NAHM's EQUATIONS and JACOBI FORMS by Jason Quinones

Total Page:16

File Type:pdf, Size:1020Kb

NAHM's EQUATIONS and JACOBI FORMS by Jason Quinones MATHEMATICAL ASPECTS OF FIELD THEORY: NAHM’S EQUATIONS AND JACOBI FORMS by Jason Quinones __________________________ Copyright © Jason Quinones 2020 A Dissertation Submitted to the Faculty of the DEPARTMENT OF MATHEMATICS In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 2020 2 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have read the dissertation prepared by: Jason Quinones titled: and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy. _________________________________________________________________ Date: ____________Jul 30, 2020 Christoph Keller _________________________________________________________________ Date: ____________Jul 30, 2020 David A Glickenstein _________________________________________________________________ Date: ____________Jul 30, 2020 Sergey Cherkis Nicholas Ercolani _________________________________________________________________ Date: ____________Jul 30, 2020 Nicholas Ercolani Final approval and acceptance of this dissertation is contingent upon the candidate’s submission of the final copies of the dissertation to the Graduate College. I hereby certify that I have read this dissertation prepared under my direction and recommend that it be accepted as fulfilling the dissertation requirement. _________________________________________________________________ Date: ____________Jul 30, 2020 Christoph Keller Mathematics 3 Acknowledgements I would like to thank my supervisors Christoph Keller and Sergey Cherkis for their guidance and mentorship. I am grateful for their support and their willingness to invest time on advising me. I would also like to express my thanks to Prof. Harry Braden for helpful conservations and notes on the topic of monopoles. I am very appreciative of my fellow students for their help and encour- agement, I would like to especially thank Rebekah Cross, Matthew Wheeler, and Thomas Harris. I would like to acknowledge support from the Math Department and the Disability Resource Center here at the University of Arizona. I am especially thankful to David Glickenstein, who was of great help through administrative issues, and to Catherine Mazzola for her coordination of interpreting services. I would like to thank the interpreters Michael Friedmann, Dawn Wise, Heather Donnel, and James Carpenter for their hard work. Finally, I would like to express my gratitude and appreciation towards my family for their support. Table of Contents Abstract 7 1 Introduction 8 1.1 Overview of Nahm's Equations . .9 1.2 Atiyah's Conjecture . 16 1.3 Objectives for Nahm's Equations . 20 1.4 Motivation: Siegel Modular Forms and Black Holes . 22 1.5 Objectives for Jacobi Forms . 26 I 31 2 Nahm's Equations 32 2.1 Introduction . 32 2.2 Boundary Conditions . 34 2.2.1 The Complex Equation . 35 2.2.2 The Real Equation . 40 3 Spectral Curve 43 3.1 MiniTwistor Space . 44 3.2 Spectral Curve of Nahm data . 46 3.3 Eigenline Bundle over Spectral Curve . 50 3.4 Spectral Method for Nahm's Equations . 54 3.4.1 Solving Nahm's Equations . 54 3.4.2 Basis Constructions . 61 3.4.3 Perturbation Expansion . 70 3.5 Nahm Solutions . 74 3.5.1 n=2 Exact Solution . 75 4 TABLE OF CONTENTS 5 3.5.2 Perturbative Expansion of the n=3 Solution . 76 4 Dirac Monopole and ADHMN 80 4.1 Introduction . 80 4.2 Multimonopole Configuration . 81 4.3 Dirac Operators . 82 4.3.1 Dirac Operators Coupled to a Monopole . 82 4.3.2 Dirac Operator Coupled to a Nahm Solution . 83 4.3.3 Zero Modes of Dirac Operators . 84 4.3.4 Down Transform . 87 4.3.5 Up Transform . 89 4.4 Spectral Curve of Monopole Data . 90 4.5 Dirac Zero Modes from Rows of Polynomials . 93 5 Conclusions for Part I 98 II 100 6 Polar Terms of Weak Jacobi Forms 101 6.1 Polar Part of Weak Jacobi Forms . 101 6.1.1 A Lower Bound for P (m)................ 110 6.1.2 An Upper Bound for P (m)................ 110 7 Slow Growth around yb 117 7.1 Slow Growth Forms . 121 7.2 Theta Quotients . 133 7.3 Slow growth of single theta quotient . 136 7.4 Slow growth of multiple theta quotients . 138 8 Slow Growth around qayb 143 8.1 Overview and Results . 143 8.2 Analytical Results . 147 8.2.1 Atkin-Lehner Involution . 147 8.2.2 Index 6 . 147 8.2.3 Index 8 . 150 8.3 Numerical Results . 