Chapter 8 Dynamical Systems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Math 2374: Multivariable Calculus and Vector Analysis
Math 2374: Multivariable Calculus and Vector Analysis Part 25 Fall 2012 Extreme points Definition If f : U ⊂ Rn ! R is a scalar function, • a point x0 2 U is called a local minimum of f if there is a neighborhood V of x0 such that for all points x 2 V, f (x) ≥ f (x0), • a point x0 2 U is called a local maximum of f if there is a neighborhood V of x0 such that for all points x 2 V, f (x) ≤ f (x0), • a point x0 2 U is called a local, or relative, extremum of f if it is either a local minimum or a local maximum, • a point x0 2 U is called a critical point of f if either f is not differentiable at x0 or if rf (x0) = Df (x0) = 0, • a critical point that is not a local extremum is called a saddle point. First Derivative Test for Local Extremum Theorem If U ⊂ Rn is open, the function f : U ⊂ Rn ! R is differentiable, and x0 2 U is a local extremum, then Df (x0) = 0; that is, x0 is a critical point. Proof. Suppose that f achieves a local maximum at x0, then for all n h 2 R , the function g(t) = f (x0 + th) has a local maximum at t = 0. Thus from one-variable calculus g0(0) = 0. By chain rule 0 g (0) = [Df (x0)] h = 0 8h So Df (x0) = 0. Same proof for a local minimum. Examples Ex-1 Find the maxima and minima of the function f (x; y) = x2 + y 2. -
A Gentle Introduction to Dynamical Systems Theory for Researchers in Speech, Language, and Music
A Gentle Introduction to Dynamical Systems Theory for Researchers in Speech, Language, and Music. Talk given at PoRT workshop, Glasgow, July 2012 Fred Cummins, University College Dublin [1] Dynamical Systems Theory (DST) is the lingua franca of Physics (both Newtonian and modern), Biology, Chemistry, and many other sciences and non-sciences, such as Economics. To employ the tools of DST is to take an explanatory stance with respect to observed phenomena. DST is thus not just another tool in the box. Its use is a different way of doing science. DST is increasingly used in non-computational, non-representational, non-cognitivist approaches to understanding behavior (and perhaps brains). (Embodied, embedded, ecological, enactive theories within cognitive science.) [2] DST originates in the science of mechanics, developed by the (co-)inventor of the calculus: Isaac Newton. This revolutionary science gave us the seductive concept of the mechanism. Mechanics seeks to provide a deterministic account of the relation between the motions of massive bodies and the forces that act upon them. A dynamical system comprises • A state description that indexes the components at time t, and • A dynamic, which is a rule governing state change over time The choice of variables defines the state space. The dynamic associates an instantaneous rate of change with each point in the state space. Any specific instance of a dynamical system will trace out a single trajectory in state space. (This is often, misleadingly, called a solution to the underlying equations.) Description of a specific system therefore also requires specification of the initial conditions. In the domain of mechanics, where we seek to account for the motion of massive bodies, we know which variables to choose (position and velocity). -
A Stability Boundary Based Method for Finding Saddle Points on Potential Energy Surfaces
JOURNAL OF COMPUTATIONAL BIOLOGY Volume 13, Number 3, 2006 © Mary Ann Liebert, Inc. Pp. 745–766 A Stability Boundary Based Method for Finding Saddle Points on Potential Energy Surfaces CHANDAN K. REDDY and HSIAO-DONG CHIANG ABSTRACT The task of finding saddle points on potential energy surfaces plays a crucial role in under- standing the dynamics of a micromolecule as well as in studying the folding pathways of macromolecules like proteins. The problem of finding the saddle points on a high dimen- sional potential energy surface is transformed into the problem of finding decomposition points of its corresponding nonlinear dynamical system. This paper introduces a new method based on TRUST-TECH (TRansformation Under STability reTained Equilibria CHaracter- ization) to compute saddle points on potential energy surfaces using stability boundaries. Our method explores the dynamic and geometric characteristics of stability boundaries of a nonlinear dynamical system. A novel trajectory adjustment procedure is used to trace the stability boundary. Our method was successful in finding the saddle points on different potential energy surfaces of various dimensions. A simplified version of the algorithm has also been used to find the saddle points of symmetric systems with the help of some analyt- ical knowledge. The main advantages and effectiveness of the method are clearly illustrated with some examples. Promising results of our method are shown on various problems with varied degrees of freedom. Key words: potential energy surfaces, saddle points, stability boundary, minimum gradient point, computational chemistry. I. INTRODUCTION ecently, there has been a lot of interest across various disciplines to understand a wide Rvariety of problems related to bioinformatics. -
