Exoplanetary Atmospheres Analysis Through the Transit Spectroscopy Technique
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Astronomy 201 Review 2 Answers What Is Hydrostatic Equilibrium? How Does Hydrostatic Equilibrium Maintain the Su
Astronomy 201 Review 2 Answers What is hydrostatic equilibrium? How does hydrostatic equilibrium maintain the Sun©s stable size? Hydrostatic equilibrium, also known as gravitational equilibrium, describes a balance between gravity and pressure. Gravity works to contract while pressure works to expand. Hydrostatic equilibrium is the state where the force of gravity pulling inward is balanced by pressure pushing outward. In the core of the Sun, hydrogen is being fused into helium via nuclear fusion. This creates a large amount of energy flowing from the core which effectively creates an outward-pushing pressure. Gravity, on the other hand, is working to contract the Sun towards its center. The outward pressure of hot gas is balanced by the inward force of gravity, and not just in the core, but at every point within the Sun. What is the Sun composed of? Explain how the Sun formed from a cloud of gas. Why wasn©t the contracting cloud of gas in hydrostatic equilibrium until fusion began? The Sun is primarily composed of hydrogen (70%) and helium (28%) with the remaining mass in the form of heavier elements (2%). The Sun was formed from a collapsing cloud of interstellar gas. Gravity contracted the cloud of gas and in doing so the interior temperature of the cloud increased because the contraction converted gravitational potential energy into thermal energy (contraction leads to heating). The cloud of gas was not in hydrostatic equilibrium because although the contraction produced heat, it did not produce enough heat (pressure) to counter the gravitational collapse and the cloud continued to collapse. -
Exoplanet Community Report
JPL Publication 09‐3 Exoplanet Community Report Edited by: P. R. Lawson, W. A. Traub and S. C. Unwin National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, California March 2009 The work described in this publication was performed at a number of organizations, including the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). Publication was provided by the Jet Propulsion Laboratory. Compiling and publication support was provided by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government, or the Jet Propulsion Laboratory, California Institute of Technology. © 2009. All rights reserved. The exoplanet community’s top priority is that a line of probeclass missions for exoplanets be established, leading to a flagship mission at the earliest opportunity. iii Contents 1 EXECUTIVE SUMMARY.................................................................................................................. 1 1.1 INTRODUCTION...............................................................................................................................................1 1.2 EXOPLANET FORUM 2008: THE PROCESS OF CONSENSUS BEGINS.....................................................2 -
Arxiv:2007.01446V1 [Astro-Ph.EP] 3 Jul 2020 Disk
MNRAS 000,1{9 (2020) Preprint 6 July 2020 Compiled using MNRAS LATEX style file v3.0 Losing Oceans: The Effects of Composition on the Thermal Component of Impact-driven Atmospheric Loss John B. Biersteker1? and Hilke E. Schlichting1;2 1Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA 2UCLA, 595 Charles E. Young Drive East, Los Angeles, CA 90095, USA Accepted XXX. Received YYY; in original form ZZZ ABSTRACT The formation of the solar system's terrestrial planets concluded with a period of gi- ant impacts. Previous works examining the volatile loss caused by the impact shock in the moon-forming impact find atmospheric losses of at most 20{30 per cent and essentially no loss of oceans. However, giant impacts also result in thermal heating, which can lead to significant atmospheric escape via a Parker-type wind. Here we show that H2O and other high-mean molecular weight outgassed species can be effi- ciently lost through this thermal wind if present in a hydrogen-dominated atmosphere, substantially altering the final volatile inventory of terrestrial planets. Specifically, we demonstrate that a giant impact of a Mars-sized embryo with a proto-Earth can re- move several Earth oceans' worth of H2O, and other heavier volatile species, together with a primordial hydrogen-dominated atmosphere. These results may offer an expla- nation for the observed depletion in Earth's light noble gas budget and for its depleted xenon inventory, which suggest that Earth underwent significant atmospheric loss by the end of its accretion. Because planetary embryos are massive enough to accrete primordial hydrogen envelopes and because giant impacts are stochastic and occur concurrently with other early atmospheric evolutionary processes, our results suggest a wide diversity in terrestrial planet volatile budgets. -