152 Appendix A CODE FOR IMPLEMENTATION 155 TABLE OF CONTENTS 6 References 159 Abstract This thesis consists of two projects wherein we explore some mathematical aspects of field theory. In the first project, we address Nahm's equations, which is an integrable system with a Lax pair. We consider boundary conditions on Nahm's equa- tions that correspond to the Dirac multimonopole in Yang-Mills theory. The algebro-geometric integration method is to construct solutions via a linear flow in the Jacobian of the spectral curve associated to the Lax pair. We construct a frame of sections of this linear flow, which allows us to obtain exact solutions to Nahm's equations for arbitrary rank n. Nahm's equations with our boundary conditions correspond to the Dirac multimonopole via the ADHMN construction. The ADHMN construction requires us to find normalizable zero modes of Dirac operators. We again use the frame of sections of the linear flow on the Jacobian of the spectral curve to construct these normalizable zero modes. In the second project, we consider weak Jacobi forms of weight 0. The polar coefficients of such weak Jacobi form are known to uniquely determine the weak Jacobi form, and we improve on the number of polar coefficients that determine the weight 0 form. Weak Jacobi forms of weight 0 may be exponentially lifted to Siegel mod- ular forms, which appear in the string-theory of black holes. In connection to this, the growth of a certain sum about a term qayb in the Fourier-Jacobi expansion of the underlying weak Jacobi form is of interest to us. We discover that the weak Jacobi forms which are quotients of theta functions give us a large class of forms that are slow growing about their most polar term. Additionally, the characteristics of growth behavior for a weak Jacobi form about a term yb are known, here we investigate growth behavior about an arbitrary qayb term and find several analogues. 7 Chapter 1 Introduction Gauge theory is a powerful mathematical framework for studying a wide vari- ety of physical phenomena. Its roots developed as early as the second half of the 19th century with Maxwell's equations describing electromagnetism, and entered its golden period in the 1970s and 1980s, culminating with the estab- lishment of the standard model of particle physics. However, the standard model does not adequately explain some fundamental physical phenomena, such as gravity. Attempts to go beyond the standard model have proved quite challenging, given our available methods and computing power. In- stead, we can look at simpler models in an attempt to better understand the mathematical structures at hand. It is in this spirit that this thesis is undertaken. In this thesis, we describe two different projects, unified by the common goal of understanding some mathematical aspect of simple field theories. In the first, we consider Nahm's equations, which arise from Yang-Mills gauge theory. We construct exact solutions to those equations, subject to a simple boundary condition. Chapters 2, 3, and 4 are dedicated to this project. In the second, we consider weak Jacobi forms and the growth behavior of a certain sum of their Fourier-Jacobi coefficients. This growth behavior is of interest to us as it has connections to the holographic behavior of a 2D conformal field theory. Chapters 6, 7, and 8 are dedicated to this project. In the following sections of this chapter, we elaborate on the motivations behind each project and summarize our findings. 8 CHAPTER 1. INTRODUCTION 9 1.1 Overview of Nahm's Equations Nahm's equations for antihermitian matrix-valued functions T1(s), T2(s), T3(s) with s in some interval in R are dT1 = T2T3 T3T2; ds − dT2 = T3T1 T1T3; (1.1) ds − dT3 = T1T2 T2T1: ds − Nahm's equations are an integrable system, a system of nonlinear ordi- nary differential equations with sufficiently many conserved quantities to be solved by means of algebraic geometry. The starting point for this algebro- geometric integration method is to discover a Lax representation with spec- tral parameter ζ for matrix-valued functions L and M such that the system is equivalent to d L(s; ζ) = [L(s; ζ);M(s; ζ)]: (1.2) ds This Lax equation implies the spectrum of L(s; ζ) is independent of the vari- able s, indeed trLk are the conserved quantities of the system. For Nahm's equations, ζ P1 and we obtain an algebraic curve S in T P1 2 det(η1 L(s; ζ)) = 0; (1.3) − @ for η T P1. One then defines for generic L(s; ζ) a line bundle F s over S @ζ 2 with fiber at (ζ; η) the η-eigenspace of L(s; ζ) and one obtains from the flow of L(s; ζ) a linear flow F s in the Jacobian Jac(S) [1]. The method concludes with writing a solution for the system in terms of an appropriate basis of the linear flow. For some overviews on integrable systems from this point of view, see [2] and [3]. One goal of this paper is to carry out the algebro-geometric method of integration explicitly and obtain exact solutions to Nahm's equations in boundary conditions we specify. In general, exact solutions have proved dif- ficult to construct but one classical solution is provided by the substitutions Ti(s) = fi(s)ρi for ρi a constant matrix and fi(s) a scalar function, in which CHAPTER 1.
