An Advanced Approach for Distance Vector Routing Protocol Babel

Total Page:16

File Type:pdf, Size:1020Kb

An Advanced Approach for Distance Vector Routing Protocol Babel Volume 1, Issue 4, December 2013 ISSN: 2320-9984 (Online) International Journal of Modern Engineering & Management Research Website: www.ijmemr.org An Advanced Approach for Distance Vector Routing Protocol Babel Deshraj Ahirwar Mukesh Kumar Dhariwal Assistant Professor Assistant Professor Department of Computer Science & Engineering Department of Computer Science & Engineering University Institute of Technology, RGPV, University Institute of Technology, RGPV, Bhopal (M.P.) [INDIA] Bhopal (M.P.) [INDIA] Email :[email protected] Email : [email protected] Sanjay Kumar Tehariya Abhishek Kesharwani Assistant Professor Assistant Professor Department of Computer Science & Engineering Department of Computer Science & Engineering University Institute of Technology, RGPV, University Institute of Technology, RGPV Bhopal (M.P.) [INDIA] Bhopal (M.P.) [INDIA] Email : [email protected] Email : [email protected] Abstract—This type of protocols maintains the absence of routing pathologies, such as fresh lists of destinations and their routes by routing loops. periodically distributing routing tables throughout the network. The main disadvantages of such algorithms are: Respective amount of data for maintenance. And Slow reaction on restructuring and failures. It is loop-avoidance vector routing protocol. The Babel routing protocol is a distance-vector routing protocol for Internet Protocol packet-switched network that is designed to be robust and efficient on both wireless mesh networks and wired networks. Keywords:— MANET, IPv4, TTL, distance Figure 1: Node configuration in babel network vector routing, routing table, etc. Babel operates on IPv and IPv networks. It has been reported to be a robust protocol and 1. INTRODUCTION to have fast convergence properties.[1][2] Babel is based on the ideas Two implementations of Babel are freely in Destination-Sequenced Distance Vector available: the standalone sample routing (DSDV), Ad hoc On-Demand Distance implementation, and a version that is integrated Vector Routing (AODV), and Cisco's into the Quagga routing suite.[3][4] The Enhanced Interior Gateway Routing Protocol version integrated into Quagga allows for (EIGRP), but it uses a variant of Expected authentication.[5] a table-driven routing Transmission Count (ETX) link cost scheme for ad hoc mobile network based on estimation rather than a simple hop-count the Bellman–Ford algorithm. It was developed metric. It employs several techniques to ensure by C. Perkins and P. Bhagwat in 1994. The main contribution of the algorithm was to International Journal of Modern Engineering & Management Research | Vol 1 | Issue 4 | Dec. 2013 23 An Advanced Approach for Distance Vector Routing Protocol Babel Author (s) : Deshraj Ahirwar, Mukesh Kumar Dhariwal, Sanjay Kumar Tehariya, Abhishek Kesharwani | UIT, Bhopal solve the routing loop problem. Each entry in Whenever the topology of the network the routing table contains a sequence number, changes, a new sequence number is necessary the sequence numbers are generally even if a before the network re-converges; thus, DSDV link is present; else, an odd number is used. is not suitable for highly dynamic networks. The number is generated by the destination, (As in all distance-vector protocols, this does and the emitter needs to send out the next not perturb traffic in regions of the network update with this number. Routing information that are not concerned by the topology is distributed between nodes by sending full change.) itself does not appear to be much used dumps infrequently and smaller incremental today[citation needed], other protocols have updates more frequently. used similar techniques. Figure 2: Node combination in adhoc network Destina- Next Number Se- Install Figure 3: Combination of networking devices and node tion Hop of Hops quence Time in adhoc network Number The best-known sequenced distance A A 0 A 46 001000 vector protocol is AOD, which, by virtue of being a reactive protocol, can use simpler sequencing heuristics. Babe is an attempt at B B 1 B 36 001200 making DSDV more robust, more efficient and more widely applicable while staying within C B 2 C 28 001500 the framework of proactive protocols. Table 1: Routing table in adhoc network A RouteRequest carries the source identifier (SrcID), the destination 2. RELATED WORK identifier (DestID), the source sequence If a router receives new information, number (SrcSeqNum), the destination then it uses the latest sequence number. If the sequence number (DestSeqNum), the sequence number is the same as the one broadcast identifier (BcastID), and the time to already in the table, the route with the better live (TTL) field. DestSeqNum indicates the metric is used. Stale entries are those entries freshness of the route that is accepted by the that have not been updated for a while. Such source. When an intermediate node receives a entries as well as the routes using those nodes RouteRequest, it either forwards