The Availability of Relatively Copious Sources of Antiprotons Has

Total Page:16

File Type:pdf, Size:1020Kb

The Availability of Relatively Copious Sources of Antiprotons Has EXOTIC ATOMS Experiment boosts the idea of a nuclear halo The availability of relatively copious sources of antiprotons has stimulated the study of "exotic" atoms, in which a negatively charged antiproton replaces an orbital atomic electron. When they approach the nucleus these antiprotons feel the nuclear force and can be used to probe nuclear forces and structure. A new result from CERN underlines the existence of an outer nuclear "halo" composed mainly of neutrons. Fig. 1: The more neutrons, the more they tend to live on the nuclear periphery. Left: results from an experiment at CERN's low- energy antiproton ring (LEAR) show that the difference between the radii of nuclear neutron and proton distributions (vertical axis) increases with the bulk neutron excess of the nucleus (horizontal axis). Right: nuclei contain protons (shown in blue) and neutrons (shown in brown). An antiproton grazing the nuclear surface readily annihilates with a subnuclear particle. The results of these annihilations reflect the relative proton-neutron composition of the nuclear periphery. Our everyday world is made up of atoms in which protons and other, heavier particles that pass very close to the nucleus, physi- neutrons are packed together by the strong nuclear force into a tiny cists are able to get a close look at the centre of the atom in the core of positive electric charge, surrounded by a sparse cloud of same way that space probes, such as the SOHO satellite, see a very "orbiting" electrons, these carrying an equal and opposite negative different picture when approaching the Sun's surface, electric charge. Being electrically charged, protons can be mapped by probing The electron orbits are hundreds or thousands of times larger than the nucleus with charged particle beams, like electrons. Neutrons the nucleus. Seen from an orbiting electron, the central nucleus are more difficult to map, especially at the outer, less dense edges looks far away and rather structureless, in the same way that the of the nucleus. Over the years, experiments using a variety of Sun appears to us as a distant homogeneous sphere. techniques have suggested the existence of a neutron "halo" - a By making artificial atoms in which electrons are replaced by sort of uniform nuclear stratosphere, relatively isolated from the 20 CERN Courier November 2001 EXOTIC ATOMS "weather" at the centre of tron and proton densities the nucleus. An experiment at the outermost layer of at CERN has given fresh the nucleus. support to this idea. This was done for 19 Many of the particles medium and heavy nuclei, commonly produced by from calcium to uranium. high-energy beams can The results reveal that the carry negative charge. outer nuclear density ex­ Examples are the muon, tends much further than the pion, the kaon, hyper- the effective charge radius ons and the antiproton. of the nucleus, showing Normally these particles that neutrons populate the travel so fast that they tear nuclear periphery. Also, the past target atoms, ripping more neutrons in a parti­ out electrons in their wake. cular isotope, the more they However, as the particles • tend to settle near the lose energy and slow surface. down, they can eventually In the second approach, reach a point where they physicists look at the knock out an electron for Fig. 2: the neutrons tend to populate an outer nuclear "halo" (right), the detailed spectroscopy of the last time and become neutron density of which increases with distance from the nuclear centre, the antiprotonic atoms. In captured by the electric rather than a nuclear "skin" (left) with a constant thickness. these atoms the intruder field of the neighbouring antiprotons have definite nucleus, thus forming an "exotic" atom. energy levels, analogous to those of the electrons in ordinary atoms. In such an atom the intruder orbital particle is much heavier than When the atoms are nudged, orbital particles, whether electrons or the electron that it has replaced, so its orbit is consequently smaller. antiprotons, can shift from one energy level to another, emitting or A muon, for example, is 200 times as heavy as an electron and is absorbing quanta of radiation. While for the electrons of ordinary able to pass correspondingly closer to the nucleus. However, a atoms these are usually quanta of visible light, for the more compact muon, like an electron, does not feel the strong nuclear force, even antiprotonic atoms the quanta are in the X-ray region. at very close distances. For atomic electrons, the Pauli Exclusion Principle restricts the Strongly-interacting