gang Wang1, Xiao-guang Liu1 & Wen-jun Bu2 Insecta s. str. (=Ectognatha), comprise the largest and most diversified group of living organisms, accounting for roughly half of the biodiversity on Earth. Understanding insect relationships and the specific time intervals for their episodes of radiation and extinction are critical to any comprehensive perspective on evolutionary events. Although some deeper nodes have been resolved congruently, the complete evolution of insects has remained obscure due to the lack of direct fossil evidence. Besides, various evolutionary phases of insects and the corresponding driving forces of diversification remain to be recognized. In this study, a comprehensive sample of all insect orders was used to reconstruct their phylogenetic relationships and estimate deep divergences. The phylogenetic relationships of insect orders were congruently recovered by Bayesian inference and maximum likelihood analyses. A complete timescale of divergences based on an uncorrelated log-normal relaxed clock model was established among all lineages of winged insects. The inferred timescale for various nodes are congruent with major historical events including the increase of atmospheric oxygen in the Late Silurian and earliest Devonian, the radiation of vascular plants in the Devonian, and with the available fossil record of the stem groups to various insect lineages in the Devonian and Carboniferous. Over half of all described living species are insects, and they dominate all terrestrial ecosystems1. -
The Homology of Wing Base Sclerites and Flight Muscles In
Arthropod Structure & Development 36 (2007) 253e269 www.elsevier.com/locate/asd The homology of wing base sclerites and flight muscles in Ephemeroptera and Neoptera and the morphology of the pterothorax of Habroleptoides confusa (Insecta: Ephemeroptera: Leptophlebiidae) Jana Willkommen*, Thomas Ho¨rnschemeyer1 Blumenbach-Institut fu¨r Zoologie & Anthropologie, Abt. Morphologie & Systematik, Berliner Str. 28, D-37073 Go¨ttingen, Germany Received 9 November 2006; accepted 11 January 2007 Abstract The ability to fly is the decisive factor for the evolutionary success of winged insects (Pterygota). Despite this, very little is known about the ground-pattern and evolution of the functionally very important wing base. Here we use the Ephemeroptera, usually regarded as the most ancient flying insects, as a model for the analysis of the flight musculature and the sclerites of the wing base. Morphology and anatomy of the pterothorax of 13 species of Ephemeroptera and five species of Plecoptera were examined and a detailed description of Habroleptoides confusa (Ephemero- ptera: Leptophlebiidae) is given. A new homology of the wing base sclerites in Ephemeroptera is proposed. The wing base of Ephemeroptera possesses three axillary sclerites that are homologous to the first axillary, the second axillary and the third axillary of Neoptera. For example, the third axillary possesses the axillary-pleural muscle that mostly is considered as a characteristic feature of the Neoptera. Many of the muscles and sclerites of the flight system of the Ephemeroptera and Neoptera can be readily homologised. In fact, there are indications that a foldable wing base may be a ground plan feature of pterygote insects and that the non-foldable wing base of the Ephemeroptera is a derived state. -
Molecular Evolutionary Trends and Feeding Ecology Diversification In
bioRxiv preprint doi: https://doi.org/10.1101/201731; this version posted October 11, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Molecular evolutionary trends and 2 feeding ecology diversification in the Hemiptera, 3 anchored by the milkweed bug genome 4 5 6 Kristen A. Panfilio1, 2*, Iris M. Vargas Jentzsch1, Joshua B. Benoit3, Deniz 7 Erezyilmaz4, Yuichiro Suzuki5, Stefano Colella6, 7, Hugh M. Robertson8, Monica F. 8 Poelchau9, Robert M. Waterhouse10, 11, Panagiotis Ioannidis10, Matthew T. 9 Weirauch12, Daniel S.T. Hughes13, Shwetha C. Murali13, 14, 15, John H. Werren16, Chris 10 G.C. Jacobs17, 18, Elizabeth J. Duncan19, 20, David Armisén21, Barbara