A Cell Dynamical System Model for Simulation of Continuum Dynamics of Turbulent Fluid Flows A
A Cell Dynamical System Model for Simulation of Continuum Dynamics of Turbulent Fluid Flows A. M. Selvam and S. Fadnavis Email: [email protected] Website: http://www.geocities.com/amselvam Trends in Continuum Physics, TRECOP ’98; Proceedings of the International Symposium on Trends in Continuum Physics, Poznan, Poland, August 17-20, 1998. Edited by Bogdan T. Maruszewski, Wolfgang Muschik, and Andrzej Radowicz. Singapore, World Scientific, 1999, 334(12). 1. INTRODUCTION Atmospheric flows exhibit long-range spatiotemporal correlations manifested as the fractal geometry to the global cloud cover pattern concomitant with inverse power-law form for power spectra of temporal fluctuations of all scales ranging from turbulence (millimeters-seconds) to climate (thousands of kilometers-years) (Tessier et. al., 1996) Long-range spatiotemporal correlations are ubiquitous to dynamical systems in nature and are identified as signatures of self-organized criticality (Bak et. al., 1988) Standard models for turbulent fluid flows in meteorological theory cannot explain satisfactorily the observed multifractal (space-time) structures in atmospheric flows. Numerical models for simulation and prediction of atmospheric flows are subject to deterministic chaos and give unrealistic solutions. Deterministic chaos is a direct consequence of round-off error growth in iterative computations. Round-off error of finite precision computations doubles on an average at each step of iterative computations (Mary Selvam, 1993). Round- off error will propagate to the mainstream computation and give unrealistic solutions in numerical weather prediction (NWP) and climate models which incorporate thousands of iterative computations in long-term numerical integration schemes. A recently developed non-deterministic cell dynamical system model for atmospheric flows (Mary Selvam, 1990; Mary Selvam et. -
Chapter 5. Flow Maps and Dynamical Systems
Chapter 5 Flow Maps and Dynamical Systems Main concepts: In this chapter we introduce the concepts of continuous and discrete dynamical systems on phase space. Keywords are: classical mechanics, phase space, vector field, linear systems, flow maps, dynamical systems Figure 5.1: A solar system is well modelled by classical mechanics. (source: Wikimedia Commons) In Chapter 1 we encountered a variety of ODEs in one or several variables. Only in a few cases could we write out the solution in a simple closed form. In most cases, the solutions will only be obtainable in some approximate sense, either from an asymptotic expansion or a numerical computation. Yet, as discussed in Chapter 3, many smooth systems of differential equations are known to have solutions, even globally defined ones, and so in principle we can suppose the existence of a trajectory through each point of phase space (or through “almost all” initial points). For such systems we will use the existence of such a solution to define a map called the flow map that takes points forward t units in time from their initial points. The concept of the flow map is very helpful in exploring the qualitative behavior of numerical methods, since it is often possible to think of numerical methods as approximations of the flow map and to evaluate methods by comparing the properties of the map associated to the numerical scheme to those of the flow map. 25 26 CHAPTER 5. FLOW MAPS AND DYNAMICAL SYSTEMS In this chapter we will address autonomous ODEs (recall 1.13) only: 0 d y = f(y), y, f ∈ R (5.1) 5.1 Classical mechanics In Chapter 1 we introduced models from population dynamics. -
Thermodynamic Properties of Coupled Map Lattices 1 Introduction
Thermodynamic properties of coupled map lattices J´erˆome Losson and Michael C. Mackey Abstract This chapter presents an overview of the literature which deals with appli- cations of models framed as coupled map lattices (CML’s), and some recent results on the spectral properties of the transfer operators induced by various deterministic and stochastic CML’s. These operators (one of which is the well- known Perron-Frobenius operator) govern the temporal evolution of ensemble statistics. As such, they lie at the heart of any thermodynamic description of CML’s, and they provide some interesting insight into the origins of nontrivial collective behavior in these models. 