Proceedings Cluster/Double Star Conference

Total Page:16

File Type:pdf, Size:1020Kb

Proceedings Cluster/Double Star Conference 1 MAGNETOPAUSE CUSP INDENTATION: AN ATTEMPT FOR A NEW MODEL CONSIDERATION M. Kartalev1, S. Savin2, E Amata 3, P. Dobreva1, G. Zastenker2, and N.Shevyrev2 1Institute of Mechanics, Bulgarian Academy of Sciences, Acad. G. Bontchev Str., Block 4, 1113, So a, Bulgaria 2Space Research Institute, Russian Academ of Sciences, Profsousnaya, 84/32, 117811 Moscow, Russia 3Istituto di Fisica dello Spazio Interplanetario C.N.R. Via del fosso del cavaliere 100 00133 ROMA Italy ABSTRACT culiarities could be useful for understanding of important details of the process of energy transfer from solar wind to magnetosphere and polar ionosphere. In this short We report an attempt for numerical modeling of the mag- communication we focus our attention on the problem of netopause indentation, formed by the magnetosheath - the speci c cusp associated magnetopause shape. cusp interaction. Our attempt is based on a new numeri- cal magnetosheath - magnetosphere model, developed in It is well known that most of the widely used data based the Institute of Mechanics, So a. The model includes, magnetopause models besides assuming general simpli - in a self-consistent modular approach, the models of the cations like axial symmetry, also do not take into account magnetosheath and the magnetosphere. The latter is a so called magnetopause cusp indentations (e.g. (Shue et hybrid between data-based magnetospheric current sys- al., 1997; Roelof and Sibeck, 1993)). Some recently de- tem and numerically obtained magnetopause shielding veloped data based models (Boardsen et al., 2000; East- current system. A simpli ed gasdynamic approach is ap- man et al., 2000), making use of very extensive polar plied for the magnetosheath. The positions and the shapes orbit measurements of Hawkeye satellite, provide more of the bow shock and the magnetopause are determined precise prediction of the high latitude antisunward of the self-consistently as a part of the numerical procedure, cusp part of the magnetopause,as well of its nose subso- based on the pressure balance. The substantial differ- lar part, but the authors especially underline that they do ence of the processes, responsible for the pressure forma- not model the cusp indentation itself. Thus, some kind tion inside and outside magnetopause indentations over of “asymptotic” behavior of the cusp associated region is cusps, poses dif culties of the problem solution for the estimated nevertheless by this model. The de nite deter- closed magnetosphere. We discuss the considered prob- mination of the magnetopause cusp indentation however lem in the light of CLUSTER and Interball-1 data. Both is avoided by this model too. magnetopause normals and plasma decelerations into the over-cusp indentation can be taken into account in the The situation is quite similar regarding the existing the- frame of the model, along with the magnetopause shape oretical approaches dealing with magnetopause shape dependence on the geomagnetic dipole tilt. Our attention and position. The majority of the used in the literature addresses the speci c challenging problem, arising in de- models, from “classic” numerical magnetosheath mod- termining the magnetopause indentations around the cusp els (e.g. Spreiter and Stahara (1994)) to most of the regions. sophisticated 3D global MHD models of the solar wind- magnetosphere interaction, are not designed for treatment of the magnetopause cusp indentations. Key words: magnetopause; magnetosheath; cusp; inden- tation. One of the rst attempts for deriving more realistic magnetopause geometry utilizing magnetosheath / mag- netosphere pressure balance was done by Mead and 1. INTRODUCTION Beard (1964), but relying on too simpli ed approach for the magnetospheric magnetic eld. Recently Sotirelis (1996); Sotirelis and Meng (1999) solved analogical The knowledge of the cusp associated magnetopause re- problem using more realistic data based Tsyganenko’96 gions are of great importance for understanding of very magnetospheric eld model (Tsyganenko, 1995). The basic aspects of the solar wind in uence on the Earth’s magnetopause shape obtained by these authors includes environments. The understanding of such details of these cusp indentations. The used there magnetosheath pres- regions as magnetopause structure and its geometry pe- sure on