M.I. Vreede22, 11 Patrice Baa-Puyoulet6, Chloé S. Berger21, Chun-che Chang23, Hsu Chao13, Mei-Ju M. 12 Chen9, Yen-Ta Chen1, Christopher P. Childers9, Ariel D. Chipman22, Andrew G. 13 Cridge19, Antonin J.J. Crumière21, Peter K. Dearden19, Elise M. Didion3, Huyen 14 Dinh13, HarshaVardhan Doddapaneni13, Amanda Dolan16, 24, Shannon Dugan13, 15 Cassandra G. Extavour25, 26, Gérard Febvay6, Markus Friedrich27, Neta Ginzburg22, Yi 16 Han13, Peter Heger28, Thorsten Horn1, Yi-min Hsiao23, Emily C. Jennings3, J. Spencer 17 Johnston29, Tamsin E. Jones25, Jeffery W. Jones27, Abderrahman Khila21, Stefan 18 Koelzer1, Viera Kovacova30, Megan Leask19, Sandra L. Lee13, Chien-Yueh Lee9, 19 Mackenzie R. Lovegrove19, Hsiao-ling Lu23, Yong Lu31, Patricia J. Moore32, Monica 20 C. Munoz-Torres33, Donna M. Muzny13, Subba R. Palli34, Nicolas Parisot6, Leslie 21 Pick31, Megan Porter35, Jiaxin Qu13, Peter N. Refki21, 36, Rose Richter16, 37, Rolando 22 Rivera Pomar38, Andrew J. -
Arthropods of Elm Fork Preserve
Arthropods of Elm Fork Preserve Arthropods are characterized by having jointed limbs and exoskeletons. They include a diverse assortment of creatures: Insects, spiders, crustaceans (crayfish, crabs, pill bugs), centipedes and millipedes among others. Column Headings Scientific Name: The phenomenal diversity of arthropods, creates numerous difficulties in the determination of species. Positive identification is often achieved only by specialists using obscure monographs to ‘key out’ a species by examining microscopic differences in anatomy. For our purposes in this survey of the fauna, classification at a lower level of resolution still yields valuable information. For instance, knowing that ant lions belong to the Family, Myrmeleontidae, allows us to quickly look them up on the Internet and be confident we are not being fooled by a common name that may also apply to some other, unrelated something. With the Family name firmly in hand, we may explore the natural history of ant lions without needing to know exactly which species we are viewing. In some instances identification is only readily available at an even higher ranking such as Class. Millipedes are in the Class Diplopoda. There are many Orders (O) of millipedes and they are not easily differentiated so this entry is best left at the rank of Class. A great deal of taxonomic reorganization has been occurring lately with advances in DNA analysis pointing out underlying connections and differences that were previously unrealized. For this reason, all other rankings aside from Family, Genus and Species have been omitted from the interior of the tables since many of these ranks are in a state of flux. -
Um Método De Armazenamento Para Psocoptera (Insecta: Psocodea) Em Caixa De CD
doi:10.12741/ebrasilis.v9i3.656 e-ISSN 1983-0572 Publicação do Projeto Entomologistas do Brasil www.ebras.bio.br Distribuído através da Creative Commons Licence v4.0 (BY-NC-ND) Copyright © EntomoBrasilis Copyright © do(s) Autor(es) A Storage Method for ‘Psocoptera’ (Insecta: Psocodea) in “CD Box” Alberto Moreira Silva-Neto¹, Alfonso Neri García Aldrete², José Albertino Rafael¹ 1. Instituto Nacional de Pesquisas da Amazônia – INPA, CPEN – Programa de Pós-Graduação em Entomologia, e-mail: [email protected] (Corresponding author), [email protected]. 2. Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, e-mail: [email protected]. _____________________________________ EntomoBrasilis 9 (3): 220-223 (2016) Abstract. The use of a “CD box” adapted to the storage of slides, and other body parts of dissected psocopterans was proposed. Keywords: Bark-Lice; Book-lice; Entomological collection; Paraneoptera; Psocids. Um Método de Armazenamento para Psocoptera (Insecta: Psocodea) em Caixa de CD Resumo. O uso de uma caixa de CD adaptada para o armazenamento de lâminas e outras partes dissecadas do corpo de psocópteros foi proposto. Palavras-chave: Coleção entomológica; Paraneoptera; Piolhos de cascas de árvores; Piolho de livros; Psocídeos. _____________________________________ socoptera (psocids, booklice, barklice) is the paraphyletic wide and 143 mm long. The box is divided in the following parts: non-parasitic component of order Psocodea (Psocoptera “CD box” itself with a lower part (base), upper part (lid) that + Phthiraptera) (YOSHIZAWA & JOHNSON 2006). They range are movable between them and the “tray” (Tray or cradle CD) from 1 to 10 mm in length and are characterized by a large and internal and embedded in the base, which has a central crown mobile head, bulbous postclypeus, asymmetric mandibles, with teeth which serves to fix the CD. -