Stars and Their Spectra: an Introduction to the Spectral Sequence Second Edition James B
Cambridge University Press 978-0-521-89954-3 - Stars and Their Spectra: An Introduction to the Spectral Sequence Second Edition James B. Kaler Index More information Star index Stars are arranged by the Latin genitive of their constellation of residence, with other star names interspersed alphabetically. Within a constellation, Bayer Greek letters are given first, followed by Roman letters, Flamsteed numbers, variable stars arranged in traditional order (see Section 1.11), and then other names that take on genitive form. Stellar spectra are indicated by an asterisk. The best-known proper names have priority over their Greek-letter names. Spectra of the Sun and of nebulae are included as well. Abell 21 nucleus, see a Aurigae, see Capella Abell 78 nucleus, 327* ε Aurigae, 178, 186 Achernar, 9, 243, 264, 274 z Aurigae, 177, 186 Acrux, see Alpha Crucis Z Aurigae, 186, 269* Adhara, see Epsilon Canis Majoris AB Aurigae, 255 Albireo, 26 Alcor, 26, 177, 241, 243, 272* Barnard’s Star, 129–130, 131 Aldebaran, 9, 27, 80*, 163, 165 Betelgeuse, 2, 9, 16, 18, 20, 73, 74*, 79, Algol, 20, 26, 176–177, 271*, 333, 366 80*, 88, 104–105, 106*, 110*, 113, Altair, 9, 236, 241, 250 115, 118, 122, 187, 216, 264 a Andromedae, 273, 273* image of, 114 b Andromedae, 164 BDþ284211, 285* g Andromedae, 26 Bl 253* u Andromedae A, 218* a Boo¨tis, see Arcturus u Andromedae B, 109* g Boo¨tis, 243 Z Andromedae, 337 Z Boo¨tis, 185 Antares, 10, 73, 104–105, 113, 115, 118, l Boo¨tis, 254, 280, 314 122, 174* s Boo¨tis, 218* 53 Aquarii A, 195 53 Aquarii B, 195 T Camelopardalis, -
Mètodes De Detecció I Anàlisi D'exoplanetes
MÈTODES DE DETECCIÓ I ANÀLISI D’EXOPLANETES Rubén Soussé Villa 2n de Batxillerat Tutora: Dolors Romero IES XXV Olimpíada 13/1/2011 Mètodes de detecció i anàlisi d’exoplanetes . Índex - Introducció ............................................................................................. 5 [ Marc Teòric ] 1. L’Univers ............................................................................................... 6 1.1 Les estrelles .................................................................................. 6 1.1.1 Vida de les estrelles .............................................................. 7 1.1.2 Classes espectrals .................................................................9 1.1.3 Magnitud ........................................................................... 9 1.2 Sistemes planetaris: El Sistema Solar .............................................. 10 1.2.1 Formació ......................................................................... 11 1.2.2 Planetes .......................................................................... 13 2. Planetes extrasolars ............................................................................ 19 2.1 Denominació .............................................................................. 19 2.2 Història dels exoplanetes .............................................................. 20 2.3 Mètodes per detectar-los i saber-ne les característiques ..................... 26 2.3.1 Oscil·lació Doppler ........................................................... 27 2.3.2 Trànsits -
HW9 (106 Points Possible)
Name: ______________________ Class: _________________ Date: _________ ID: A HW9 (106 points possible) True/False (2 points each) Indicate whether the statement is true or false. ____ 1. The atmosphere of Mars is mostly composed of carbon dioxide; therefore the greenhouse effect makes the average temperature 35 degrees warmer than it would be without its atmosphere. ____ 2. In the absence of a greenhouse effect, water on the surface of Earth would be frozen. ____ 3. Aurorae are produced only near the northern and southern magnetic poles of a planet because charged particles arriving in the solar wind cannot cross the magnetic field lines. ____ 4. Winds are generated on Earth primarily because the Sun unevenly heats our rotating planet. ____ 5. Venus’s atmospheric clouds are so thick that the surface of the planet is not seen when observing it in visible light. Multiple Choice (4 points each) Identify the choice that best completes the statement or answers the question. ____ 1. Which is NOT a reason that we suspect that the extinction of the dinosaurs was caused by a large impact by a large object? a. Many dinosaur fossils are found below the K-T boundary, but none above it. b. The material in the K-T boundary is rich in iridium. c. Soot is found in the material in the K-T boundary, which probably came from fires caused by the impact. d. An impact crater has been found near Mexico’s Yucatan Peninsula. e. The remaining meteorite has been identified on the bottom of the Gulf of Mexico. -
Paul Willard Merrill