particles such as the pion, the kaon, hyperons atomic seating accommodation. However, single antiprotons see no and the antiproton do feel the strong force of the nucleus. In addi­ such competitor particles and can sit in whatever available energy tion, the strongly interacting particles are heavier still (an antiproton level they like. being 2000 times heavier than an electron) so that they can get The energies (wavelengths) of these spectral lines can be very close to an atomic nucleus. Exotic atoms are therefore a good calculated from atomic quantum mechanics that take into account laboratory for studying the periphery of the nucleus. the electromagnetic attraction between the nucleus and the orbital particle.The antiproton, as it passes by the nucleus, is also affected Nuclear tools by the nuclear force. This can both shift and blur the X-ray signal. The availability of copious sources of antiprotons at the antiproton These deviations from the purely electromagnetic predictions give factories at CERN and Fermilab from the 1980s has opened a new an indication of nuclear effects. In the LEAR experiment, physicists chapter in antiproton physics, and the study of antiprotonic atoms is measured these for 34 different nuclear targets, ranging from one of the beneficiaries. oxygen-16 to uranium-238. One of the experiments at CERN's LEAR low-energy antiproton The key parameter in each case is the difference between neutron ring, by a CERN/Munich/Warsaw collaboration, set out to look at and proton populations at large radii. The two different approaches the neutron-proton distributions in a range of nuclei. LEAR was are in broad agreement, showing that the more neutrons there are, closed in 1996 but the results of the difficult experiment have now the more they tend to live on the nuclear periphery (figure l).The been published. neutrons also tend to populate an outer nuclear halo, the neutron Several techniques could be used. In one approach, the physi­ excess of which increases with distance from the nuclear centre, cists waited for the orbital antiprotons to be swallowed up by the rather than a nuclear skin with a constant neutron excess (figure 2). nuclei. The antiproton then annihilated with a nuclear particle, Another antiproton experiment at CERN (CERN Courier October forming a nucleus one mass lighter than the parent. The appear­ p35) uses antiprotonic atoms as a precision laboratory for meas­ ance of such a nucleus signalled the disappearance of an antipro­ urements of the antiproton itself. • ton.The daughter nuclei could be analysed radiochemical^ and the resultant nuclear yields, which depend on whether the antiproton Reference was annihilated with a proton or with a neutron, measure the neu­ ATrzcinska et al, 2001 Phs Rev Lett 87 082501-1. CERN Courier November 2001 21 .
Recommended publications
  • KAONIC and OTHER EXOTIC ATOMS 243 Atoms Got Underway in Earnest with the Invention and Application of Semiconductor Detectors
    Copyright 1975. All rights reserved KAONIC AND OTHER :.:5562 EXOTIC ATOMS Ryoichi Seki California State University, Northridge, California 91324 Clyde E. Wiegand Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720 CONTENTS 1 INTRODUCTION................................................ 241 2 BASIC CHARACTERISTICS OF EXOTIC ATOMS. .. 245 3 EXPERIMENTAL FINDINGS. .. 248 3.1 X-Ray Intensities.. .. .. .. .. .. .. .. .. .. .. 248 248 3.1.1 Kaonic.atoms....................................... .. 3.1.2 Sigmonic atoms.. 250 . .. 3.1.3 Antiprotonic atoms. 250 . .. 3.2 Level Shifts and Widths. 250 . .. 256 3.3 Particle Properties Derivedfrom Exotic Atoms. 3.3.1 Mass.. 257 . .. 258 3.3.2 Magnetic moment.. 259 3.3.3 Polarizability....................................... .. 3.4 Atomic Phenomena Directly Related to Nuclear Properties. 260 '. .. 260 3.4.1 Nuclear quadrupole moment..... ............... .. 260 3.4.2 Dynamical quadrupole (E2) mixing. .. 261 3.5 Products from Nuclear Absorption of K-, �-, and p. 3. 5. 1 Particles observed in nuclear emulsions and bubble chambers.. 261 . 264 3.5.2 Nuclear y rays.. 4 THEORETICAL UNDERSTANDING. .. .. .. .. .. .. .. .. .. 265 . 4.1 Atomic Capture and Cascade.. 266 Annu. Rev. Nucl. Sci. 1975.25:241-281. Downloaded from www.annualreviews.org Atomic capture.. 266 Access provided by Pennsylvania State University on 02/13/15. For personal use only. 4.1.1 .. .. .. .. .. 267 4.1.2 Atomic cascade.. 268 4.2 Strong Interactions with Nuclei.. 269 4.2.1 K --nucleus optical potential.. - . 4.2.2 p- and � -nucleus optical potential. 276 27 4.3 Two- and One-Nucleon Absorption Products. .. .. .. .. .. .. .. 7 . .. 278 5 CONCLUDING REMARKS. 1 INTRODUCTION In this article we attempt to tell what is known about kaonie, sigmonic, and anti protonic atoms.