Recommended publications
  • Curves, Surfaces, and Abelian Varieties
    Curves, Surfaces, and Abelian Varieties Donu Arapura April 27, 2017 Contents 1 Basic curve theory2 1.1 Hyperelliptic curves.........................2 1.2 Topological genus...........................4 1.3 Degree of the canonical divisor...................6 1.4 Line bundles.............................7 1.5 Serre duality............................. 10 1.6 Harmonic forms............................ 13 1.7 Riemann-Roch............................ 16 1.8 Genus 3 curves............................ 18 1.9 Automorphic forms.......................... 20 2 Divisors on a surface 22 2.1 Bezout's theorem........................... 22 2.2 Divisors................................ 23 2.3 Intersection Pairing.......................... 24 2.4 Adjunction formula.......................... 27 2.5 Riemann-Roch............................ 29 2.6 Blow ups and Castelnuovo's theorem................ 31 3 Abelian varieties 34 3.1 Elliptic curves............................. 34 3.2 Abelian varieties and theta functions................ 36 3.3 Jacobians............................... 39 3.4 More on polarizations........................ 41 4 Elliptic Surfaces 44 4.1 Fibered surfaces........................... 44 4.2 Ruled surfaces............................ 45 4.3 Elliptic surfaces: examples...................... 46 4.4 Singular fibres............................. 48 4.5 The Shioda-Tate formula...................... 51 1 Chapter 1 Basic curve theory 1.1 Hyperelliptic curves As all of us learn in calculus, integrals involving square roots of quadratic poly- nomials can be evaluated by elementary methods. For higher degree polynomi- als, this is no longer true, and this was a subject of intense study in the 19th century. An integral of the form Z p(x) dx (1.1) pf(x) is called elliptic if f(x) is a polynomial of degree 3 or 4, and hyperelliptic if f has higher degree, say d. It was Riemann who introduced the geometric point of view, that we should really be looking at the algebraic curve Xo defined by y2 = f(x) 2 Qd in C .
    [Show full text]
  • Orientations for DT Invariants on Quasi-Projective Calabi-Yau 4-Folds
    Orientations for DT invariants on quasi-projective Calabi{Yau 4-folds Arkadij Bojko∗ Abstract For a Calabi{Yau 4-fold (X; !), where X is quasi-projective and ! is a nowhere vanishing section of its canonical bundle KX , the (derived) moduli stack of compactly supported perfect complexes MX is −2-shifted symplectic and thus has an orientation ! bundle O !MX in the sense of Borisov{Joyce [11] necessary for defining Donaldson{ Thomas type invariants of X. We extend first the orientability result of Cao{Gross{ Joyce [15] to projective spin 4-folds. Then for any smooth projective compactification Y , such that D = Y nX is strictly normal crossing, we define orientation bundles on the stack MY ×MD MY and express these as pullbacks of Z2-bundles in gauge theory, constructed using positive Dirac operators on the double of X. As a result, we relate the ! orientation bundle O !MX to a gauge-theoretic orientation on the classifying space of compactly supported K-theory. Using orientability of the latter, we obtain orientability of MX . We also prove orientability of moduli spaces of stable pairs and Hilbert schemes of proper subschemes. Finally, we consider the compatibility of orientations under direct sums. 1 Introduction 1.1 Background and results Donaldson-Thomas type theory for Calabi{Yau 4-folds has been developed by Borisov{ Joyce [11], Cao{Leung [22] and Oh{Thomas [73] . The construction relies on having Serre duality Ext2(E•;E•) =∼ Ext2(E•;E•)∗ : for a perfect complex E•. This gives a real structure on Ext2(E•;E•), and one can take 2 • • its real subspace Ext (E ;E )R.