it or prepares as next hops are deleted. a RouteReply if it has a valid route to the destination. The validity of a route at the DSDV requires a regular update of its intermediate node is determined by comparing routing tables, which uses up battery power the sequence number at the intermediate node and a small amount of bandwidth even when with the destination sequence number in the the network is idle. RouteRequest packet. If a RouteRequest is International Journal of Modern Engineering & Management Research | Vol 1 | Issue 4 | Dec. 2013 24 An Advanced Approach for Distance Vector Routing Protocol Babel Author (s) : Deshraj Ahirwar, Mukesh Kumar Dhariwal, Sanjay Kumar Tehariya, Abhishek Kesharwani | UIT, Bhopal received multiple times, which is indicated by The needy node then begins using the the BcastID-SrcID pair, the duplicate copies route that has the least number of hops through are discarded. All intermediate nodes having other nodes. Unused entries in the routing valid routes to the destination, or the table are recycled after a time. destination node itself, are allowed to send RouteReply packets to the source. Every When a link fails, a routing error is intermediate node, while forwarding a passed back to a transmitting node, and the RouteRequest, enters the previous node process repeats. address and its BcastID. A timer is used to Much of the complexity of delete this entry in case a RouteReply is not the protocol is to lower the number of received before the timer expires. This helps in messages to conserve the capacity of the storing an active path at the intermediate node network. For example, each request for a route as AODV does not employ source routing of has a sequence number. Nodes use this data packets. When a node receives a sequence number so that they do not repeat RouteReply packet, information about the route requests that they have already passed previous node from which the packet was on. Another such feature is that the route received is also stored in order to forward the requests have a "time to live" number that data packet to this next node as the next hop limits how many times they can be toward the destination. retransmitted. Another such feature is that if a route request fails, another route request may 3. WORKING not be sent until twice as much time has passed The network is silent until a connection as the timeout of the previous route request. is needed. At that point the network node that needs a connection broadcast a request for connection. Other AODV nodes forward this message, and record the node that they heard it from, creating an explosion of temporary routes back to the needy node. When a node receives such a message and already has a route to the desired node, it sends a message backwards through a temporary route to the requesting node. Layer Attacks Application layer Repudiation, data corruption Figure 4: Babel architecture Transport layer Session hijacking, SYN The advantage of AODV is that it creates flooding no extra traffic for communication along Network layer Wormhole, blackhole, flooding, existing links. Also, distance vector routing is location discloser attacks simple, and doesn't require much memory or calculation. However AODV requires more Data link layer Traffic analysis, monitoring, time to establish a connection, and the initial disruption, MAC(802.11), communication to establish a route is heavier WEP, weakness than some other approaches. Physical layer Jamming interceptions Routing Protocol uses an on-demand approach for finding routes, that is, a route is established only when it is required by a source Table 2: Various attacks in layered architecture node for transmitting data packets. It employs destination sequence numbers to identify the International Journal of Modern Engineering & Management Research | Vol 1 | Issue 4 | Dec. 2013 25 An Advanced Approach for Distance Vector Routing Protocol Babel Author (s) : Deshraj Ahirwar, Mukesh Kumar Dhariwal, Sanjay Kumar Tehariya, Abhishek Kesharwani | UIT, Bhopal most recent path. The major difference In addition to the routing table, EIGRP between AODV and Dynamic Source also uses the following tables to store Routing (DSR) stems out from the fact that information:- DSR uses source routing in which a data packet carries the complete path to be Neighbor Table: The neighbor table traversed. keeps a record of the IP address of router that have a direct However, in AODV, the source node physical connection with this router. and the intermediate nodes store the next-hop Routers that are connected to this information corresponding to each flow for router indirectly, through another data packet transmission. In an on-demand router are not recorded in this table routing protocol, the source node floods as they are not considered the RouteRequest packet in the network when a neighbours. route is not available for the desired destination. It may obtain multiple routes to Topology Table: The topology table different destinations from a stores routes that it has learned from single RouteRequest. The major difference neighbour routing tables.