    [Show full text]
  • Exotic Atom Production with Upcs Joint EF07 and EF06 Discussion
    Exotic atom production with UPCs Joint EF07 and EF06 discussion: UPC physics with ion beams Tuesday Oct 13, 2020 C.A. Bertulani Texas A&M University-Commerce Gerhard Baur Mark Ellermann Fernando Navarra 1 Pair Production with Atomic Capture Bertulani, Baur, Phys. Rep. 163, 299 (1988) Brazilian J. Phys. 18, 559 (1988) '" = + = → (= + '0) + = + '" Ingredients: 1. Perturbation theory 2. Sommerfeld-Maue wavefunction (e+) 2%& ./( 6 " 012+34 Ψ" = ()* ' 1 + 8 3 9 : 2", 4 < ' + − 1 27" =? &" = v" 3. Bound state wavefunction (e-) ./( =>? @ 6 4 Ψ = 1 + =? 8 3 '0 BCD E F 0 % 2 A 2 Pair Production with Capture 33$ '( ) 1 !~ , ,./0 ln 4 − 2.051 10 *+ - − 1 Baur, Bertulani, NPA 505, 835 (1989) Luminosity: 8 = 8: exp −>? LHC, Pb+Pb à >~ 2 hours EF Mainly K-shell capture, with ~ 20% capture in higher atomic orbitals. Antihydrogen production: Baur, PLB 311, 343 (1993) Munger, Brodsky, Schmidt, PRD 49, 3228 (1994) 3 1996 Baur et al, PLB 368, 251 (1996) 4 First Production of AntiHydrogen Baur et al., PLB 368, 251 (1996) Fermilab 1998: Blanford et al, PRL 80, 3037 (1998) 11 events as predicted Bertulani, Baur, PRD 58, 034005 (1998) 5 Antihydrogen • $96 trillion dollars per gram of antihydrogen (most expensive material to produce) • CERN Antiproton Decelerator (AD) + atom trap • ALPHA experiment CERN: 1S ßà 2S transition à H same as H! within 200 ppt Moretti et al., Nature 419, 456 (2002) à no CPT violation à no “source” for baryon asymmetry • Hbar and anti-gravity: Amole et al., Nature Com. 4, 1785 (2013) à ± ($! gravitational)/($! inertial) mass < 75 à not conclusive • No antideuterium, antitritium, or antihelium atoms have ever been produced.