    [Show full text]
  • Twistor Theory at Fifty: from Rspa.Royalsocietypublishing.Org Contour Integrals to Twistor Strings Michael Atiyah1,2, Maciej Dunajski3 and Lionel Review J
    Downloaded from http://rspa.royalsocietypublishing.org/ on November 10, 2017 Twistor theory at fifty: from rspa.royalsocietypublishing.org contour integrals to twistor strings Michael Atiyah1,2, Maciej Dunajski3 and Lionel Review J. Mason4 Cite this article: Atiyah M, Dunajski M, Mason LJ. 2017 Twistor theory at fifty: from 1School of Mathematics, University of Edinburgh, King’s Buildings, contour integrals to twistor strings. Proc. R. Edinburgh EH9 3JZ, UK Soc. A 473: 20170530. 2Trinity College Cambridge, University of Cambridge, Cambridge http://dx.doi.org/10.1098/rspa.2017.0530 CB21TQ,UK 3Department of Applied Mathematics and Theoretical Physics, Received: 1 August 2017 University of Cambridge, Cambridge CB3 0WA, UK Accepted: 8 September 2017 4The Mathematical Institute, Andrew Wiles Building, University of Oxford, Oxford OX2 6GG, UK Subject Areas: MD, 0000-0002-6477-8319 mathematical physics, high-energy physics, geometry We review aspects of twistor theory, its aims and achievements spanning the last five decades. In Keywords: the twistor approach, space–time is secondary twistor theory, instantons, self-duality, with events being derived objects that correspond to integrable systems, twistor strings compact holomorphic curves in a complex threefold— the twistor space. After giving an elementary construction of this space, we demonstrate how Author for correspondence: solutions to linear and nonlinear equations of Maciej Dunajski mathematical physics—anti-self-duality equations e-mail: [email protected] on Yang–Mills or conformal curvature—can be encoded into twistor cohomology. These twistor correspondences yield explicit examples of Yang– Mills and gravitational instantons, which we review. They also underlie the twistor approach to integrability: the solitonic systems arise as symmetry reductions of anti-self-dual (ASD) Yang–Mills equations, and Einstein–Weyl dispersionless systems are reductions of ASD conformal equations.
    [Show full text]
  • Section 3.7 - the Serre Duality Theorem
    Section 3.7 - The Serre Duality Theorem Daniel Murfet October 5, 2006 In this note we prove the Serre duality theorem for the cohomology of coherent sheaves on a projective scheme. First we do the case of projective space itself. Then on an arbitrary projective ◦ scheme X, we show that there is a coherent sheaf ωX , which plays the role in duality theory similar to the canonical sheaf of a nonsingular variety. In particular, if X is Cohen-Macaulay, it gives a duality theorem just like the one on projective space. Finally, if X is a nonsingular variety ◦ over an algebraically closed field we show that the dualising sheaf ωX agrees with the canonical sheaf ωX . n Theorem 1. Suppose X = Pk for some field k and n ≥ 1 and set ω = ωX/k. Then for any coherent sheaf of modules F on X we have (a) There is a canonical isomorphism of k-modules Hn(X, ω) =∼ k. (b) There is a canonical perfect pairing of finite dimensional vector spaces over k τ : Hom(F , ω) × Hn(X, F ) −→ k (c) For i ≥ 0 there is a canonical isomorphism of k-modules natural in F η : Exti(F , ω) −→ Hn−i(X, F )∨ Proof. (a) By (DIFF,Corollary 22) there is a canonical isomorphism of sheaves of modules ω =∼ O(−n−1). Composing Hn(X, ω) =∼ Hn(X, O(−n−1)) with the isomorphism Hn(X, O(−n−1)) =∼ k of (COS,Theorem 40)(b) gives the required canonical isomorphism of k-modules. (b) The k-modules Hom(F , ω) and Hn(X, F ) are finitely generated by (COS,Corollary 44) and (COS,Theorem 43), therefore both are free of finite rank.