1 Introduction This chapter describes the statistical properties of networks of chaotic, interacting el- ements, whose evolution in time is discrete. Such systems can be profitably modeled by networks of coupled iterative maps, usually referred to as coupled map lattices (CML’s for short). The description of CML’s has been the subject of intense scrutiny in the past decade, and most (though by no means all) investigations have been pri- marily numerical rather than analytical. Investigators have often been concerned with the statistical properties of CML’s, because a deterministic description of the motion of all the individual elements of the lattice is either out of reach or uninteresting, un- less the behavior can somehow be described with a few degrees of freedom. However there is still no consistent framework, analogous to equilibrium statistical mechanics, within which one can describe the probabilistic properties of CML’s possessing a large but finite number of elements. -
3.2 Sources, Sinks, Saddles, and Spirals
3.2. Sources, Sinks, Saddles, and Spirals 161 3.2 Sources, Sinks, Saddles, and Spirals The pictures in this section show solutions to Ay00 By0 Cy 0. These are linear equations with constant coefficients A; B; and C .C The graphsC showD solutions y on the horizontal axis and their slopes y0 dy=dt on the vertical axis. These pairs .y.t/;y0.t// depend on time, but time is not inD the pictures. The paths show where the solution goes, but they don’t show when. Each specific solution starts at a particular point .y.0/;y0.0// given by the initial conditions. The point moves along its path as the time t moves forward from t 0. D We know that the solutions to Ay00 By0 Cy 0 depend on the two solutions to 2 C C D As Bs C 0 (an ordinary quadratic equation for s). When we find the roots s1 and C C D s2, we have found all possible solutions : s1t s2t s1t s2t y c1e c2e y c1s1e c2s2e (1) D C 0 D C The numbers s1 and s2 tell us which picture we are in. Then the numbers c1 and c2 tell us which path we are on. Since s1 and s2 determine the picture for each equation, it is essential to see the six possibilities. We write all six here in one place, to compare them. Later they will appear in six different places, one with each figure. The first three have real solutions s1 and s2. The last three have complex pairs s a i!. -
Writing the History of Dynamical Systems and Chaos
Historia Mathematica 29 (2002), 273–339 doi:10.1006/hmat.2002.2351 Writing the History of Dynamical Systems and Chaos: View metadata, citation and similar papersLongue at core.ac.uk Dur´ee and Revolution, Disciplines and Cultures1 brought to you by CORE provided by Elsevier - Publisher Connector David Aubin Max-Planck Institut fur¨ Wissenschaftsgeschichte, Berlin, Germany E-mail: [email protected] and Amy Dahan Dalmedico Centre national de la recherche scientifique and Centre Alexandre-Koyre,´ Paris, France E-mail: [email protected] Between the late 1960s and the beginning of the 1980s, the wide recognition that simple dynamical laws could give rise to complex behaviors was sometimes hailed as a true scientific revolution impacting several disciplines, for which a striking label was coined—“chaos.” Mathematicians quickly pointed out that the purported revolution was relying on the abstract theory of dynamical systems founded in the late 19th century by Henri Poincar´e who had already reached a similar conclusion. In this paper, we flesh out the historiographical tensions arising from these confrontations: longue-duree´ history and revolution; abstract mathematics and the use of mathematical techniques in various other domains. After reviewing the historiography of dynamical systems theory from Poincar´e to the 1960s, we highlight the pioneering work of a few individuals (Steve Smale, Edward Lorenz, David Ruelle). We then go on to discuss the nature of the chaos phenomenon, which, we argue, was a conceptual reconfiguration as -
Role of Nonlinear Dynamics and Chaos in Applied Sciences
v.;.;.:.:.:.;.;.^ ROLE OF NONLINEAR DYNAMICS AND CHAOS IN APPLIED SCIENCES by Quissan V. Lawande and Nirupam Maiti Theoretical Physics Oivisipn 2000 Please be aware that all of the Missing Pages in this document were originally blank pages BARC/2OOO/E/OO3 GOVERNMENT OF INDIA ATOMIC ENERGY COMMISSION ROLE OF NONLINEAR DYNAMICS AND CHAOS IN APPLIED SCIENCES by Quissan V. Lawande and Nirupam Maiti Theoretical Physics Division BHABHA ATOMIC RESEARCH CENTRE MUMBAI, INDIA 2000 BARC/2000/E/003 BIBLIOGRAPHIC DESCRIPTION SHEET FOR TECHNICAL REPORT (as per IS : 9400 - 1980) 01 Security classification: Unclassified • 02 Distribution: External 03 Report status: New 04 Series: BARC External • 05 Report type: Technical Report 06 Report No. : BARC/2000/E/003 07 Part No. or Volume No. : 08 Contract No.: 10 Title and subtitle: Role of nonlinear dynamics and chaos in applied sciences 11 Collation: 111 p., figs., ills. 13 Project No. : 20 Personal authors): Quissan V. Lawande; Nirupam Maiti 21 Affiliation ofauthor(s): Theoretical Physics Division, Bhabha Atomic Research Centre, Mumbai 22 Corporate authoifs): Bhabha Atomic Research Centre, Mumbai - 400 085 23 Originating unit : Theoretical Physics Division, BARC, Mumbai 24 Sponsors) Name: Department of Atomic Energy Type: Government Contd...