the magnetopause however is taken by idealized _________________________________________________________________ Proceedings Cluster and Double Star Symposium – 5th Anniversary of Cluster in Space, Noordwijk, The Netherlands, 19 - 23 September 2005 (ESA SP-598, January 2006) 2 Newton approach, which is quite inadequate in particular use of this e xibility of the scheme. It is worth em- especially over the geometric peculiarities of the magne- phasizing that all the ”data based shielding elds” from topause cusp indentations. Tsyganenko model, adjusting that model to some data based, but quite idealized (symmetric in particular) mag- In the present work we implement a new magne- netopause, are omitted here. Respectively, the data based tosheath/magnetosphere numerical model, in which the magnetopause, used in Tsyganenko model, doesn’t par- magnetopause shape is determined again satisfying pres- ticipate in our consideration. Our numerically obtained sure balance, but utilizing the real gasdynamic “outside” shielding eld corresponds to our numerically obtained pressure on magnetosheath. This model is described magnetopause. brie y in Section 2. In Section 3 we implement this model for a comparison with the measurements from two The implemented Gas-dynamic numerical magne- satellite magnetosheath crossings. tosheath model utilizes a slightly modi ed grid - char- acteristic numerical approach, developed by Magome- dov and Holodov (1988) and applied previously in mod- 2. SHORT DESCRIPTION OF THE IMPLE- elling of the magnetosheath problem in axially symmet- MENTED MAGNETOSPHERE - MAGNE- ric approach, as well as in other astrophysical problems TOSHEATH MODEL (Kartalev et al., 1996, 2002; Keremidarska and Kartalev, 1998, 1999) . Essentially 3D Euler gasdynamic equations are applied in appropriate curvilinear coordinates. The used here new model of the system magnetosphere - magnetosheath (Kartalev et al., 1995, 1996; Dobreva The problem domain is divided into two sub-domains for et al., 2004; Kartalev et al., 2005) comprises in a self- better description of arbitrary elongated tail region of the consistent way two “sub-models”: a 3D numerical data magnetosheath. Spherical coordinates x1 = θ, x2 = r, based model of the magnetosphere with included data x3 = ϕ are applied for the dayside magnetosheath (stan- based magnetospheric magnetic eld systems and ar- dard de nition, where ϕ is the azimuthal direction), and bitrary magnetopause, and a 3D gasdynamic numeri- in the tail region the equations are applied in cylindrical cal model of the magnetosheath with “ e xible” magne- coordinates x1 = −z, x2 = r, x3 = ϕ (again standard topause. The shapes and positions of the shock wave and de nition where z is direction to the sun). In these coor- of the magnetopause are self - consistently determined as dinates the equations for the shock wave and for the mag- a part of the solution. netopause (tangential discontinuity) could be presented as: x2 = Rs(t, x1, x3) and Rm = Rm(t, x1, x3), The new 3D finite element magnetosphere magnetic where t is the time. An additional coordinate transforma- field model is a generalization of the earlier developed tion is applied and practically used in the computational 2D (Kartalev et al., 1995) and simpli ed 3D (Kojtchev scheme: et al., 1998) models. The shielding eld is obtained nu- merically solving the Chapman-Ferarro problem in these x2 − Rm ξ = x1, ζ = x3, η = , models. The solution utilizes the dipole eld and data Rs − Rm based cross-tail, Birkeland and ring currents. In the con- sidered case we make use of the Tsyganenko data based in which the shock wave and the magnetopause are co- (T 96 and T 01) models (Tsyganenko, 1995, 2002a,b) (de- ordinate surfaces. In the implemented time marching tails in (Dobreva et al., 2004)). The 3D Chapman Ferarro scheme, for the points of the boundaries, the Rankine- problem is solved for an arbitrary magnetopause, consid- Hugoniot relations are used at each time forward step. ering the whole magnetospheric eld B as a sum of the The computed on the magnetopause magnetosphere pres- sought shielding eld Bs, the dipole eld Bd, the elds, sure essentially participates in these steps for the magne- produced by the cross-tail current system (Bt), the Birke- topause points. The algorithm determines the new posi- land currents (Bb), and the ring current (Br). As usual, it tion of each boundary point of the next time layer. is supposed