L09 – Fortran Programming - Part 1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fortran 90 Overview
1 Fortran 90 Overview J.E. Akin, Copyright 1998 This overview of Fortran 90 (F90) features is presented as a series of tables that illustrate the syntax and abilities of F90. Frequently comparisons are made to similar features in the C++ and F77 languages and to the Matlab environment. These tables show that F90 has significant improvements over F77 and matches or exceeds newer software capabilities found in C++ and Matlab for dynamic memory management, user defined data structures, matrix operations, operator definition and overloading, intrinsics for vector and parallel pro- cessors and the basic requirements for object-oriented programming. They are intended to serve as a condensed quick reference guide for programming in F90 and for understanding programs developed by others. List of Tables 1 Comment syntax . 4 2 Intrinsic data types of variables . 4 3 Arithmetic operators . 4 4 Relational operators (arithmetic and logical) . 5 5 Precedence pecking order . 5 6 Colon Operator Syntax and its Applications . 5 7 Mathematical functions . 6 8 Flow Control Statements . 7 9 Basic loop constructs . 7 10 IF Constructs . 8 11 Nested IF Constructs . 8 12 Logical IF-ELSE Constructs . 8 13 Logical IF-ELSE-IF Constructs . 8 14 Case Selection Constructs . 9 15 F90 Optional Logic Block Names . 9 16 GO TO Break-out of Nested Loops . 9 17 Skip a Single Loop Cycle . 10 18 Abort a Single Loop . 10 19 F90 DOs Named for Control . 10 20 Looping While a Condition is True . 11 21 Function definitions . 11 22 Arguments and return values of subprograms . 12 23 Defining and referring to global variables . -
PHP Programming Cookbook I
PHP Programming Cookbook i PHP Programming Cookbook PHP Programming Cookbook ii Contents 1 PHP Tutorial for Beginners 1 1.1 Introduction......................................................1 1.1.1 Where is PHP used?.............................................1 1.1.2 Why PHP?..................................................2 1.2 XAMPP Setup....................................................3 1.3 PHP Language Basics.................................................5 1.3.1 Escaping to PHP...............................................5 1.3.2 Commenting PHP..............................................5 1.3.3 Hello World..................................................6 1.3.4 Variables in PHP...............................................6 1.3.5 Conditional Statements in PHP........................................7 1.3.6 Loops in PHP.................................................8 1.4 PHP Arrays...................................................... 10 1.5 PHP Functions.................................................... 12 1.6 Connecting to a Database............................................... 14 1.6.1 Connecting to MySQL Databases...................................... 14 1.6.2 Connecting to MySQLi Databases (Procedurial).............................. 14 1.6.3 Connecting to MySQLi databases (Object-Oriented)............................ 15 1.6.4 Connecting to PDO Databases........................................ 15 1.7 PHP Form Handling................................................. 15 1.8 PHP Include & Require Statements......................................... -
Quick Overview: Complex Numbers
Quick Overview: Complex Numbers February 23, 2012 1 Initial Definitions Definition 1 The complex number z is defined as: z = a + bi (1) p where a, b are real numbers and i = −1. Remarks about the definition: • Engineers typically use j instead of i. • Examples of complex numbers: p 5 + 2i; 3 − 2i; 3; −5i • Powers of i: i2 = −1 i3 = −i i4 = 1 i5 = i i6 = −1 i7 = −i . • All real numbers are also complex (by taking b = 0). 2 Visualizing Complex Numbers A complex number is defined by it's two real numbers. If we have z = a + bi, then: Definition 2 The real part of a + bi is a, Re(z) = Re(a + bi) = a The imaginary part of a + bi is b, Im(z) = Im(a + bi) = b 1 Im(z) 4i 3i z = a + bi 2i r b 1i θ Re(z) a −1i Figure 1: Visualizing z = a + bi in the complex plane. Shown are the modulus (or length) r and the argument (or angle) θ. To visualize a complex number, we use the complex plane C, where the horizontal (or x-) axis is for the real part, and the vertical axis is for the imaginary part. That is, a + bi is plotted as the point (a; b). In Figure 1, we can see that it is also possible to represent the point a + bi, or (a; b) in polar form, by computing its modulus (or size), and angle (or argument): p r = jzj = a2 + b2 θ = arg(z) We have to be a bit careful defining φ, since there are many ways to write φ (and we could add multiples of 2π as well). -
Object-Oriented Programming Basics with Java