    [Show full text]
  • An Algebraic Proof of Riemann-Roch
    BABY ALGEBRAIC GEOMETRY SEMINAR: AN ALGEBRAIC PROOF OF RIEMANN-ROCH RAVI VAKIL Contents 1. Introduction 1 2. Cohomology of sheaves 2 3. Statements of Riemann-Roch and Serre Duality; Riemann-Roch from Serre Duality 4 4. Proof of Serre duality 5 4.1. Repartitions, I(D), and J(D)5 4.2. Differentials enter the picture 7 4.3. Proving duality 7 References 8 1. Introduction I’m going to present an algebraic proof of Riemann-Roch. This is a hefty task, especially as I want to say enough that you can genuinely fill in all the details yourself. There’s no way I can finish in an hour without making this less self- contained, so what I’ll do is explain a bit about cohomology, and reduce Riemann- Roch to Serre duality. That should be do-able within an hour. Then I’ll give people a chance to leave, and after that I’ll prove Serre duality in the following half-hour. Also, these notes should help. And you should definitely stop me and ask ques- tions. For example, if I mention something I defined last semester in my class, and you’d like me to refresh your memory as to what the definition was, please ask. The proof I’ll present is from Serre’s Groupes alg´ebriques et corps de classes,Ch. 2, [S]. I found out this past Tuesday that this proof is originally due to Weil. Throughout, C is a non-singular projective algebraic curve over an algebraically closed field k. Date: Friday, February 11, 2000.
    [Show full text]
  • Moduli of Monopole Walls and Amoebas Arxiv:1202.1294V1 [Hep-Th]
    Moduli of Monopole Walls and Amoebas Sergey A. Cherkis Richard S. Ward Department of Mathematics Department of Mathematical Sciences University of Arizona, University of Durham, Tucson AZ, 85721-0089, USA Durham DH1 3LE, UK [email protected] [email protected] Abstract We study doubly-periodic monopoles, also called monopole walls, determining their spectral data and computing the dimensions of their moduli spaces. Using spectral data we identify the moduli, and compare our results with a perturbative analysis. We also identify an SL(2; Z) action on monopole walls, in which the S transformation corresponds to the Nahm transform. arXiv:1202.1294v1 [hep-th] 6 Feb 2012 Contents 1 Introduction and Motivation 2 1.1 Monopole Wall . 2 1.1.1 Asymptotic Conditions . 3 1.1.2 Singularities . 4 1.2 Moduli and Parameters . 5 2 String Theory Dualities 7 3 Spectral Approach 11 3.1 Spectral data . 11 3.1.1 x-spectral data . 11 3.1.2 y-spectral data . 12 3.1.3 z-spectral data . 13 3.1.4 Examples . 13 3.2 Newton Polygon . 14 3.2.1 Amoebas . 16 3.2.2 Examples . 16 4 Moduli and Asymptotics 22 4.1 Newton Polygon from the Boundary Data . 22 4.2 Number of Moduli . 22 5 Nahm Transform and SL(2; Z) Action 26 5.1 The Nahm transform . 26 5.2 SL(2; Z) Action . 27 6 Perturbative Approach 29 6.1 The case (Q−;Q+) = (0; 1)........................... 29 6.2 The case Q± =1 ................................ 32 6.3 Kuranishi Complex . 36 7 Conclusions 37 A A four-dimensional detour 38 B Theta-function Relations 39 1 1 Introduction and Motivation The classical dynamics of monopoles was found to be intimately related to quantum gauge theories in three [1, 2, 3] and four [4] dimensions.
    [Show full text]
  • Residues, Duality, and the Fundamental Class of a Scheme-Map
    RESIDUES, DUALITY, AND THE FUNDAMENTAL CLASS OF A SCHEME-MAP JOSEPH LIPMAN Abstract. The duality theory of coherent sheaves on algebraic vari- eties goes back to Roch's half of the Riemann-Roch theorem for Riemann surfaces (1870s). In the 1950s, it grew into Serre duality on normal projective varieties; and shortly thereafter, into Grothendieck duality for arbitrary varieties and more generally, maps of noetherian schemes. This theory has found many applications in geometry and commutative algebra. We will sketch the theory in the reasonably accessible context of a variety V over a perfect field k, emphasizing the role of differential forms, as expressed locally via residues and globally via the fundamental class of V=k. (These notions will be explained.) As time permits, we will indicate some connections with Hochschild homology, and generalizations to maps of noetherian (formal) schemes. Even 50 years after the inception of Grothendieck's theory, some of these generalizations remain to be worked out. Contents Introduction1 1. Riemann-Roch and duality on curves2 2. Regular differentials on algebraic varieties4 3. Higher-dimensional residues6 4. Residues, integrals and duality7 5. Closing remarks8 References9 Introduction This talk, aimed at graduate students, will be about the duality theory of coherent sheaves on algebraic varieties, and a bit about its massive|and still continuing|development into Grothendieck duality theory, with a few indications of applications. The prerequisite is some understanding of what is meant by cohomology, both global and local, of such sheaves. Date: May 15, 2011. 2000 Mathematics Subject Classification. Primary 14F99. Key words and phrases. Hochschild homology, Grothendieck duality, fundamental class.