    [Show full text]
  • Arxiv:2104.06076V2 [Nucl-Ex] 19 Apr 2021 Related to This field
    Fundamental physics at the strangeness frontier at DAΦNE. Outline of a proposal for future measurements. C. Curceanu, C. Guaraldo, A. Scordo, D. Sirghi, Laboratori Nazionali di Frascati INFN, Via E. Fermi 54, Frascati, Italy K. Piscicchia Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome, Italy C. Amsler, J. Zmeskal Stefan Meyer Institute of the Austrian Academy of Sciences (SMI), Wien, Austria D. Bosnar Department of Physics, Faculty of Science, University of Zagreb, Zagreb, Croatia S. Eidelman Budker Institute of Nuclear Physics (SB RAS), Novosibirsk and Lebedev Physical Institute (RAS), Moscow, Russia H. Ohnishi, Y. Sada Research Center for Electron Photon Science, Tohoku University, Sendai, Japan The DAΦNE collider at INFN-LNF is a unique source of low-energy kaons, which was used by the DEAR, SIDDHARTA and AMADEUS collaborations for unique measurements of kaonic atoms and kaon-nuclei interactions. Presently, the SIDDHARTA-2 collaboration is underway to measure the kaonic deuterium exotic atom. With this document we outline a proposal for fundamental physics at the strangeness frontier for future measurements of kaonic atoms and kaon-nuclei interactions at DAΦNE, which is intended to stimulate discussions within the broad scientific community performing research directly or indirectly arXiv:2104.06076v2 [nucl-ex] 19 Apr 2021 related to this field. PACS numbers: 13.75.Jz, 36.10.-k, 36.10.Gv, 14.40.-n, 25.80.Nv, 29.30.-h, 29.90.+r, 87.64.Gb, 07.85.Fv, 29.40.-n, 29.40.Gx, 29.40.Wk 1. Introduction The DAΦNE collider at INFN-LNF1,2 is a unique source of strangeness (kaons) in the world: it delivers low-momentum (< 140 MeV/c) nearly monochromatic charged kaons, generated by the decay of the φ resonance formed in electron-positron annihilation.
    [Show full text]
  • “Unmatter,” As a New Form of Matter, and Its Related “Un-Particle,” “Un-Atom,” “Un-Molecule”
    “Unmatter,” as a new form of matter, and its related “un-particle,” “un-atom,” “un-molecule” Florentin Smarandache has introduced the notion of “unmatter” and related concepts such as “unparticle,” “unatom,” “unmolecule” in a manuscript from 1980 according to the CERN web site, and he uploaded articles about unmatter starting with year 2004 to the CERN site and published them in various journals in 2004, 2005, 2006. In short, unmatter is formed by matter and antimatter that bind together. The building blocks (most elementary particles known today) are 6 quarks and 6 leptons; their 12 antiparticles also exist. Then unmatter will be formed by at least a building block and at least an antibuilding block which can bind together. Keywords: unmatter, unparticle, unatom, unmolecule Abstract. As shown, experiments registered unmatter: a new kind of matter whose atoms include both nucleons and anti-nucleons, while their life span was very short, no more than 10-20 sec. Stable states of unmatter can be built on quarks and anti-quarks: applying the unmatter principle here it is obtained a quantum chromodynamics formula that gives many combinations of unmatter built on quarks and anti-quarks. In the last time, before the apparition of my articles defining “matter, antimatter, and unmatter”, and Dr. S. Chubb’s pertinent comment on unmatter, new development has been made to the unmatter topic in the sense that experiments verifying unmatter have been found.. 1. Definition of Unmatter. In short, unmatter is formed by matter and antimatter that bind together. The building blocks (most elementary particles known today) are 6 quarks and 6 leptons; their 12 antiparticles also exist.
    [Show full text]
  • Exotic Atoms Paul Indelicato
    Exotic atoms Paul Indelicato To cite this version: Paul Indelicato. Exotic atoms. Physica Scripta, IOP Publishing, 2004, T112, pp.20-26. hal-00002825 HAL Id: hal-00002825 https://hal.archives-ouvertes.fr/hal-00002825 Submitted on 11 Sep 2004 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Exotic atoms Paul Indelicato1,∗, 1 Laboratoire Kastler-Brossel, Ecole´ Normale Sup´erieure et Universit´eP. et M. Curie, Case 74, 4 place Jussieu, F-75252, Cedex 05, France Abstract In this paper I review a number of recent results in the field of exotic atoms. Recent experiments or ongoing experiments with muonic, pionic and antiprotonic hydrogen, as well as recent measurement of the pion mass are described. These experiments provide information about nucleon-pion or nucleon- antinucleon interaction as well as information on the proton structure (charge or magnetic moment distribution). PACS numbers: 06.20.Fn, 32.30.Rj, 36.10.-k, 07.85.Nc ccsd-00002825, version 1 - 12 Sep 2004 ∗Email address: [email protected] 1 1 Introduction Exotic atoms are atoms that have captured a long-lived, heavy particle. This particle can be a lepton, sensitive only to the electromagnetic and weak interactions, like the electron or the muon, or a meson like the pion, or a baryon like the antiproton.