Recommended publications
  • 5 and 6 Routing DV and LS.Pptx
    1/25/10 NAT: Network Address Translation Advantages: • can change address of devices in local network without notifying outside world • devices inside local net not explicitly addressable by or visible to the outside world (a security plus) Disadvantage: • devices inside local net not explicitly addressable by or visible to the outside world, making peer-to-peer networking that much harder • routers should only process up to layer 3 (port#’s are app layer objects) • address shortage should instead be solved by IPv6, instead NAT hinders the adoption of IPv6 (nothing wrong with that?) Lesson: Be careful what you propose as a “temporary” patch, " “temporary” solutions have a tendency to stay around beyond expiration date “The evil that men do lives after them, " the good is oft interred with their bones.” – Shakespeare, Julius Caesar 1 The Internet Network Layer Host, router network layer functions: Transport layer: TCP, UDP Routing protocols Forwarding protocol (IP) addressing conventions • path selection • datagram format • RIP, OSPF, BGP • Network • packet handling conventions layer forwarding “Signalling” protocol table (ICMP) • error reporting • router “signaling” Link layer: Ethernet, WiFi, SONET, ATM Physical layer: copper, fiber, radio, microwave 2 1 1/25/10 Routing on the Internet Routers on the Internet are store and forward routers: • each incoming packet is buffered • packet’s destination is looked up in the routing table • packet is forwarded to the next hop towards the destination routing algorithm local forwarding table dest
    [Show full text]
  • A Survey on Distance Vector Routing Protocols
    A Survey on Distance Vector Routing Protocols Linpeng Tang,∗ Qin Liu† November 5, 2018 Abstract routing loop and count to infinity (CTI) problem. Be- cause each router only has limited information about In this paper we give a brief introduction to five dif- the network topology, routing loops might emerge ferent distance vector routing protocols (RIP, AODV, and lead to CTI problem, greatly impede the effi- EIGRP, RIP-MTI and Babel) and give some of our ciency of the protocol. In this survey we will see how thoughts on how to solve the count to infinity prob- several distance vector routing protocols have worked lem. Our focus is how distance vector routing proto- to alleviate or solve this problem. Distance vector cols, based on limited information, can prevent rout- routing protocols also suffers from security issues, be- ing loops and the count to infinity problem. cause routing computation is done distributively, a malfunctioning or malicious node may severely affect the whole network. However, in recent years more 1 Introduction secure distance vector routing protocols have been proposed [7].Another critical issue is the support for In computer communication theory relating to routing areas. In reality, large networks are typically packet-switched networks, a distance-vector routing divided into areas to accelerate routing, but distance- protocol is one of the two major classes of routing vector routing protocols don’t support routing areas, protocols, the other major class being the link-state so they are not suitable for really big networks. protocol. A distance-vector routing protocol uses In general, distance vector routing protocols are the Distributed Bellman-Ford algorithm to calculate more suitable for small or median sized networks or paths.[13] when each node only have a limited storage or com- Compared to link-state routing protocols, distance- puting power.
