Natural Gas and Methane Hydrates

Total Page:16

File Type:pdf, Size:1020Kb

Natural Gas and Methane Hydrates Natural Gas and Methane Hydrates Report Number PH3/27 July 2000 This document has been prepared for the Executive Committee of the Programme. It is not a publication of the Operating Agent, International Energy Agency or its Secretariat. Title: Natural Gas and Methane Hydrates Reference number: PH3/27 Date issued: July 2000 Other remarks: Background to the Study The IEA Greenhouse Gas R&D programme (IEA GHG) is systematically evaluating the cost and potential of measures for reducing emissions of greenhouse gases arising from anthropogenic activities, especially the use of carbon dioxide capture and storage. Captured CO2 can be stored in geological reservoirs instead of being emitted to the atmosphere. Geological reservoirs that can be considered include: deep saline aquifers and depleted oil and gas fields. CO2 can also be injected into oil fields to enhance oil recovery (CO2-EOR) and into coal seams to enhance the release of methane (CO2-ECBM). In these the costs of storage are offset by product sales, making these storage options more attractive commercially. Another option that can be considered is the formation of CO2 hydrates. Analogous compounds, methane hydrates, are known to have existed for thousands of years in many parts of the world. Initial scientific evidence suggests that, under the appropriate conditions of temperature and pressure, CO2 hydrates form stable molecules, similar to methane hydrates. If CO2 can be stored in a similar manner, considerable quantities of CO2 could be sequestered. There are two options for CO2 storage as hydrates. The first is the direct formation of CO2 hydrates, perhaps on the ocean floor, whilst the second, and possibly more attractive, option is to combine CO2 storage with release of methane from hydrate deposits. If this approach could be achieved in practice, the storage option could be more attractive, in the same way as CO2-EOR or CO2-ECBM are more attractive than simple storage. Compared to the other storage options, knowledge on hydrate chemistry and the potential for storage of CO2 as hydrates is at an early stage of development. Hydrates are attracting considerable interest internationally and studies on the fundamental science of hydrates are now underway in many research laboratories throughout the world. To assist the international community in assessing this potential CO2 storage option, IEA GHG commissioned a small study to review the current state of knowledge about hydrates and determine where further information about CO2 storage as hydrates is needed (for example, information which could be obtained by appropriate research). This study entitled "Issues underlying the feasibility of storing CO2 as hydrate deposits" has been reported (Ph3/25) previously. A second, more extensive study to investigate the practicalities and potential for combining methane extraction from natural gas hydrates with CO2 storage has now been completed. This second study also focused on natural gas hydrate deposits in permafrost regions rather than sub sea hydrate deposits. Prof. Dendy Sloan of the Colorado School of Mines, USA, undertook this study. Results and Discussion The following areas are described in the report • A comparison of natural gas and methane hydrate reserves and resources • The composition of CO2 in natural gas reserves • The potential for exploitation of the methane hydrate resource • The potential for CO2 injection combined with methane extraction from natural gas hydrates • Costs of CO2 storage in methane hydrates i • Steps to be taken before CO2 enhanced methane hydrate extraction can be considered further. Comparison of natural gas and methane hydrate reserves and resources One of the initial objectives of the study was to compare natural gas and hydrates reserves1 and resources2 Natural gas current reserves are some 147 Trillion Cubic Metres (TCM) whilst the potential future natural gas resource could be as high as 137 TCM approximately twice the proven reserves. Estimates of the ultimate3 natural gas reserves vary between 300 and 450 TCM4. The estimated methane hydrate resource is about 21,000 TCM5. Putting this in perspective the estimated natural gas hydrate resource is about 75 times greater than current natural gas reserves and resources and some 50 times greater than ultimate natural gas resource estimates. It must, however, be noted that the estimates of methane hydrate resource are highly uncertain. Methane hydrates are widely dispersed throughout the world. Over 90% of the methane hydrates exist as finely dispersed particles on the ocean floor. The concentration of methane hydrates in the ocean sediments is typically as low as 3%. The remainder (<10%) occur in permafrost regions as hydrate capped gas reservoirs. These permafrost deposits are much more concentrated than the ocean hydrate resource. The consultant concluded that exploitation of the sea floor hydrate resource is not practical with current technology and the best option is exploitation of the permafrost hydrate resource. These findings were consistent with the conclusions in report Ph3/25. The composition of CO2 in natural gas reserves The composition of natural gas hydrates can be considered to be essentially methane. However, natural gas fields can have significant concentrations of CO2 present along with the natural gas. The average concentration of CO2 in natural gas reserves in different parts of the world is given in Table 1 below; it should be noted there can be considerable range about the mean. 1 Reserves are considered to be technically and economically recoverable with current technology and current gas prices. 2 Resources are less certain, but can be considered potentially recoverable with foreseeable technological and economic developments. 3 The ultimate resource is an estimated figure and reflects expert judgement on hydrocarbon reservoirs yet to be found and allowances for future changes in economic and operating conditions. 4 Survey of Energy Resources 1998, World Energy Council. 