    [Show full text]
  • The Nuclear Physics of Muon Capture
    Physics Reports 354 (2001) 243–409 The nuclear physics of muon capture D.F. Measday ∗ University of British Columbia, 6224 Agricultural Rd., Vancouver, BC, Canada V6T 1Z1 Received December 2000; editor: G:E: Brown Contents 4.8. Charged particles 330 4.9. Fission 335 1. Introduction 245 5. -ray studies 343 1.1. Prologue 245 5.1. Introduction 343 1.2. General introduction 245 5.2. Silicon-28 350 1.3. Previous reviews 247 5.3. Lithium, beryllium and boron 360 2. Fundamental concepts 248 5.4. Carbon, nitrogen and oxygen 363 2.1. Properties of the muon and neutrino 248 5.5. Fluorine and neon 372 2.2. Weak interactions 253 5.6. Sodium, magnesium, aluminium, 372 3. Muonic atom 264 phosphorus 3.1. Atomic capture 264 5.7. Sulphur, chlorine, and potassium 377 3.2. Muonic cascade 269 5.8. Calcium 379 3.3. Hyperÿne transition 275 5.9. Heavy elements 383 4. Muon capture in nuclei 281 6. Other topics 387 4.1. Hydrogen 282 6.1. Radiative muon capture 387 4.2. Deuterium and tritium 284 6.2. Summary of g determinations 391 4.3. Helium-3 290 P 6.3. The (; e±) reaction 393 4.4. Helium-4 294 7. Summary 395 4.5. Total capture rate 294 Acknowledgements 396 4.6. General features in nuclei 300 References 397 4.7. Neutron production 311 ∗ Tel.: +1-604-822-5098; fax: +1-604-822-5098. E-mail address: [email protected] (D.F. Measday). 0370-1573/01/$ - see front matter c 2001 Published by Elsevier Science B.V.
    [Show full text]
  • Experiments on Exotic Atom Spectroscopy
    Exp eriments on exotic atom sp ectroscopy D Gotta Institut fur Kernphysik Forschungszentrum Julic h D Julic h Germany Abstract Results are reviewed from recent exotic atom exp eriments using a fo cussing Bragg sp ectrometer The measured energies of the L Xrays from antiprotonic hydrogen and deuterium and the K transition from pionic deuterium are compared to the transition ener gies as calculated from quantum electro dynamics in order to determine the strong interaction antiprotonnucleon and pionnucleon scattering parameters at threshold A high precision exp eriment to determine the mass of the charged pion to ppm has b een started by investigat ing the transitions in pionic nitrogen where the o ccurance of Coulomb explosion has b een seen now directly from the Doppler broadening In a forthcoming high precision exp eriment of the pionnucleon scatter ing length new calibration metho ds using an ECR source will b e used to connect energy standards b oth from exotic and electronic atoms Such techniques oer the p ossibility of high precision studies in few electron systems Intro duction Atoms in which the electron shell is replaced partly or in total by other elementary particles of negative charge are called exotic atoms Up to now the systems with muons pions kaons antiprotons and sigma hyp erons have b een established Muonic and pionic atoms are b eing investigated since years at the meson factories of the PaulScherrerInstitut PSI TRI UMF or earlier at LAMPF At CERN in the years until the LowEnergyAntiprotonRing LEAR provided highquality
    [Show full text]
  • Structure and Dynamics of Highly Charged Ions and Pionic Atoms Martino Trassinelli
    Structure and dynamics of highly charged ions and pionic atoms Martino Trassinelli To cite this version: Martino Trassinelli. Structure and dynamics of highly charged ions and pionic atoms. Atomic Physics [physics.atom-ph]. Univesité Pierre et Marie Curie, Sorbonne Universités, 2017. tel-01674426v2 HAL Id: tel-01674426 https://tel.archives-ouvertes.fr/tel-01674426v2 Submitted on 15 Jan 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Universit´ePierre et Marie Curie, Sorbonne Universit´es,Paris, France Habilitation `adiriger des recherches pr´esent´eepar Martino Trassinelli Charg´ede recherche CNRS (INP) Structure and dynamics of highly charged ions and pionic atoms Soutenue le 15 septembre 2017 devant le jury compos´ede : Jean-Michel RAIMOND Professeur (LKB, UPMC, Paris) Pr´esident Fr´edrich AUMAYR Professeur (IAP, Vienne) Rapporteur Jos´eR. CRESPO LOPEZ-URRUTIA´ Professeur (MPI, Heidelberg) Rapporteur Xavier FLECHARD´ Chercheur (CR1 avec HDR) (LPC, Caen) Rapporteur Eva LINDROTH Professeure (Univ. de Stockholm) Examinatrice Preface In this manuscript I present some of my research activities conducted during the past ten years starting from my hiring as researcher at the Centre National de la Recherche Scientifique (CNRS, National Center for Scientific Research) at the Institut des NanoSciences de Paris (INSP, Institute of NanoSciences of Paris).