Object-Oriented Programming Object-Oriented Programming Basics With Java In his keynote address to the 11th World Computer Congress in 1989, renowned computer scientist Donald Knuth said that one of the most important lessons he had learned from his years of experience is that software is hard to write! Computer scientists have struggled for decades to design new languages and techniques for writing software. Unfortunately, experience has shown that writing large systems is virtually impossible. Small programs seem to be no problem, but scaling to large systems with large programming teams can result in $100M projects that never work and are thrown out. The only solution seems to lie in writing small software units that communicate via well-defined interfaces and protocols like computer chips. The units must be small enough that one developer can understand them entirely and, perhaps most importantly, the units must be protected from interference by other units so that programmers can code the units in isolation. The object-oriented paradigm fits these guidelines as designers represent complete concepts or real world entities as objects with approved interfaces for use by other objects. Like the outer membrane of a biological cell, the interface hides the internal implementation of the object, thus, isolating the code from interference by other objects. For many tasks, object-oriented programming has proven to be a very successful paradigm. Interestingly, the first object-oriented language (called Simula, which had even more features than C++) was designed in the 1960's, but object-oriented programming has only come into fashion in the 1990's. -
The Machine That Builds Itself: How the Strengths of Lisp Family
Khomtchouk et al. OPINION NOTE The Machine that Builds Itself: How the Strengths of Lisp Family Languages Facilitate Building Complex and Flexible Bioinformatic Models Bohdan B. Khomtchouk1*, Edmund Weitz2 and Claes Wahlestedt1 *Correspondence: [email protected] Abstract 1Center for Therapeutic Innovation and Department of We address the need for expanding the presence of the Lisp family of Psychiatry and Behavioral programming languages in bioinformatics and computational biology research. Sciences, University of Miami Languages of this family, like Common Lisp, Scheme, or Clojure, facilitate the Miller School of Medicine, 1120 NW 14th ST, Miami, FL, USA creation of powerful and flexible software models that are required for complex 33136 and rapidly evolving domains like biology. We will point out several important key Full list of author information is features that distinguish languages of the Lisp family from other programming available at the end of the article languages and we will explain how these features can aid researchers in becoming more productive and creating better code. We will also show how these features make these languages ideal tools for artificial intelligence and machine learning applications. We will specifically stress the advantages of domain-specific languages (DSL): languages which are specialized to a particular area and thus not only facilitate easier research problem formulation, but also aid in the establishment of standards and best programming practices as applied to the specific research field at hand. DSLs are particularly easy to build in Common Lisp, the most comprehensive Lisp dialect, which is commonly referred to as the “programmable programming language.” We are convinced that Lisp grants programmers unprecedented power to build increasingly sophisticated artificial intelligence systems that may ultimately transform machine learning and AI research in bioinformatics and computational biology. -
Fortran Math Special Functions Library
IMSL® Fortran Math Special Functions Library Version 2021.0 Copyright 1970-2021 Rogue Wave Software, Inc., a Perforce company. Visual Numerics, IMSL, and PV-WAVE are registered trademarks of Rogue Wave Software, Inc., a Perforce company. IMPORTANT NOTICE: Information contained in this documentation is subject to change without notice. Use of this docu- ment is subject to the terms and conditions of a Rogue Wave Software License Agreement, including, without limitation, the Limited Warranty and Limitation of Liability. ACKNOWLEDGMENTS Use of the Documentation and implementation of any of its processes or techniques are the sole responsibility of the client, and Perforce Soft- ware, Inc., assumes no responsibility and will not be liable for any errors, omissions, damage, or loss that might result from any use or misuse of the Documentation PERFORCE SOFTWARE, INC. MAKES NO REPRESENTATION ABOUT THE SUITABILITY OF THE DOCUMENTATION. THE DOCU- MENTATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. PERFORCE SOFTWARE, INC. HEREBY DISCLAIMS ALL WARRANTIES AND CONDITIONS WITH REGARD TO THE DOCUMENTATION, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR- TICULAR PURPOSE, OR NONINFRINGEMENT. IN NO EVENT SHALL PERFORCE SOFTWARE, INC. BE LIABLE, WHETHER IN CONTRACT, TORT, OR OTHERWISE, FOR ANY SPECIAL, CONSEQUENTIAL, INDIRECT, PUNITIVE, OR EXEMPLARY DAMAGES IN CONNECTION WITH THE USE OF THE DOCUMENTATION. The Documentation is subject to change at any time without notice. IMSL https://www.imsl.com/ Contents Introduction The IMSL Fortran Numerical Libraries . 1 Getting Started . 2 Finding the Right Routine . 3 Organization of the Documentation . 4 Naming Conventions . -