NATIONAL ACADEMY OF SCIENCES P A U L W I L L A R D M ERRILL 1887—1961 A Biographical Memoir by OL I N C . W I L S O N Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 1964 NATIONAL ACADEMY OF SCIENCES WASHINGTON D.C. PAUL WILLARD MERRILL August i$, 1887—July ig, ig6i BY OLIN C. WILSON A STRONOMY, by its very nature, has always been pre-eminently an 1\- observational science. Progress in astronomy has come about in two ways: first, by the use of more and more powerful methods of observation and, second, by the application of improved physical theory in seeking to interpret the observations. Approximately one hundred years ago the pioneers in stellar spectroscopy began to lay the foundations of modern astrophysics by applying the spectroscope to the study of celestial bodies. Certainly during most of this period observation has led the way in the attack on the unknown. Even today, although theory has made enormous strides in the past thirty or forty years, observation continues to uncover phenomena which were unanticipated by the theorists and which are, in some instances, far from easy to account for. The chosen field of the subject of this memoir was stellar spectros- copy, and his active career spanned the second half of the period since work was begun in that branch of astronomy. To some extent his professional life formed a link between the early pioneering times, when theoretical explanation of the observed phenomena was virtually nonexistent, and the present day. -
Lecture 21: Venus
Lecture 21: Venus 1 Venus Terrestrial Planets Animation Venus •The orbit of Venus is almost circular, with eccentricity e = 0.0068 •The average Sun-Venus distance is 0.72 AU (108,491,000 km) •Like Mercury, Venus always appears close to the Sun in the sky Venus 0.72 AU 47o 1 AU Sun Earth 2 Venus •Venus is visible for no more than about three hours •The Earth rotates 360o in 24 hours, or o o 360 = 15 24 hr hr •Since the maximum elongation of Venus is 47o, the maximum time for the Sun to rise after Venus is 47o ∆ t = ≈ 3 hours 15o / hr Venus •The albedo of an object is the fraction of the incident light that is reflected Albedo = 0.1 for Mercury Albedo = 0.1 for Moon Albedo = 0.4 for Earth Albedo = 0.7 for Venus •Venus is the third brightest object in the sky (Sun, Moon, Venus) •It is very bright because it is Close to the Sun Fairly large (about Earth size) Highly reflective (large albedo) Venus •Where in its orbit does Venus appears brightest as viewed from Earth? •There are two competing effects: Venus appears larger when closer The phase of Venus changes along its orbit •Maximum brightness occurs at elongation angle 39o 3 Venus •Since Venus is closer to the Sun than the Earth is, it’s apparent motion can be retrograde •Transits occur when Venus passes in front of the solar disk as viewed from Earth •This happens about once every 100 years (next one is in 2004) Venus (2 hour increments) Orbit of Venus •The semi-major axis of the orbit of Venus is a = 0.72 AU Venus Sun a •Kepler’s third law relates the semi-major axis to the orbital period -
Exoplanet Secondary Atmosphere Loss and Revival 2 3 Edwin S
1 Exoplanet secondary atmosphere loss and revival 2 3 Edwin S. Kite1 & Megan Barnett1 4 1. University of Chicago, Chicago, IL ([email protected]). 5 6 Abstract. 7 8 The next step on the path toward another Earth is to find atmospheres similar to those of 9 Earth and Venus – high-molecular-weight (secondary) atmospheres – on rocky exoplanets. 10 Many rocky exoplanets are born with thick (> 10 kbar) H2-dominated atmospheres but 11 subsequently lose their H2; this process has no known Solar System analog. We study the 12 consequences of early loss of a thick H2 atmosphere for subsequent occurrence of a high- 13 molecular-weight atmosphere using a simple model of atmosphere evolution (including 14 atmosphere loss to space, magma ocean crystallization, and volcanic outgassing). We also 15 calculate atmosphere survival for rocky worlds that start with no H2. Our results imply that 16 most rocky exoplanets interior to the Habitable Zone that were formed with thick H2- 17 dominated atmospheres lack high-molecular-weight atmospheres today. During early 18 magma ocean crystallization, high-molecular-weight species usually do not form long-lived 19 high-molecular-weight atmospheres; instead they are lost to space alongside H2. This early 20 volatile depletion makes it more difficult for later volcanic outgassing to revive the 21 atmosphere. The transition from primary to secondary atmospheres on exoplanets is 22 difficult, especially on planets orbiting M-stars. However, atmospheres should persist on 23 worlds that start with abundant volatiles (waterworlds). Our results imply that in order to 24 find high-molecular-weight atmospheres on warm exoplanets orbiting M-stars, we should 25 target worlds that formed H2-poor, that have anomalously large radii, or which orbit less 26 active stars. -
Arxiv:1204.4363V1 [Astro-Ph.IM] 19 Apr 2012