    [Show full text]
  • RFC 8966: the Babel Routing Protocol
    Stream: Internet Engineering Task Force (IETF) RFC: 8966 Obsoletes: 6126, 7557 Category: Standards Track Published: January 2021 ISSN: 2070-1721 Authors: J. Chroboczek D. Schinazi IRIF, University of Paris-Diderot Google LLC RFC 8966 The Babel Routing Protocol Abstract Babel is a loop-avoiding, distance-vector routing protocol that is robust and efficient both in ordinary wired networks and in wireless mesh networks. This document describes the Babel routing protocol and obsoletes RFC 6126 and RFC 7557. Status of This Memo This is an Internet Standards Track document. This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 7841. Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at https://www.rfc-editor.org/info/rfc8966. Copyright Notice Copyright (c) 2021 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
    [Show full text]
  • Understanding Route Redistribution
    Understanding Route Redistribution Franck Le Geoffrey G. Xie Hui Zhang Carnegie Mellon University Naval Postgraduate School Carnegie Mellon University [email protected] [email protected] [email protected] Abstract—Route redistribution (RR) has become an integral option local to a router. It designates the dissemination of part of IP network design as the result of a growing need routing information from one protocol process to another for disseminating certain routes across routing protocol bound- within the same router. For routers in the RIP instance to learn aries. While RR is widely used and resembles BGP in several nontrivial aspects, surprisingly, the safety of RR has not been the prefixes in the OSPF instance, a router (e.g., D or E) needs systematically studied by the networking community. This paper to run both a process of RIP and a process of OSPF and inject presents the first analytical model for understanding the effect the OSPF routes into the RIP instance. of RR on network wide routing dynamics and evaluating the As such, router vendors introduced RR to address a need safety of a specific RR configuration. We first illustrate how from network operations. We recently looked at the configura- easily inaccurate configurations of RR may cause severe routing instabilities, including route oscillations and persistent routing tions of some large university campus networks and found that loops. At the same time, general observations regarding the root RR is indeed widely used. However, contrary to traditional causes of these instabilities are provided. We then introduce a routing protocols, there is no standard or RFC formally formal model based on the general observations to represent defining the functionality of RR.
    [Show full text]
  • Objectives Distance Vector Routing Protocols Characteristics Of
    Objectives Identify the characteristics of distance vector routing protocols. Describe the network discovery process Distance Vector Routing Protocols Identify the conditions leading to a routing loop and explain the implications for router performance. Recognize that distance vector routing Routing Protocols and Concepts– Chapter 4 protocols are in use today 2 ITE PC v4.0 Chapter 1 © 2007 Cisco Systems, Inc. All rights reserved. Cisco Public 1 Distance Vector Routing Protocols Characteristics of Distance Vector routing protocols Examples of Distance Vector routing protocols: Periodic updates Routing Information Protocol (RIP) Neighbors Interior Gateway Routing Protocol (IGRP) Broadcast updates Enhanced IGRP (EIGRP) Entire routing table is included with routing update The meaning of Distance Vector: – A router using distance vector routing protocols knows 2 things: Distance to final destination Vector, or direction, traffic should be 3 4 directed The Routing Algorithm Routing Protocol Characteristics Criteria used to compare routing protocols include: Time to convergence Scalability Resource usage Implementation & maintenance Advantages and Disadvantages of Distance Vector -Simple implementation -Slow convergence and maintenance -Limited scalability -Low resource -Routing loops requirements 5 6 Copyright © 2001, Cisco Systems, Inc. All rights reserved. Printed in USA. Presentation_ID.scr 1 Network Discovery Initial Exchange of Routing Information Router initial start up (Cold Starts) If a routing protocol is configured
    [Show full text]
  • Comparison of RIP, OSPF and EIGRP Routing Protocols Based on OPNET