THE ORIGIN and EVOLUTION of HYMENOPTEROUS INSECTS [P
THE ORIGIN AND EVOLUTION OF HYMENOPTEROUS INSECTS [p. 24] Chapter 3 EVOLUTION OF THE INFRACLASS SCARABAEONES A. P. Rasnitzyn* Dragonflies [order Odonata] and mayflies [order Ephemeroptera], which have retained a primitive thorax structure (absence of a cryptosternum) but are specialized in other respects, occupy the most isolated position in the infraclass. They are similar to each other in a number of characters, but the nature of the latter does not allow drawing a conclusion about any close relationship of the two orders. Indeed, the primitiveness of the structure of the thorax common to both of them, like any symplesiomorphy, is not evidence of a common origin. The adaptations of the larvae of mayflies and dragonflies to an aquatic way of life are different, and they show, rather, an independent transition to development in water. The loss of the ability to fold the wings as well is connected with different processes in them: in mayflies, with the ephemerality of the imago, the function of which is essentially limited to nuptial flight and oviposition; and in dragonflies, with the metamorphosis of the adult insect to an active aerial predator. It is highly probable that mayflies and dragonflies are independent evolutionary branches. The belonging of dragonflies and mayflies to a common trunk of Scarabaeones, that is, the isolation of them from Protoptera as part of a single trunk with the remaining members of the infraclass (except Protoptera), is confirmed by the metamorphosis of the style of the ninth segment in mayfly males into part of the copulatory organ [endophallus], and in dragonfly females into a sheath of the ovipositor. -
New Fossil Insect Order Permopsocida Elucidates Major Radiation And
www.nature.com/scientificreports OPEN New fossil insect order Permopsocida elucidates major radiation and evolution of suction Received: 21 July 2015 Accepted: 26 February 2016 feeding in hemimetabolous insects Published: 10 March 2016 (Hexapoda: Acercaria) Di-Ying Huang1,*, Günter Bechly2,*, Patricia Nel3,4,*, Michael S. Engel5,6, Jakub Prokop7, Dany Azar8, Chen-Yang Cai1, Thomas van de Kamp9,10, Arnold H. Staniczek2, Romain Garrouste3, Lars Krogmann2, Tomy dos Santos Rolo9, Tilo Baumbach9,10, Rainer Ohlhoff11, Alexey S. Shmakov12, Thierry Bourgoin3 & André Nel3 With nearly 100,000 species, the Acercaria (lice, plant lices, thrips, bugs) including number of economically important species is one of the most successful insect lineages. However, its phylogeny and evolution of mouthparts among other issues remain debatable. Here new methods of preparation permitted the comprehensive anatomical description of insect inclusions from mid-Cretaceous Burmese amber in astonishing detail. These “missing links” fossils, attributed to a new order Permopsocida, provide crucial evidence for reconstructing the phylogenetic relationships in the Acercaria, supporting its monophyly, and questioning the position of Psocodea as sister group of holometabolans in the most recent phylogenomic study. Permopsocida resolves as sister group of Thripida + Hemiptera and represents an evolutionary link documenting the transition from chewing to piercing mouthparts in relation to suction feeding. Identification of gut contents as angiosperm pollen documents an ecological role of Permopsocida as early pollen feeders with relatively unspecialized mouthparts. This group existed for 185 million years, but has never been diverse and was superseded by new pollenivorous pollinators during the Cretaceous co-evolution of insects and flowers. The key innovation of suction feeding with piercing mouthparts is identified as main event that triggered the huge post-Carboniferous radiation of hemipterans, and facilitated the spreading of pathogenic vectors. -