(ii) -l- 30 Date of submission: January 2000 31 Publication/Issue date: February 2000 40 Publisher/Distributor: Head, Library and Information Services Division, Bhabha Atomic Research Centre, Mumbai 42 Form of distribution: Hard copy 50 Language of text: English 51 Language of summary: English 52 No. of references: 40 refs. 53 Gives data on: Abstract: Nonlinear dynamics manifests itself in a number of phenomena in both laboratory and day to day dealings. -
A Simple Scalar Coupled Map Lattice Model for Excitable Media
This is a repository copy of A simple scalar coupled map lattice model for excitable media. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/74667/ Monograph: Guo, Y., Zhao, Y., Coca, D. et al. (1 more author) (2010) A simple scalar coupled map lattice model for excitable media. Research Report. ACSE Research Report no. 1016 . Automatic Control and Systems Engineering, University of Sheffield Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ A Simple Scalar Coupled Map Lattice Model for Excitable Media Yuzhu Guo, Yifan Zhao, Daniel Coca, and S. A. Billings Research Report No. 1016 Department of Automatic Control and Systems Engineering The University of Sheffield Mappin Street, Sheffield, S1 3JD, UK 8 September 2010 A Simple Scalar Coupled Map Lattice Model for Excitable Media Yuzhu Guo, Yifan Zhao, Daniel Coca, and S.A. -
Lecture 8: Maxima and Minima
Maxima and minima Lecture 8: Maxima and Minima Rafikul Alam Department of Mathematics IIT Guwahati Rafikul Alam IITG: MA-102 (2013) Maxima and minima Local extremum of f : Rn ! R Let f : U ⊂ Rn ! R be continuous, where U is open. Then • f has a local maximum at p if there exists r > 0 such that f (x) ≤ f (p) for x 2 B(p; r): • f has a local minimum at a if there exists > 0 such that f (x) ≥ f (p) for x 2 B(p; ): A local maximum or a local minimum is called a local extremum. Rafikul Alam IITG: MA-102 (2013) Maxima and minima Figure: Local extremum of z = f (x; y) Rafikul Alam IITG: MA-102 (2013) Maxima and minima Necessary condition for extremum of Rn ! R Critical point: A point p 2 U is a critical point of f if rf (p) = 0: Thus, when f is differentiable, the tangent plane to z = f (x) at (p; f (p)) is horizontal. Theorem: Suppose that f has a local extremum at p and that rf (p) exists. Then p is a critical point of f , i.e, rf (p) = 0: 2 2 Example: Consider f (x; y) = x − y : Then fx = 2x = 0 and fy = −2y = 0 show that (0; 0) is the only critical point of f : But (0; 0) is not a local extremum of f : Rafikul Alam IITG: MA-102 (2013) Maxima and minima Saddle point Saddle point: A critical point of f that is not a local extremum is called a saddle point of f : Examples: 2 2 • The point (0; 0) is a saddle point of f (x; y) = x − y : 2 2 2 • Consider f (x; y) = x y + y x: Then fx = 2xy + y = 0 2 and fy = 2xy + x = 0 show that (0; 0) is the only critical point of f : But (0; 0) is a saddle point. -
Calculus and Differential Equations II
Calculus and Differential Equations II MATH 250 B Linear systems of differential equations Linear systems of differential equations Calculus and Differential Equations II Second order autonomous linear systems We are mostly interested with2 × 2 first order autonomous systems of the form x0 = a x + b y y 0 = c x + d y where x and y are functions of t and a, b, c, and d are real constants. Such a system may be re-written in matrix form as d x x a b = M ; M = : dt y y c d The purpose of this section is to classify the dynamics of the solutions of the above system, in terms of the properties of the matrix M. Linear systems of differential equations Calculus and Differential Equations II Existence and uniqueness (general statement) Consider a linear system of the form dY = M(t)Y + F (t); dt where Y and F (t) are n × 1 column vectors, and M(t) is an n × n matrix whose entries may depend on t. Existence and uniqueness theorem: If the entries of the matrix M(t) and of the vector F (t) are continuous on some open interval I containing t0, then the initial value problem dY = M(t)Y + F (t); Y (t ) = Y dt 0 0 has a unique solution on I . In particular, this means that trajectories in the phase space do not cross. Linear systems of differential equations Calculus and Differential Equations II General solution The general solution to Y 0 = M(t)Y + F (t) reads Y (t) = C1 Y1(t) + C2 Y2(t) + ··· + Cn Yn(t) + Yp(t); = U(t) C + Yp(t); where 0 Yp(t) is a particular solution to Y = M(t)Y + F (t).