    ENSC 427: COMMUNICATION NETWORKS SPRING 2014 FINAL PROJECT Comparison of RIP, OSPF and EIGRP Routing Protocols based on OPNET Project Group # 9 http://www.sfu.ca/~sihengw/ENSC427_Group9/ Justin Deng Siheng Wu Kenny Sun 301138281 301153928 301154475 [email protected] [email protected] [email protected] Table of Contents List of Figures………………………………………………………………………….……..….1 Abstract..........................................................................................................................................2 1. Introduction................................................................................................................................3 1.1 Routing Protocol Basics ……….……………………………………...….…………………..3 1.2 Routing Metrics Basics ……………...…..…………………….………………………….….3 1.3 Static Routing and Dynamic Routing ………………………………………………………..3 1.4 Distance Vector and Link State ……………………………………………………………...3 2. Three Routing Protocols………………………………………………….………………..….4 2.1 Routing Information Protocol (RIP) ……….…………………………….…………………...4 2.2 Open Shortest Path First (OSPF)………..…………………….…………………………...….5 2.3 Enhanced Interior Gateway Routing Protocol (EIGRP) …….....……………………………..7 3. OPNET Simulations………………………………………………………………………......8 3.1 Topologies ……………………………….…………………………………………………...8 3.1.1 Mesh Topology ………..………….……………………………………………………....8 3.1.2 Tree Topology ……………………..……………………………………………………...9 3.2 Simulation Setup …………………………………………………………………………….10 3.2.1 Simulation Setup for Failure/Recovery Configuration...........…………………………...10 3.2.2 Simulation Setup for Individual
    [Show full text]
  • A Study of BGP Path Vector Route Looping Behavior
    A Study of BGP Path Vector Route Looping Behavior Dan Pei Xiaoliang Zhao Dan Massey Lixia Zhang UCLA USC/ISI USC/ISI UCLA [email protected] [email protected] [email protected] [email protected] Abstract and policy changes, the interactions between the intra- and inter-domain routing protocols, or even due to subtle im- Measurements have shown evidences of inter-domain plementation details such as the delay between the routing packet forwarding loops in the Internet, but the exact cause table change and the update to the forwarding table which of these loops remains unclear. As one of the efforts in is used to forward packets. A complete understanding of identifying the causes, this paper examines how transient packet looping in the Internet requires an understanding of loops can be created at the inter-domain level via BGP, all the above components and their interactions. As a first and what are the major factors that contribute to duration step in identifying the causes of packet looping in the In- of the routing loops. As a path-vector routing protocol, ternet, this paper solely focuses on understanding routing BGP messages list the entire AS path to each destination loops in path vector routing protocols in general, and in and the path information enables each node to detect, thus BGP in particular. break, arbitrarily long routing loops involving itself. How- Path-vector routing algorithms were designed as an ever, delays due to physical constrains and protocol mecha- improvement over previous distance vector routing algo- nisms slow down routing updates propagation and the rout- rithms.
    [Show full text]
  • What Is Dynamic Routing?
    FortiOS™ Dynamic Routing Guide FortiOS™ Handbook 4.0 MR1 FortiOS Dynamic Routing Guide FortiOS™ Handbook 4.0 MR1 23 February 2010 01-41002-112804-20100223 © Copyright 2010 Fortinet, Inc. All rights reserved. No part of this publication including text, examples, diagrams or illustrations may be reproduced, transmitted, or translated in any form or by any means, electronic, mechanical, manual, optical or otherwise, for any purpose, without prior written permission of Fortinet, Inc. Trademarks Dynamic Threat Prevention System (DTPS), APSecure, FortiASIC, FortiBIOS, FortiBridge, FortiClient, FortiGate®, FortiGate Unified Threat Management System, FortiGuard®, FortiGuard-Antispam, FortiGuard-Antivirus, FortiGuard-Intrusion, FortiGuard-Web, FortiLog, FortiAnalyzer, FortiManager, Fortinet®, FortiOS, FortiPartner, FortiProtect, FortiReporter, FortiResponse, FortiShield, FortiVoIP, and FortiWiFi are trademarks of Fortinet, Inc. in the United States and/or other countries. The names of actual companies and products mentioned herein may be the trademarks of their respective owners. Contents Introduction 9 Before you begin . 9 How this guide is organized . 9 Document conventions . 10 IP addresses . 10 Notes, tips and cautions . 10 Typographical conventions. 10 CLI command syntax conventions . 11 Registering your Fortinet product. 13 Fortinet products End user license agreement . 13 Fortinet documentation . 13 Fortinet Tools and Documentation CD . 13 Fortinet Knowledge Base . 13 Comments on Fortinet technical documentation . 13 Customer service and technical support . 13 Training . 14 Dynamic Routing Overview 15 Routing concepts . 15 Routing in VDOMs . 15 The default route . 16 The routing table . 16 Viewing the routing table in the web-based manager . 17 Viewing the routing table in the CLI . 19 Viewing the routing table with diagnose commands . 20 Searching the routing table .