Phylogeny of Endopterygote Insects, the Most Successful Lineage of Living Organisms*
REVIEW Eur. J. Entomol. 96: 237-253, 1999 ISSN 1210-5759 Phylogeny of endopterygote insects, the most successful lineage of living organisms* N iels P. KRISTENSEN Zoological Museum, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen 0, Denmark; e-mail: [email protected] Key words. Insecta, Endopterygota, Holometabola, phylogeny, diversification modes, Megaloptera, Raphidioptera, Neuroptera, Coleóptera, Strepsiptera, Díptera, Mecoptera, Siphonaptera, Trichoptera, Lepidoptera, Hymenoptera Abstract. The monophyly of the Endopterygota is supported primarily by the specialized larva without external wing buds and with degradable eyes, as well as by the quiescence of the last immature (pupal) stage; a specialized morphology of the latter is not an en dopterygote groundplan trait. There is weak support for the basal endopterygote splitting event being between a Neuropterida + Co leóptera clade and a Mecopterida + Hymenoptera clade; a fully sclerotized sitophore plate in the adult is a newly recognized possible groundplan autapomorphy of the latter. The molecular evidence for a Strepsiptera + Díptera clade is differently interpreted by advo cates of parsimony and maximum likelihood analyses of sequence data, and the morphological evidence for the monophyly of this clade is ambiguous. The basal diversification patterns within the principal endopterygote clades (“orders”) are succinctly reviewed. The truly species-rich clades are almost consistently quite subordinate. The identification of “key innovations” promoting evolution -
Paleoentomofauna Del Pérmico Temprano En Uruguay
UNIVERSIDAD DE LA REPÚBLICA FACULTAD DE CIENCIAS - PEDECIBA ÁREA BIOLOGÍA- SUBÁREA ZOOLOGÍA TESIS DE MAESTRÍA Paleoentomofauna del Pérmico temprano en Uruguay Viviana Calisto Directora de tesis: Dra. Graciela Piñeiro Co-director de tesis: Dr. Enrique Morelli TRIBUNAL Presidente: Dr. Claudio Gaucher Vocales: Dra. Ana Verdi y Dra. Patricia González Vainer Diciembre, 2018 1 ÍNDICE RESUMEN ………………………………………………………..………………………….……………………………..…… 4 ABSTRACT……………………………………………………………………………….…………………………….…………. 5 ÍNDICE DE FIGURAS…………………………………………….……….…………………………………..…………… 7 CAPÍTULO 1………………………………………..………………………………..………………………………..….…. 11 INTRODUCCIÓN……………………………………………………………….……………….………………….……..…. 11 a. Los primeros insectos fósiles……………………………….………………..………………..…………….…..11 b. Preservación de los insectos fósiles………………………….…………………..……….……………..…..12 c. Caracterización de la Formación Mangrullo ……………….………………………...………………..…14 d. Registros de insectos fósiles en Uruguay …………………….……………….………………..…….…...16 HIPÓTESIS…………………………………………….……………………………………………………………………….….18 OBJETIVO GENERAL………………………………….…………..…………………..…………………………………..…18 OBJETIVOS ESPECÍFICOS…….…………………………………..………………..………………………….…….……. 18 MATERIALES Y METODOLOGÍAS……………..………….……………………………………………………………. 19 a. Materiales……………………………………………………………………………..…………………………..……... 19 b. Área de estudio y colecta……………………………………………………..…………………..………….…... 19 c. Fotografías y diagramación………………………………………………..………………….....….…………… 22 CAPÍTULO 2 - BLATTARIA ………………………………….…………..…………..……………………….…..… 23 Antecedentes de Blattaria………………………………….………………….…………….………………………..… -
Protelytroptera from the Upper Permian of Australia, with a Discussion of the Protocoleoptera and Paracoleoptera