    [Show full text]
  • Exotic Atoms Are Atoms That Have Captured a Long-Lived, Heavy Particle
    Exotic atoms Paul Indelicato1,∗, 1 Laboratoire Kastler-Brossel, Ecole´ Normale Sup´erieure et Universit´eP. et M. Curie, Case 74, 4 place Jussieu, F-75252, Cedex 05, France Abstract In this paper I review a number of recent results in the field of exotic atoms. Recent experiments or ongoing experiments with muonic, pionic and antiprotonic hydrogen, as well as recent measurement of the pion mass are described. These experiments provide information about nucleon-pion or nucleon- antinucleon interaction as well as information on the proton structure (charge or magnetic moment distribution). PACS numbers: 06.20.Fn, 32.30.Rj, 36.10.-k, 07.85.Nc arXiv:physics/0409058v1 [physics.atom-ph] 12 Sep 2004 ∗Email address: [email protected] 1 1 Introduction Exotic atoms are atoms that have captured a long-lived, heavy particle. This particle can be a lepton, sensitive only to the electromagnetic and weak interactions, like the electron or the muon, or a meson like the pion, or a baryon like the antiproton. An other kind of exotic atom is the one in which the nucleus has been replaced by a positron (positronium, an e+e− bound system) or a positively charged muon (muonium, a µ+e− bound system). Positronium and muonium are pure quantum electrodynamics (QED) systems as they are made of elementary, point-like Dirac particles insensitive to the strong interaction. The annihilation of positronium has been a benchmark of bound-state QED (BSQED) for many years. For a long time there has been an outstanding discrepancy between the calculated (see, e.g., [1] for a recent review) and measured lifetime of ortho-positronium in vacuum, that has been resolved recently [2].
    [Show full text]
  • Exploring the Nature of the Universe
    EXPLORING THE NATURE OF THE UNIVERSE CERN explores the fundamental structure of the universe by operating a sophisticated complex of accelerators that collide beams of particles or direct them onto fixed targets. The results of these collisions are recorded by giant detectors and analysed by thousands of scientists at CERN and beyond. CERN’S ACCELERATOR COMPLEX AND THE productive year for CERN. In addition to the completion of EXPERIMENTS THAT IT FEEDS the process leading to the update of the European Strategy for Particle Physics (see p. 47), 2020 saw many remarkable physics results based on the analysis of data taken The Large Hadron Collider (LHC) is CERN’s flagship before the shutdown by both the LHC and the non-LHC machine. It collides proton beams at the highest energies experiments. The results include the first indications that the ever created, and the results of these collisions are recorded Higgs boson interacts with second-generation particles, the by seven experiments – ALICE, ATLAS, CMS, LHCb, LHCf, observation of a new form of matter–antimatter asymmetry MoEDAL and TOTEM – and soon also by FASER, the newest in strange-beauty particles, and the demonstration of a LHC experiment. The year 2020 was the second year of technique to reveal the dynamics of the strong interaction the Laboratory’s ongoing long shutdown, during which between composite particles called hadrons. It was also a the accelerator complex and experiments are undergoing special year because 30 March 2020 marked ten years of intensive maintenance and upgrade work. However, despite the LHC physics programme, which has seen almost 3000 the shutdown and the COVID-19 pandemic, 2020 was a very scientific papers published by the LHC experiments.