that div Bs = 0, rot Bs = 0 and, therefore, a eld potential U exists: The leading procedure in the self-consistent model of the whole system magnetosheath-magnetosphere is the external (magnetosheath) problem. Current magne- ∇U = Bs; 4U = 0 topause shape and position are known at each time step of the procedure. The magnetosphere problem is solved us- Neumann boundary condition is posed on the magne- ing this current magnetopause geometry. The Neumann topause with local normal n (here we consider only problem for this shape is solved then, obtaining somed in- closed magnetosphere): side pressure distribution on the magnetopause. This cur- rent inside pressure distribution is essential in the work of ∂U the magnetosheath part of the algorithm, which not only (B , n) = − = −[(B , n)+(B , n)+(B , n)+(B ,
Recommended publications
  • Pressure Balance at the Magnetopause: Experimental Studies
    Pressure balance at the magnetopause: Experimental studies A. V. Suvorova1,2 and A. V. Dmitriev3,2 1Center for Space and Remote Sensing Research, National Central University, Jhongli, Taiwan 2Skobeltsyn Institute of Nuclear Physics Moscow State University, Moscow, Russia 3Institute of Space Sciences, National Central University, Chung-Li, Taiwan Abstract The pressure balance at the magnetopause is formed by magnetic field and plasma in the magnetosheath, on one side, and inside the magnetosphere, on the other side. In the approach of dipole earth’s magnetic field configuration and gas-dynamics solar wind flowing around the magnetosphere, the pressure balance predicts that the magnetopause distance R depends on solar wind dynamic pressure Pd as a power low R ~ Pdα, where the exponent α=-1/6. In the real magnetosphere the magnetic filed is contributed by additional sources: Chapman-Ferraro current system, field-aligned currents, tail current, and storm-time ring current. Net contribution of those sources depends on particular magnetospheric region and varies with solar wind conditions and geomagnetic activity. As a result, the parameters of pressure balance, including power index α, depend on both the local position at the magnetopause and geomagnetic activity. In addition, the pressure balance can be affected by a non-linear transfer of the solar wind energy to the magnetosheath, especially for quasi-radial regime of the subsolar bow shock formation proper for the interplanetary magnetic field vector aligned with the solar wind plasma flow. A review of previous results The pressure balance states that the pressure of the flowing around solar wind plasma is balanced at the magnetopause by the pressure inside the magnetosphere [e.g.
    [Show full text]
  • Observations of Solar Wind Penetration Into the Earth's Magnetosphere: the Plasma Mantle
    ENNIO R. SANCHEZ, CHING-I. MENG, and PATRICK T. NEWELL OBSERVATIONS OF SOLAR WIND PENETRATION INTO THE EARTH'S MAGNETOSPHERE: THE PLASMA MANTLE The large database provided by the continuous coverage of the Defense Meteorological Satellite Pro­ gram polar orbiting satellites constitutes an important source of information on particle precipitation in the ionosphere. This information can be used to monitor and map the Earth's magnetosphere (the cavity around the Earth that forms as the stream of particles and magnetic field ejected from the Sun, known as the solar wind, encounters the Earth's magnetic field) and for a large variety of statistical studies of its morphology and dynamics. The boundary between the magnetosphere and the solar wind is pre­ sumably open in some places and at some times, thus allowing the direct entry of solar-wind plasma into the magnetosphere through a boundary layer known as the plasma mantle. The preliminary results of a statistical study of the plasma-mantle precipitation in the ionosphere are presented. The first quan­ titative mapping of the ionospheric region where the plasma-mantle particles precipitate is obtained. INTRODUCTION Polar orbiting satellites are very useful platforms for studying the properties of the environment surrounding the Earth at distances well above the ionosphere. This article focuses on a description of the enormous poten­ tial of those platforms, especially when they are com­ bined with other means of measurement, such as ground-based stations and other satellites. We describe in some detail the first results of the kind of study for which the polar orbiting satellites are ideal instruments.