Compile-Time Safety and Runtime Performance in Programming Frameworks for Distributed Systems
Compile-time Safety and Runtime Performance in Programming Frameworks for Distributed Systems lars kroll Doctoral Thesis in Information and Communication Technology School of Electrical Engineering and Computer Science KTH Royal Institute of Technology Stockholm, Sweden 2020 School of Electrical Engineering and Computer Science KTH Royal Institute of Technology TRITA-EECS-AVL-2020:13 SE-164 40 Kista ISBN: 978-91-7873-445-0 SWEDEN Akademisk avhandling som med tillstånd av Kungliga Tekniska Högskolan fram- lägges till offentlig granskning för avläggande av teknologie doktorsexamen i informations- och kommunikationsteknik på fredagen den 6 mars 2020 kl. 13:00 i Sal C, Electrum, Kungliga Tekniska Högskolan, Kistagången 16, Kista. © Lars Kroll, February 2020 Printed by Universitetsservice US-AB IV Abstract Distributed Systems, that is systems that must tolerate partial failures while exploiting parallelism, are a fundamental part of the software landscape today. Yet, their development and design still pose many challenges to developers when it comes to reliability and performance, and these challenges often have a negative impact on developer productivity. Distributed programming frameworks and languages attempt to provide solutions to common challenges, so that application developers can focus on business logic. However, the choice of programming model as provided by a such a framework or language will have significant impact both on the runtime performance of applications, as well as their reliability. In this thesis, we argue for programming models that are statically typed, both for reliability and performance reasons, and that provide powerful abstractions, giving developers the tools to implement fast algorithms without being constrained by the choice of the programming model. -
Preview Fortran Tutorial (PDF Version)
Fortran i Fortran About the Tutorial Fortran was originally developed by a team at IBM in 1957 for scientific calculations. Later developments made it into a high level programming language. In this tutorial, we will learn the basic concepts of Fortran and its programming code. Audience This tutorial is designed for the readers who wish to learn the basics of Fortran. Prerequisites This tutorial is designed for beginners. A general awareness of computer programming languages is the only prerequisite to make the most of this tutorial. Copyright & Disclaimer Copyright 2017 by Tutorials Point (I) Pvt. Ltd. All the content and graphics published in this e-book are the property of Tutorials Point (I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish any contents or a part of contents of this e-book in any manner without written consent of the publisher. We strive to update the contents of our website and tutorials as timely and as precisely as possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt. Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our website or its contents including this tutorial. If you discover any errors on our website or in this tutorial, please notify us at [email protected] i Fortran Table of Contents About the Tutorial ····································································································································i Audience ··················································································································································i -
Php Tutorial
PHP About the Tutorial The PHP Hypertext Preprocessor (PHP) is a programming language that allows web developers to create dynamic content that interacts with databases. PHP is basically used for developing web-based software applications. This tutorial will help you understand the basics of PHP and how to put it in practice. Audience This tutorial has been designed to meet the requirements of all those readers who are keen to learn the basics of PHP. Prerequisites Before proceeding with this tutorial, you should have a basic understanding of computer programming, Internet, Database, and MySQL. Copyright & Disclaimer © Copyright 2016 by Tutorials Point (I) Pvt. Ltd. All the content and graphics published in this e-book are the property of Tutorials Point (I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish any contents or a part of contents of this e-book in any manner without written consent of the publisher. We strive to update the contents of our website and tutorials as timely and as precisely as possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt. Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our website or its contents including this tutorial. If you discover any errors on our website or in this tutorial, please notify us at [email protected] i PHP Table of Contents About the Tutorial ........................................................................................................................................... -