PSYCHE Vol. 73 June, 966 No. 2 PROTELYTROPTERA FROM THE UPPER PERMIAN OF AUSTRALIA, WITH A DISCUSSION OF THE PROTO- COLEOPTERA AND PARACOLEOPTERA BY JARMILA KUKALOVA Charles University, Prague In the Tillyard collection o. Upper Permian insect.s rom Belmont, New South Wales (now in the British Museum o Natural History in London), there is a remarkable series o. extinct elytrophorous in- sects o the order Protelytroptera. The specimens belong to our families, all endemic to Australia so ar as known. Some o the genera, however, have ormerly been reerred to the "orders" Proto- coleoptera and Paracoleoptera, which were supposed to. represent the ancestors o true Coleoptera. The order Protelytroptera, one o the most diversified groups o hemimetabolous insects o extensive geographical distribution, has been ound so far in Permian strata o North America, Czechoslo- vakia, U.R.S.S. and Australia. Because o the striking similarity of their iore wings to those o beetles, the remarkable Australian ossils, Protocoleus and Permophilus. vere described by Tillyard (924) as primitive coleopteroids, Protocoleus being placed in a new order, Protocoleoptera, and Permophilus in the Coleoptera. Their phylo- genetic position has been repeatedly discussed in the literature. Although the protelytropterous character o Protocoleus was pointed out later by Tillyard I93 and Carpenter (I933), the systematic position o Permophilus has remained uncertain and in 953 it was assigned by Laurentiaux to another new order, Paracoleoptera. Nu- merous and well preserved specimens in the Tillyard collection in the British Museum have enabled me to recognize the orders Proto- 1Much of this research was done while the author was at the Biological Laboratories, Harvard University, 1964, under a National Science Founda- tio Grant (NSF GB-2038) to Professor Carpenter, to whom am grateful or help in the preparation of this paper. -
Changes to the Fossil Record of Insects Through Fifteen Years of Discovery
This is a repository copy of Changes to the Fossil Record of Insects through Fifteen Years of Discovery. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/88391/ Version: Published Version Article: Nicholson, David Blair, Mayhew, Peter John orcid.org/0000-0002-7346-6560 and Ross, Andrew J (2015) Changes to the Fossil Record of Insects through Fifteen Years of Discovery. PLosOne. e0128554. https://doi.org/10.1371/journal.pone.0128554 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ RESEARCH ARTICLE Changes to the Fossil Record of Insects through Fifteen Years of Discovery David B. Nicholson1,2¤*, Peter J. Mayhew1, Andrew J. Ross2 1 Department of Biology, University of York, York, United Kingdom, 2 Department of Natural Sciences, National Museum of Scotland, Edinburgh, United Kingdom ¤ Current address: Department of Earth Sciences, The Natural History Museum, London, United Kingdom * [email protected] Abstract The first and last occurrences of hexapod families in the fossil record are compiled from publications up to end-2009. -
Evolution of the Insects David Grimaldi and Michael S
Cambridge University Press 0521821495 - Evolution of the Insects David Grimaldi and Michael S. Engel Index More information INDEX 12S rDNA, 32, 228, 269 Aenetus, 557 91; general, 57; inclusions, 57; menageries 16S rDNA, 32, 60, 237, 249, 269 Aenigmatiinae, 536 in, 56; Mexican, 55; parasitism in, 57; 18S rDNA, 32, 60, 61, 158, 228, 274, 275, 285, Aenne, 489 preservation in, 58; resinite, 55; sub-fossil 304, 307, 335, 360, 366, 369, 395, 399, 402, Aeolothripidae, 284, 285, 286 resin, 57; symbioses in, 303; taphonomy, 468, 475 Aeshnoidea, 187 57 28S rDNA, 32, 158, 278, 402, 468, 475, 522, 526 African rock crawlers (see Ambermantis wozniaki, 259 Mantophasmatodea) Amblycera, 274, 278 A Afroclinocera, 630 Amblyoponini, 446, 490 aardvark, 638 Agaonidae, 573, 616: fossil, 423 Amblypygida, 99, 104, 105: in amber, 104 abdomen: function, 131; structure, 131–136 Agaoninae, 423 Amborella trichopoda, 613, 620 Abies, 410 Agassiz, Alexander, 26 Ameghinoia, 450, 632 Abrocomophagidae, 274 Agathiphaga, 560 Ameletopsidae, 628 Acacia, 283 Agathiphagidae, 561, 562, 567, 630 American Museum of Natural History, 26, 87, acalyptrate Diptera: ecological diversity, 540; Agathis, 76 91 taxonomy, 540 Agelaia, 439 Amesiginae, 630 Acanthocnemidae, 391 ages, using fossils, 37–39; using DNA, 38–40 ametaboly, 331 Acari, 99, 105–107: diversity, 101, fossils, 53, Ageniellini, 435 amino acids: racemization, 61 105–107; in-Cretaceous amber, 105, 106 Aglaspidida, 99 ammonites, 63, 642 Aceraceae, 413 Aglia, 582 Amorphoscelidae, 254, 257 Acerentomoidea, 113 Agrias, 600 Amphientomidae,