    [Show full text]
  • Solar Wind Magnetosphere Coupling
    Solar Wind Magnetosphere Coupling F. Toffoletto, Rice University Figure courtesy T. W. Hill with thanks to R. A. Wolf and T. W. Hill, Rice U. Outline • Introduction • Properties of the Solar Wind Near Earth • The Magnetosheath • The Magnetopause • Basic Physical Processes that control Solar Wind Magnetosphere Coupling – Open and Closed Magnetosphere Processes – Electrodynamic coupling – Mass, Momentum and Energy coupling – The role of the ionosphere • Current Status and Summary QuickTime™ and a YUV420 codec decompressor are needed to see this picture. Introduction • By virtue of our proximity, the Earth’s magnetosphere is the most studied and perhaps best understood magnetosphere – The system is rather complex in its structure and behavior and there are still some basic unresolved questions – Today’s lecture will focus on describing the coupling to the major driver of the magnetosphere - the solar wind, and the ionosphere – Monday’s lecture will look more at the more dynamic (and controversial) aspect of magnetospheric dynamics: storms and substorms The Solar Wind Near the Earth Solar-Wind Properties Observed Near Earth • Solar wind parameters observed by many spacecraft over period 1963-86. From Hapgood et al. (Planet. Space Sci., 39, 410, 1991). Solar Wind Observed Near Earth Values of Solar-Wind Parameters Parameter Minimum Most Maximum Probable Velocity v (km/s) 250 370 2000× Number density n (cm-3) 683 Ram pressure rv2 (nPa)* 328 Magnetic field strength B 0 6 85 (nanoteslas) IMF Bz (nanoteslas) -31 0¤ 27 * 1 nPa = 1 nanoPascal = 10-9 Newtons/m2. Indicates at least one interval with B < 0.1 nT. ¤ Mean value was 0.014 nT, with a standard deviation of 3.3 nT.
    [Show full text]
  • Solar Wind Properties and Geospace Impact of Coronal Mass Ejection-Driven Sheath Regions: Variation and Driver Dependence E
    Solar Wind Properties and Geospace Impact of Coronal Mass Ejection-Driven Sheath Regions: Variation and Driver Dependence E. K. J. Kilpua, D. Fontaine, C. Moissard, M. Ala-lahti, E. Palmerio, E. Yordanova, S. Good, M. M. H. Kalliokoski, E. Lumme, A. Osmane, et al. To cite this version: E. K. J. Kilpua, D. Fontaine, C. Moissard, M. Ala-lahti, E. Palmerio, et al.. Solar Wind Properties and Geospace Impact of Coronal Mass Ejection-Driven Sheath Regions: Variation and Driver Dependence. Space Weather: The International Journal of Research and Applications, American Geophysical Union (AGU), 2019, 17 (8), pp.1257-1280. 10.1029/2019SW002217. hal-03087107 HAL Id: hal-03087107 https://hal.archives-ouvertes.fr/hal-03087107 Submitted on 23 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. RESEARCH ARTICLE Solar Wind Properties and Geospace Impact of Coronal 10.1029/2019SW002217 Mass Ejection-Driven Sheath Regions: Variation and Key Points: Driver Dependence • Variation of interplanetary properties and geoeffectiveness of CME-driven sheaths and their dependence on the E. K. J. Kilpua1 , D. Fontaine2 , C. Moissard2 , M. Ala-Lahti1 , E. Palmerio1 , ejecta properties are determined E.
    [Show full text]
  • Effects of a Solar Wind Dynamic Pressure Increase in the Magnetosphere and in the Ionosphere
    Ann. Geophys., 28, 1945–1959, 2010 www.ann-geophys.net/28/1945/2010/ Annales doi:10.5194/angeo-28-1945-2010 Geophysicae © Author(s) 2010. CC Attribution 3.0 License. Effects of a solar wind dynamic pressure increase in the magnetosphere and in the ionosphere L. Juusola1,2, K. Andréeová3, O. Amm1, K. Kauristie1, S. E. Milan4, M. Palmroth1, and N. Partamies1 1Finnish Meteorological Institute, Helsinki, Finland 2Department of Physics and Technology, University of Bergen, Bergen, Norway 3Department of Physics, University of Helsinki, Helsinki, Finland 4Department of Physics and Astronomy, University of Leicester, Leicester, UK Received: 12 February 2010 – Revised: 20 August 2010 – Accepted: 20 October 2010 – Published: 27 October 2010 Abstract. On 17 July 2005, an earthward bound north-south eral ground-based magnetometer networks (210 MM CPMN, oriented magnetic cloud and its sheath were observed by the CANMOS, CARISMA, GIMA, IMAGE, MACCS, Super- ACE, SoHO, and Wind solar wind monitors. A steplike in- MAG, THEMIS, TGO) were used to obtain information on crease of the solar wind dynamic pressure during northward the ionospheric E ×B drift. Before the pressure increase, a interplanetary magnetic field conditions was related to the configuration typical for the prevailing northward IMF con- leading edge of the sheath. A timing analysis between the ditions was observed at high latitudes. The preliminary sig- three spacecraft revealed that this front was not aligned with nature coincided with a pair of reverse convection vortices, the GSE y-axis, but had a normal (−0.58,0.82,0). Hence, the whereas during the main signature, mainly westward convec- first contact with the magnetosphere occurred on the dawn- tion was observed at all local time sectors.