IEEE Standard 754 for Binary Floating-Point Arithmetic
Work in Progress: Lecture Notes on the Status of IEEE 754 October 1, 1997 3:36 am Lecture Notes on the Status of IEEE Standard 754 for Binary Floating-Point Arithmetic Prof. W. Kahan Elect. Eng. & Computer Science University of California Berkeley CA 94720-1776 Introduction: Twenty years ago anarchy threatened floating-point arithmetic. Over a dozen commercially significant arithmetics boasted diverse wordsizes, precisions, rounding procedures and over/underflow behaviors, and more were in the works. “Portable” software intended to reconcile that numerical diversity had become unbearably costly to develop. Thirteen years ago, when IEEE 754 became official, major microprocessor manufacturers had already adopted it despite the challenge it posed to implementors. With unprecedented altruism, hardware designers had risen to its challenge in the belief that they would ease and encourage a vast burgeoning of numerical software. They did succeed to a considerable extent. Anyway, rounding anomalies that preoccupied all of us in the 1970s afflict only CRAY X-MPs — J90s now. Now atrophy threatens features of IEEE 754 caught in a vicious circle: Those features lack support in programming languages and compilers, so those features are mishandled and/or practically unusable, so those features are little known and less in demand, and so those features lack support in programming languages and compilers. To help break that circle, those features are discussed in these notes under the following headings: Representable Numbers, Normal and Subnormal, Infinite -
Comparative Studies of Programming Languages; Course Lecture Notes
Comparative Studies of Programming Languages, COMP6411 Lecture Notes, Revision 1.9 Joey Paquet Serguei A. Mokhov (Eds.) August 5, 2010 arXiv:1007.2123v6 [cs.PL] 4 Aug 2010 2 Preface Lecture notes for the Comparative Studies of Programming Languages course, COMP6411, taught at the Department of Computer Science and Software Engineering, Faculty of Engineering and Computer Science, Concordia University, Montreal, QC, Canada. These notes include a compiled book of primarily related articles from the Wikipedia, the Free Encyclopedia [24], as well as Comparative Programming Languages book [7] and other resources, including our own. The original notes were compiled by Dr. Paquet [14] 3 4 Contents 1 Brief History and Genealogy of Programming Languages 7 1.1 Introduction . 7 1.1.1 Subreferences . 7 1.2 History . 7 1.2.1 Pre-computer era . 7 1.2.2 Subreferences . 8 1.2.3 Early computer era . 8 1.2.4 Subreferences . 8 1.2.5 Modern/Structured programming languages . 9 1.3 References . 19 2 Programming Paradigms 21 2.1 Introduction . 21 2.2 History . 21 2.2.1 Low-level: binary, assembly . 21 2.2.2 Procedural programming . 22 2.2.3 Object-oriented programming . 23 2.2.4 Declarative programming . 27 3 Program Evaluation 33 3.1 Program analysis and translation phases . 33 3.1.1 Front end . 33 3.1.2 Back end . 34 3.2 Compilation vs. interpretation . 34 3.2.1 Compilation . 34 3.2.2 Interpretation . 36 3.2.3 Subreferences . 37 3.3 Type System . 38 3.3.1 Type checking . 38 3.4 Memory management . -
Rexx Interview Questions That Can Help You Ace Your Rexx Interview
By OnlineInterviewQuestions.com Rexx is the acronym for Restructured Extended Executor. It is a high-level programming language developed by Mike Cowlishaw to make learning and reading easier. There are multiple applications of Rexx. It is used as scripting and for processing data. It is also as an internal macro language in some software like THE and ZOC. Rexx is a versatile programming language and can be mixed with various commands to different host environments. It is a very useful language for beginners and the demand for experienced computer professionals is growing exponentially. This blog covers important Rexx interview questions that can help you ace your Rexx interview. If you wish to stand out from the crowd, these interview questions are your best friend. Q1. What is Uni-REXX? Uni-REXX is a UNIX implementation of Rexx programming language which offers rich sets of functions that are particularly designed for UNIX environment. Uni-REXX is now available on SUN’s Solaris 7/8/9, H/P’s HP/UX 10/11, IBM’s AIX 4/5, SGI’s IRIX 5/6, NCR UNIX, Linux Intel and S/390. It is used for several purposes such as automating system administration tasks. It also helps in development for end-user applications and rapid-prototyping of complied-language applications. Q2. Enlist the features of Rexx as a programming language. Following are the few features of Rexx- Rexx language has a very simple syntax format. Rexx can support multiple functions, procedures and route commands to several environments. It comes with very few artificial limitations and provides crash protection.