Noname manuscript No. (will be inserted by the editor) Imaging the heart of astrophysical objects with optical long-baseline interferometry J.-P. Berger1;2 · F. Malbet1 · F. Baron3;4 · A. Chiavassa5;19 · G. Duvert1;6 · M. Elitzur7 · B. Freytag8 · F. Gueth9 · S. Honig¨ 10;11 · J. Hron12 · H. Jang-Condell13 · J.-B. Le Bouquin2;1 · J.-L. Monin1 · J.D. Monnier3 · G. Perrin14 · B. Plez15 · T. Ratzka16 · S. Renard1 · S. Stefl2 · E. Thiebaut´ 8 · K. Tristram10 · T. Verhoelst17 · S. Wolf18 · J. Young4 Received: date / Accepted: date Abstract The number of publications of aperture-synthesis images based on optical long- baseline interferometry measurements has recently increased due to easier access to visi- ble and infrared interferometers. The interferometry technique has now reached a technical maturity level that opens new avenues for numerous astrophysical topics requiring milli- arcsecond model-independent imaging. In writing this paper our motivation was twofold: 1) review and publicize emblematic excerpts of the impressive corpus accumulated in the field of optical interferometry image reconstruction; 2) discuss future prospects for this technique by selecting four representative astrophysical science cases in order to review the potential benefits of using optical long baseline interferometers. For this second goal we have simulated interferometric data from those selected astro- physical environments and used state-of-the-art codes to provide the reconstructed images that are reachable with current or soon-to-be facilities. The image reconstruction process was “blind” in the sense that reconstructors had no knowledge of the input brightness distri- butions. We discuss the impact of optical interferometry in those four astrophysical fields. -
Variable Star Section Circular 179 (Des Loughney, March 2019) Discussed the LY Aurigae System and Suggested Making Observations of It
` ISSN 2631-4843 The British Astronomical Association Variable Star Section Circular No. 180 June 2019 Office: Burlington House, Piccadilly, London W1J 0DU Contents From the Director 3 Spectroscopy training workshop – Andy Wilson 4 CV & E News – Gary Poyner 5 BAAVSS campaign to observe the old Nova HR Lyr – Jeremy Shears 6 Narrow Range Variables, made for digital observation – Geoff Chaplin 9 AB Aurigae – John Toone 10 The Symbiotic Star AG Draconis – David Boyd 13 V Bootis revisited – John Greaves 16 OJ287: Astronomers asking if Black Holes need wigs – Mark Kidger 19 The Variable Star Observations of Alphonso King – Alex Pratt 25 Eclipsing Binary News – Des Loughney 26 LY Aurigae – David Connor 29 Section Publications 31 Contributing to the VSSC 31 Section Officers 32 Cover Picture M88 and AL Com in outburst: Nick James Chelmsford, Essex UK 2019 Apr 29.896UT 90mm, f4.8 with ASI294 MC Exposure 20x120s 2 Back to contents From the Director Roger Pickard And so, with this issue I bid you farewell as Section Director, as advised in the previous Circular. However, as agreed with Jeremy and the other officers, I shall retain the title of Assistant Director, principally to help with charts and old data input. However, I shall still be happy to receive emails from members who I have corresponded with in the past, especially those I've helped under the Mentoring Scheme. SUMMER MIRAS But a note on data submission. Some of you have been sending your "current" observations to the Pulsating Stars M = Max, m = min. Secretary, Shaun Albrighton, but you should be sending them to the Section Secretary, Bob Dryden. -
X-Ray Emission Processes in Stars
X-ray emission processes in stars Paola Testa ∗ ∗Smithsonian Astrophysical Observatory, MS-58, 60 Garden st, Cambridge, MA 02138, USA Submitted to Proceedings of the National Academy of Sciences of the United States of America A decade of X-ray stellar observations with Chandra and XMM- nostics, and, for the first time in the X-ray range, diagnostics Newton has led to significant advances in our understanding of the of density and optical depth. physical processes at work in hot (magnetized) plasmas in stars and In the following I will attempt to provide an overview of their immediate environment, providing new perspectives and chal- our current understanding of the X-ray emission mechanisms lenges, and in turn the need for improved models. The wealth of in massive stars, of the progress in our knowledge of the X- high-quality stellar spectra has allowed us to investigate, in detail, the characteristics of the X-ray emission across the HR diagram. ray activity in solar-like stars, and of selected aspects of the Progress has been made in addressing issues ranging from classical X-ray physics of stars in their early evolution stages in pre- stellar activity in stars with solar-like dynamos (such as flares, ac- main sequence. In fact, X-ray stellar studies during this past tivity cycles, spatial and thermal structuring of the X-ray emitting decade have undergone a shift of focus toward the early phases plasma, evolution of X-ray activity with age), to X-ray generating of stellar evolution, and the study of the interplay between processes (e.g.