    [Show full text]
  • Evidence for Magnetic Reconnection Along the Dawn Flank
    PUBLICATIONS Geophysical Research Letters RESEARCH LETTER Accelerated flows at Jupiter’s magnetopause: 10.1002/2016GL072187 Evidence for magnetic reconnection Special Section: along the dawn flank Early Results: Juno at Jupiter R. W. Ebert1 , F. Allegrini1,2 , F. Bagenal3 , S. J. Bolton1 , J. E. P. Connerney4, G. Clark5 , G. A. DiBraccio4,6 , D. J. Gershman4 , W. S. Kurth7 , S. Levin8 , P. Louarn9, B. H. Mauk5 , Key Points: 10,11,1 12,1 1 13 1,2 • Observations at Jupiter’s dawn D. J. McComas , M. Reno , J. R. Szalay , M. F. Thomsen , P. Valek , magnetopause by Juno revealed S. Weidner11, and R. J. Wilson3 accelerated ion flows and large magnetic shear angles at 1Southwest Research Institute, San Antonio, Texas, USA, 2Department of Physics and Astronomy, University of Texas at San several crossings Antonio, San Antonio, Texas, USA, 3Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, • Case studies of two magnetopause 4 5 crossings showed evidence of Colorado, USA, Goddard Space Flight Center, Greenbelt, Maryland, USA, The Johns Hopkins University Applied Physics 6 7 rotational discontinuities and an Laboratory, Laurel, Maryland, USA, Universities Space Research Association, Columbia, Maryland, USA, Department of open magnetopause Physics and Astronomy, University of Iowa, Iowa City, Iowa, USA, 8Jet Propulsion Laboratory, Pasadena, California, USA, • Compelling evidence for magnetic 9Institut de Recherche en Astrophysique et Planétologie, Toulouse, France, 10Department of Astrophysical Sciences, ’ reconnection
    [Show full text]
  • The Structure of Martian Magnetosphere at the Dayside Terminator Region As Observed on MAVEN Spacecraft
    Confidential manuscript submitted to Journal of Geophysical Research: Space Physics The Structure of Martian Magnetosphere at the Dayside Terminator Region as Observed on MAVEN Spacecraft O. L. Vaisberg​1,​ V. N. Ermakov​1,2,​ S. D. Shuvalov​1,​ L. M. Zelenyi​1,​ J. Halekas​3,​ G. A. DiBraccio​4,​ J. McFadden​5,​ and E. M. Dubinin​6 1 ​Space Research Institute of the Russian Academy of Sciences, Moscow, Russia. 2 ​National Research Nuclear University MEPhI, Moscow, Russia. 3 ​Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa, USA. 4 ​NASA Goddard Space Flight Center, Maryland, USA. 5 ​Space Sciences Laboratory, U.C., Berkeley, Berkeley, CA, USA. 6 ​Max-Planck-Institute for Solar System Research, Gottingen, Germany. Corresponding author: Oleg Vaisberg ([email protected])​ Key Points: ● The dayside magnetosphere of Mars at ~70​0 ​SZA is a permanent domain of ~200 km thickness between the magnetosheath and the ionosphere +​ +​ ● Magnetopause is defined by a steep gradient of O​ and O2​​ densities which increase by factor of 10​2-10​ ​3 ​at interface with the ionosphere ● The structure of the magnetosphere is controlled by the solar wind magnetic field direction. Confidential manuscript submitted to Journal of Geophysical Research: Space Physics Abstract We analyzed 44 passes of the MAVEN spacecraft through the magnetosphere, arranged by the angle between electric field vector and the projection of spacecraft position radius vector in the YZ plane in MSE coordinate system (θE​​). All passes were divided into 3 angular sectors near 0°, 90° and 180° θE​​ angles in order to estimate the role of IMF direction in plasma and magnetic properties of dayside Martian magnetosphere.