    [Show full text]
  • Exotic Atoms, K-Nucleus Scattering and Hypernuclei
    4. 000-3244-84 EXOTIC ATOMS, K-NUCLEUS SCATTERING AND HYPERNUCLEI . ^ - - 0 - Peter D. Barnes Department of Physics, Camegie-Mel Ion Univer Pittsburgh, Pennsylvania Abstract: Recent progress in exotic atom physics, kaon-nucleus scattering, and hypemuciear physics is reviewed. Specific problems discussed include searches for muon-nucleon interactions beyond Q£D, a comparison of data and recent calculations of K4 + l2C elastic and inelastic scattering, as well as recent studies^of I and A hypemuclei including new data on the level structure of l^CA . 1. Introduction The physical phenomenon discussed in this session consist of exotic atomic and nuclear systems containing bound hadrons and muons as well as the unbound kaon nucleus scattering problem. These topics are both old and new. Whereas exotic atom systems have been discussed for some thirty years, evidence fo^ I hypernudlei, first seen at CERN and now confirmed at BNL, have only become available in the last three years. In this short introductory talk it will not be possible to comment on all the recent developments in these areas. I choose to discuss therefore some selected problems in each of the three areas: a) exotic atom?, b) kaoti nucleus scattering and c) lambda and sigma hypernuclei. 2. Exotic Atoms In this section we consider both mesonic and hadronic atoms. It is useful to classify the systems studied as being in the nuclear regime, the hydrogen-like regime, or the electronic regime according to whether the average size of the atomio orbit is comparable to the nuclear radius, intermediate, or comparable to the electronic orbit.
    [Show full text]
  • Pillar 1 Roadmap CHIPP Workshop Editing
    Pillar 1 roadmap CHIPP workshop editing August 27, 2020 Contents 1 The present Swiss landscape 2 1.1 High energy . .2 1.2 Low energy . .6 2 Major successes (2017-2020) 8 2.1 High energy . .8 2.2 Low energy . 10 3 The international context 11 4 Synergies with other scientific fields 12 4.1 High energy . 12 4.2 Low energy . 13 5 Vision for the future 14 5.1 High energy . 14 5.2 Low energy . 17 1 1 The present Swiss landscape [(5-15 pages) – This section will be very specific to each field. It can be subdivided into research topics and/or per methodology (theoretical versus experimental, laboratory versus field study, and so on). Alternatively, it could be per geographical location, if there are well defined topics covered by different institutions. It shall be as much as possible inclusive of all the community to leave nobody out. It shall also show what are the major topics in Switzerland, which institutes are leaders in specific research areas, and possibly also what is less developed yet (especially if a new infrastructure is foreseen to fill this gap). How strong is the Swiss network: how much do the scientists of different institutes collaborate together? What are the main infrastructures used? Are they accessible to researchers from other institutions? ] 1.1 High energy Swiss institutes are founding members and significant contributors to three of the four high energy physics experiments at CERN: ATLAS (U Bern and U Geneva), CMS (UZH, PSI and ETHZ) and LHCb (EPFL and UZH). The activities of the Swiss scientists have been spanning a very broad spectrum of physics pursuits: from precision measurements of the Standard Model (SM) to explorations of new phenomena that could answer the open questions of our universe.
    [Show full text]