    [Show full text]
  • IP Routing: Protocol-Independent Configuration Guide, Cisco IOS Release 15S Americas Headquarters Cisco Systems, Inc
    IP Routing: Protocol-Independent Configuration Guide, Cisco IOS Release 15S Americas Headquarters Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134-1706 USA http://www.cisco.com Tel: 408 526-4000 800 553-NETS (6387) Fax: 408 527-0883 THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS. THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY. The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California. NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS" WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE. IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
    [Show full text]
  • Routing Configuration Guide, Cisco IOS XE Everest 16.5.1A (Catalyst 3850 Switches)
    Routing Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches) First Published: 2017-05-31 Americas Headquarters Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134-1706 USA http://www.cisco.com Tel: 408 526-4000 800 553-NETS (6387) Fax: 408 527-0883 © 2017 Cisco Systems, Inc. All rights reserved. CONTENTS CHAPTER 1 Configuring Bidirectional Forwarding Detection 1 Bidirectional Forwarding Detection 1 Finding Feature Information 1 Prerequisites for Bidirectional Forwarding Detection 1 Restrictions for Bidirectional Forwarding Detection 2 Information About Bidirectional Forwarding Detection 2 BFD Operation 2 Benefits of Using BFD for Failure Detection 5 How to Configure Bidirectional Forwarding Detection 5 Configuring BFD Session Parameters on the Interface 5 Configuring BFD Support for Dynamic Routing Protocols 7 Configuring BFD Support for Static Routing 17 Configuring BFD Echo Mode 19 Creating and Configuring BFD Templates 20 Monitoring and Troubleshooting BFD 21 Feature Information for Bidirectional Forwarding Detection 22 CHAPTER 2 Configuring MSDP 23 Finding Feature Information 23 Information About Configuring MSDP 23 MSDP Overview 24 MSDP Operation 24 MSDP Benefits 25 How to Configure MSDP 26 Default MSDP Configuration 26 Configuring a Default MSDP Peer 26 Routing Configuration Guide, Cisco IOS XE Everest 16.5.1a (Catalyst 3850 Switches) iii Contents Caching Source-Active State 28 Controlling Source Information that Your Switch Originates 29 Redistributing Sources 30 Filtering Source-Active Request Messages
    [Show full text]
  • Cisco − Redistributing Routing Protocols Table of Contents
    Cisco − Redistributing Routing Protocols Table of Contents Redistributing Routing Protocols......................................................................................................................1 Introduction.............................................................................................................................................1 Prerequisites............................................................................................................................................1 Requirements....................................................................................................................................1 Components Used.............................................................................................................................1 Conventions......................................................................................................................................2 Metrics....................................................................................................................................................2 Administrative Distance..........................................................................................................................2 Redistribution Configuration Syntax and Examples..............................................................................4 IGRP and EIGRP..............................................................................................................................4 OSPF................................................................................................................................................5
    [Show full text]
  • Routing Loop
    Routing loop A routing loop is a common problem with various types of networks, particularly computer networks. They are formed when an error occurs in the operation of the routing algorithm, and as a result, in a group of nodes, the path to a particular destination forms a loop. In the simplest version, a routing loop of size two, node A thinks that the path to some destination (call it C) is through its neighbouring node, node B. At the same time, node B thinks that the path to C starts at node A. Thus, whenever traffic for C arrives at either A or B, it will loop endlessly between A and B, unless some mechanism exists to prevent that behaviour. How a routing loop can form For example, in this illustration, node A is transmitting data to node C via node B. If the link between nodes B and C goes down and B has not yet informed node A about the breakage, node A transmits the data to node B assuming that the link A-B-C is operational and of lowest cost. Node B knows of the broken link and tries to reach node C via node A, thus sending the original data back to node A. Furthermore, node A receives the data that it originated back from node B and consults its routing table. Node A's routing table will say that it can reach node C via node B (because it still has not been informed of the break) thus sending its data Broken network back to node B creating an infinite loop.
    [Show full text]