    [Show full text]
  • Juno Observations of Large-Scale Compressions of Jupiter's Dawnside
    PUBLICATIONS Geophysical Research Letters RESEARCH LETTER Juno observations of large-scale compressions 10.1002/2017GL073132 of Jupiter’s dawnside magnetopause Special Section: Daniel J. Gershman1,2 , Gina A. DiBraccio2,3 , John E. P. Connerney2,4 , George Hospodarsky5 , Early Results: Juno at Jupiter William S. Kurth5 , Robert W. Ebert6 , Jamey R. Szalay6 , Robert J. Wilson7 , Frederic Allegrini6,7 , Phil Valek6,7 , David J. McComas6,8,9 , Fran Bagenal10 , Key Points: Steve Levin11 , and Scott J. Bolton6 • Jupiter’s dawnside magnetosphere is highly compressible and subject to 1Department of Astronomy, University of Maryland, College Park, College Park, Maryland, USA, 2NASA Goddard Spaceflight strong Alfvén-magnetosonic mode Center, Greenbelt, Maryland, USA, 3Universities Space Research Association, Columbia, Maryland, USA, 4Space Research coupling 5 • Magnetospheric compressions may Corporation, Annapolis, Maryland, USA, Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa, USA, 6 7 enhance reconnection rates and Southwest Research Institute, San Antonio, Texas, USA, Department of Physics and Astronomy, University of Texas at San increase mass transport across the Antonio, San Antonio, Texas, USA, 8Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey, USA, magnetopause 9Office of the VP for the Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey, USA, • Total pressure increases inside the 10Laboratory for Atmospheric and Space Physics, University of Colorado
    [Show full text]
  • The Magnetic Structure of Saturn's Magnetosheath
    JOURNAL OF GEOPHYSICAL RESEACH, VOL. 119, 5651 - 5661, DOI: 10.1002/2014JA020019 The Magnetic Structure of Saturn’s Magnetosheath 1 2 1 3 Ali H. Sulaiman, Adam Masters, Michele K. Dougherty, and Xianzhe Jia __________ Corresponding author: A.H. Sulaiman, Space and Atmospheric Physics, Blackett Laboratory, Imperial College London, London, UK. ([email protected]) 1Space and Atmospheric Physics, Blackett Laboratory, Imperial College London, London, UK. 2Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3- 1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210, Japan. 3Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan, USA. ACCEPTED MANUSCRIPT Page 1 of 31 SULAIMAN ET AL.: MAGNETIC STRUCTURE OF SATURN’S MAGNETOSHEATH Abstract A planet’s magnetosheath extends from downstream of its bow shock up to the magnetopause where the solar wind flow is deflected around the magnetosphere and the solar wind embedded magnetic field lines are draped. This makes the region an important site for plasma turbulence, instabilities, reconnection and plasma depletion layers. A relatively high Alfvén Mach number solar wind and a polar-flattened magnetosphere make the magnetosheath of Saturn both physically and geometrically distinct from the Earth’s. The polar flattening is predicted to affect the magnetosheath magnetic field structure and thus the solar wind-magnetosphere interaction. Here we investigate the magnetic field in the magnetosheath with the expectation that polar flattening is manifested in the overall draping pattern. We compare an accumulation of Cassini data between 2004 and 2010 with global magnetohydrodynamic (MHD) simulations and an analytical model representative of a draped field between axisymmetric boundaries.
    [Show full text]
  • Exploring Solar-Terrestrial Interactions Via Multiple Observers a White Paper for the Voyage 2050 Long-Term Plan in the ESA Science Programme
    Exploring Solar-Terrestrial Interactions via Multiple Observers A White Paper for the Voyage 2050 long-term plan in the ESA Science Programme Pollock et al. 2003 Contact Scientist Graziella Branduardi-Raymont Mullard Space Science Laboratory, University College London Holmbury St Mary, Dorking, Surrey RH5 6NT, UK Tel. +44 (0)1483 204133 [email protected] Exploring Solar-Terrestrial Interactions via Multiple Observers Executive summary The central question we propose to address is: How does solar wind energy flow through the Earth’s magnetosphere, how is it converted and distributed? This is a fundamental science question expressing our need to understand how the Sun creates the heliosphere, and how the planets interact with the solar wind and its magnetic field. This is not just matter of scientific curiosity – it also addresses a clear and pressing practical problem. As our world becomes ever more dependent on complex technology – both in space and on the ground – society becomes more exposed to the vagaries of space weather, the conditions on the Sun and in the solar wind, magnetosphere, ionosphere and thermosphere that can influence the performance and reliability of technological systems and endanger human life and health. This fundamental question breaks down to several sub-questions: 1) How is energy transferred from the solar wind to the magnetosphere at the magnetopause? 2) What are the external and internal drivers of the different magnetospheric regimes? 3) How does energy circulate through the magnetotail? 4) How do behaviours in the North and South hemispheres relate to each other? 5) What are the sources and losses of ring current and radiation belt plasma in the inner magnetosphere? 6) How does feedback from the inner magnetosphere influence dayside and nightside processes? Much knowledge has already been acquired through observations in space and on the ground over the past decades, but the infant stage of space weather forecasting demonstrates that we still have a vast amount of learning to do.