    [Show full text]
  • SERRE DUALITY and APPLICATIONS Contents 1
    SERRE DUALITY AND APPLICATIONS JUN HOU FUNG Abstract. We carefully develop the theory of Serre duality and dualizing sheaves. We differ from the approach in [12] in that the use of spectral se- quences and the Yoneda pairing are emphasized to put the proofs in a more systematic framework. As applications of the theory, we discuss the Riemann- Roch theorem for curves and Bott's theorem in representation theory (follow- ing [8]) using the algebraic-geometric machinery presented. Contents 1. Prerequisites 1 1.1. A crash course in sheaves and schemes 2 2. Serre duality theory 5 2.1. The cohomology of projective space 6 2.2. Twisted sheaves 9 2.3. The Yoneda pairing 10 2.4. Proof of theorem 2.1 12 2.5. The Grothendieck spectral sequence 13 2.6. Towards Grothendieck duality: dualizing sheaves 16 3. The Riemann-Roch theorem for curves 22 4. Bott's theorem 24 4.1. Statement and proof 24 4.2. Some facts from algebraic geometry 29 4.3. Proof of theorem 4.5 33 Acknowledgments 34 References 35 1. Prerequisites Studying algebraic geometry from the modern perspective now requires a some- what substantial background in commutative and homological algebra, and it would be impractical to go through the many definitions and theorems in a short paper. In any case, I can do no better than the usual treatments of the various subjects, for which references are provided in the bibliography. To a first approximation, this paper can be read in conjunction with chapter III of Hartshorne [12]. Also in the bibliography are a couple of texts on algebraic groups and Lie theory which may be beneficial to understanding the latter parts of this paper.
    [Show full text]
  • Lectures on the Geometric Langlands Conjecture and Non-Abelian Hodge Theory
    Lectures on the geometric Langlands conjecture and non-abelian Hodge theory Ron Donagi Tony Pantev University of Pennsylvania Department of Mathematics Philadelphia, PA 19104-6395 2 Contents 1 Introduction 5 2 Review of the geometric Langlands conjecture 9 2.1 The geometric Langlands conjecture in general . .9 2.2 The geometric Langlands conjecture for GLn(C)................ 14 3 Higgs bundles, the Hitchin system, and abelianization 17 3.1 Higgs bundles and the Hitchin map . 17 3.2 Using abelianization . 19 4 The classical limit 27 4.1 The classical limit conjecture . 27 4.2 Duality of Hitchin systems . 29 5 Non-abelian Hodge theory 33 5.1 Results from non-abelian Hodge theory . 33 5.2 Using non-abelian Hodge theory . 36 6 Parabolic Higgs sheaves on the moduli of bundles 43 6.1 Wobbly, shaky, and unstable bundles . 43 6.2 On functoriality in non-abelian Hodge theory . 45 A Ind-schemes and smoothness 47 3 4 Contents Chapter 1 Introduction In these lectures which are a slightly expanded version of the survey [DP09a] we will focus on the aspects of the geometric Langlands Conjecture and that relate it to non abelian Hodge theory. This relation was unravelled in works by many mathematicians and physicists, but we will emphasize the point of view that evolved in a series of works by the authors, starting from the outline in [Don89], through the recent proof of the classical limit conjecture in [DP06], and leading to the works in progress [DP09b], [DPS09b], and [DPS09a]. The Langlands program is the non-abelian extension of class field theory.