    [Show full text]
  • Local Time Extent of Magnetopause Reconnection X-Lines Using Space-Ground Coordination
    Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2018-63 Manuscript under review for journal Ann. Geophys. Discussion started: 3 July 2018 c Author(s) 2018. CC BY 4.0 License. 1 Local time extent of magnetopause reconnection X-lines using space-ground coordination 2 3 Ying Zou12, Brian M. Walsh3, Yukitoshi Nishimura45, Vassilis Angelopoulos6, J. 4 Michael Ruohoniemi7, Kathryn A. McWilliams8, Nozomu Nishitani9 5 6 1. Department of Astronomy and Center for Space Physics, Boston University, Massachusetts, 7 USA 8 2. Cooperative Programs for the Advancement of Earth System Science, University Corporation 9 for Atmospheric Research, Boulder, Colorado, USA 10 3. Department of Mechanical Engineering and Center for Space Physics, Boston University, 11 Boston, Massachusetts, USA 12 4. Department of Electrical and Computer Engineering and Center for Space Sciences, Boston 13 University, Boston, Massachusetts, USA 14 5. Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, 15 California, USA 16 6. Department of Earth, Planetary and Space Sciences, University of California, Los Angeles, 17 California, USA 18 7. The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, 19 Virginia, USA 20 8. Institute of Space and Atmospheric Studies, University of Saskatchewan, Saskatoon, 21 Saskatchewan, Canada 22 9. Center for International Collaborative Research, Institute for Space-Earth Environmental 23 Research, Nagoya University, Nagoya, Japan 1 Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2018-63 Manuscript under review for journal Ann. Geophys. Discussion started: 3 July 2018 c Author(s) 2018. CC BY 4.0 License. 24 Corresponding author: Ying Zou 25 1. Department of Astronomy and Center for Space Physics, Boston University, Massachusetts, 26 USA 27 2.
    [Show full text]
  • Lecture 14-15: Planetary Magnetospheres
    Lecture 14-15: Planetary magnetospheres o Today’s topics: o Planetary magnetic fields. o Interaction of solar wind with solar system objects. o Planetary magnetospheres. Venus in the solar wind o Click on “About Venus” at http://www.esa.int/SPECIALS/Venus_Express/ Planetary magnetism o Conducting fluid in motion generates magnetic field. o Earth’s liquid outer core is conducting fluid => free electrons are released from metals (Fe & Ni) by friction and heat. o Variations in the global magnetic field represent changes in fluid flow in the core. o Defined magnetic field implies a planet has: 1. A large, liquid core 2. A core rich in metals 3. A high rotation rate o These three properties are required for a planet to generate an intrinsic magnetosphere. Planetary magnetism o Earth: Satisfies all three. Earth is only Earth terrestrial planet with a strong B-field. o Moon: No B-field today. It has no core or it solidified and ceased convection. o Mars: No B-field today. Core solidified. o Venus: Molten layer, but has a slow, 243 day Mars rotation period => too slow to generate field. o Mercury: Rotation period 59 days, small B- field. Possibly due to large core, or magnetised crust, or loss of crust on impact. o Jupiter: Has large B-field, due to large liquid, metallic core, which is rotating quickly. Planetary magnetic fields o Gauss showed that the magnetic field of the Earth could be described by: ˆ ˆ B = −µ0∇V (rˆ ) = −µ ∇ˆ (V i + V e ) 0 where Vi is the magnetic scalar potential due to sources inside the Earth, and Ve is the scalar€ potential due to external sources.
    [Show full text]