    [Show full text]
  • Hypercohomologies of Truncated Twisted Holomorphic De Rham Complexes 3
    HYPERCOHOMOLOGIES OF TRUNCATED TWISTED HOLOMORPHIC DE RHAM COMPLEXES LINGXU MENG Abstract. We investigate the hypercohomologies of truncated twisted holomorphic de Rham complexes on (not necessarily compact) complex manifolds. In particular, we general- ize Leray-Hirsch, K¨unneth and Poincar´e-Serre duality theorems on them. At last, a blowup formula is given, which affirmatively answers a question posed by Chen, Y. and Yang, S. in [3]. 1. Introduction All complex manifolds mentioned in this paper are connected and not necessarily compact unless otherwise specified. Let X be a complex manifold. The de Rham theorem says that the cohomology Hk(X, C) with complex coefficients can be computed by the hypercohomology Hk • • (X, ΩX ) of the holomorphic de Rham complex ΩX . Moreover, if X is a compact K¨ahler F pHk X, C Hr,k−r X, C manifold, the Hodge filtration dR( )= ∂¯ ( ) on the de Rham cohomology rL≥p k C Hk ≥p HdR(X, ) is just the hypercohomology (X, ΩX ) of the truncated holomorphic de Rham ≥p complex ΩX , which plays a significant role in the Hodge theory. The Deligne cohomology is an important object in the research of algebraic cycles, since it connects with the intermediate Jacobian and the integeral Hodge class group. It has a strong relation with the singular ∗ Z H∗ ≤p−1 cohomology H (X, ) and the hypercohomology (X, ΩX ) of the truncated holomorphic ≤p−1 de Rham complex ΩX via the long exact sequence ··· / k−1 Z / Hk−1 ≤p−1 / k Z / k Z / Hk ≤p−1 / ··· H (X, ) (X, ΩX ) HD (X, (p)) H (X, ) (X, ΩX ) .
    [Show full text]
  • 6 Serre Duality
    6 Serre duality Recall the famous Poincar´eduality, which is a basic result on the structure of singular homology and cohomology groups of manifolds: Let X be an n-dimensional orientable closed manifold. Then for any integer i i,wehaveH (X, R) Hn i(X, R). ' − n i Thanks to the universal coefficient theorem, the right-hand-side is isomorphic to H − (X, R)_, the dual of the (n i)-th cohomology group. Assume that X is a smooth manifold. Then − one may interpret this duality as a perfect pairing as follows. Applying de Rham’s the- i i orem, one may identify H (X, R)=HdR(X, R), and hence, the composition of the cup product map and the integration map Hi(X, R) n i n ⇥ H − (X, R) H (X, R) R defined by (⌘,⇠) (⌘ ⇠) gives a perfect ! ! 7! X ^ pairing. R Since the sheaf cohomology generalizes the singular cohomology, we may expect there is an analogous “duality” theorem for varieties/schemes – at least, under mild assumptions on the underlying space. Serre duality is a special case of the duality called the coherent duality in a much general setting. It is based on earlier works in several complex variables, however, we will observe it algebraically. One di↵erence between the Poincar´eduality and the Serre duality is the role of the “dualizing sheaf”. We will see that the dualizing sheaf coincides with the canonical sheaf when the underlying space X is a nonsingular variety over an algebraically closed field. n First, we begin with the duality on the projective space.
    [Show full text]
  • Nonabelian Hodge Theory and Vector Valued Modular Forms
    Contemporary Mathematics Nonabelian Hodge theory and vector valued modular forms Cameron Franc and Steven Rayan Abstract. We examine the relationship between nonabelian Hodge theory for Rie- mann surfaces and the theory of vector valued modular forms. In particular, we explain how one might use this relationship to prove a conjectural three-term inequal- ity on the weights of free bases of vector valued modular forms associated to complex, finite dimensional, irreducible representations of the modular group. This conjecture is known for irreducible unitary representations and for all irreducible representations of dimension at most 12. We prove new instances of the three-term inequality for cer- tain nonunitary representations, corresponding to a class of maximally-decomposed variations of Hodge structure, by considering the same inequality with respect to a new type of modular form, called a \Higgs form", that arises naturally on the Dol- beault side of nonabelian Hodge theory. The paper concludes with a discussion of a strategy for reducing the general case of nilpotent Higgs bundles to the case under consideration in our main theorem. Contents 1. Introduction 1 2. Filtered objects 4 3. Vector valued modular forms 9 4. Nonabelian Hodge theory 10 5. New cases of the three-term inequality for PSL2(Z) 18 References 21 1. Introduction Suppose that Y is a hyperbolic orbifold curve uniformized by the complex upper half plane H, so that Y can be identified with a quotient Y = Γn H of H under the action of a discrete group of linear fractional transformations Γ. Assume that Γ is a Fuchsian group of the first kind, so that Y has finite volume and a finite number of cusps.
    [Show full text]