5 Natural gas hydrate resource figure given is on a gas equivalent basis ii Region Average CO2 content (%) North America 2.65 Latin Am. & Caribbean 2.43 Western Europe 2.20 Central & East. Europe 10.7 Former Soviet Union 9.39 Mid. East & N. Africa 5.48 Sub-Saharan Africa 5.93 Central Asia & China 17.5 Pacific OECD 9.20 Other Pacific Asia 12.68 South Asia 21.2 Table 1. CO2 concentration of known natural gas reserves. The data on CO2 concentration in conventional natural gas were considered to be approximate. The consultant identified that more accurate data will be available from a four-year US Geological Survey in mid-2000. It is worth noting that there are a few very large Malaysian reservoirs with very high 6 CO2 content, such as Natuna , which contains 71% CO2. The Natuna field has gas reserves of 6.3 3 3 3 Tm , equivalent to 4.47 Tm of CO2 and 1.83 Tm of CH4. Burning the natural gas will therefore 3 generate some 1.83 Tm of CO2. Production of natural gas from the Natuna field will generate nearly 2.5 times more CO2 than will be produced from the utilisation of the natural gas. Bringing such gas fields into production will significantly increase CO2 emissions from this sector unless the CO2 is captured and stored. Exploitation of methane hydrate resource In order to determine the best exploitation route for the methane hydrate resource, a case study was examined of a permafrost hydrate resource. Of the options examined depressurisation was considered to be the most practical and economical method for dissociation of the hydrate. Gas production rates from the field were estimated by modelling the depressurisation technique in a hydrate dissociation model. These gas production rates were used in an economic assessment of methane hydrate extraction. This economic analysis concluded that the cost of gas extraction from permafrost methane hydrate reservoirs using depressurisation were comparable with the cost of extracting free gas from an as-yet-unexploited Arctic field. However, there is currently no exploitation of this permafrost hydrate resource, because there are natural gas reserves are available which are more technically and economically viable. For permafrost exploitation to take place a gas pipeline infrastructure will need to be installed in the permafrost regions, which will require a significant capital investment. Exploitation of the permafrost methane hydrate resource is not expected to begin before 2010 at the earliest. Potential for CO2 injection combined with methane extraction from natural gas hydrates The study investigated in depth the potential for methane extraction from a permafrost reservoir combined with CO2 injection and storage. The study examined the experimental work undertaken in four Japanese laboratories and concluded that the kinetics and thermodynamics for the displacement mechanism are, at best, on the margin of being sufficient for this application. 6 Barriers to overcome in the implementation of CO2 capture and storage (1), storage in disused oil and gas fields. Ph3/22, February 2000. iii It has been found that injecting CO2 would not extract all the methane from the methane hydrate. At best some 29% of the methane will remain in the hydrate phase7. The gas produced would, therefore, contain significant quantities of CO2, as soon as the injected gas had filled the void space. Early breakthrough of CO2 to the gas producing wells could, therefore, be expected. This would add to the field capital and operating costs because CO2 separation plant would be required for treating the produced gas. Costs of CO2 storage as methane hydrates. An initial economic analysis of CO2 storage combined with methane extraction was performed. The cost of storage was found to be extremely sensitive to the amount of methane that can be extracted. The theoretical maximum extraction potential was determined as 71%. However, in practise actual recovery rates were expected to be significantly lower, possibly as low as 5-10%. Storage costs were estimated for a range of extraction rates. The storage cost estimates are given in Table 2 overleaf for a range of displacement efficiencies.
Recommended publications
  • Temperature- and Pressure-Dependent Structural Transformation of Methane Hydrates in Salt Environments
    PUBLICATIONS Geophysical Research Letters RESEARCH LETTER Temperature- and pressure-dependent structural 10.1002/2016GL072277 transformation of methane hydrates Key Points: in salt environments • Under a low-pressure condition, the methane hydrate is decomposed Donghoon Shin1 , Minjun Cha2 , Youjeong Yang3, Seunghyun Choi1, Yesol Woo1 , through a rapid sublimation of water 4 5 6 6 7,8,9 1,3 from the surface of hydrate crystals Jong-Won Lee , Docheon Ahn , Junhyuck Im , Yongjae Lee , Oc Hee Han , and Ji-Ho Yoon • The hydrated salt of NaCl · 2H2O 1 undergoes a phase transition into a Department of Energy and Resources Engineering, Korea Maritime and Ocean University, Busan, South Korea, crystal growth of crystalline NaCl via 2Department of Energy and Resources Engineering, Kangwon National University, Chuncheon, South Korea, 3Department the migration of salt ions of Convergence Study on the Ocean Science and Technology, Ocean Science and Technology School, Korea Maritime and • The methane hydrate is fully Ocean University, Busan, South Korea, 4Department of Environmental Engineering, Kongju National University, Chungnam, decomposed in brine solutions at 5 6 temperatures above 252 K, the South Korea, Beamline Department, Pohang Accelerator Laboratory, Pohang, South Korea, Department of Earth System 7 eutectic point of NaCl · 2H2O Sciences, Yonsei University, Seoul, South Korea, Western Seoul Center, Korea Basic Science Institute, Seoul, South Korea, 8Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, South Korea, 9Department of Chemistry and Nano-Science, College of Natural Sciences, Ewha Womans University, Seoul, South Korea Supporting Information: • Supporting Information S1 Abstract Understanding the stability of volatile species and their compounds under various surface and Correspondence to: J.-H.
    [Show full text]
  • 1 2.6 Physical Chemistry and Thermal Evolution of Ices at Ganymede 1 C
    1 1 2.6 Physical Chemistry and Thermal Evolution of Ices at Ganymede 2 C. Ahrens, NASA Goddard Space Flight Center, Greenbelt, MD; [email protected] 3 A. Solomonidou, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA; & LEISA 4 – Observatoire de Paris, CNRS, UPMC Univ., Paris 06, Univ. Paris-Diderot, Meudon, France; 5 [email protected] 6 K. Stephan, Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany; 7 [email protected] 8 K. Kalousova, Charles University, Faculty of Mathematics and Physics, Department of Geophysics, 9 Prague, Czech Republic; [email protected] 10 N. Ligier, Institut d’Astrophysique Spatiale, Université Paris-Saclay, Orsay, France; 11 [email protected] 12 T. McCord, Bear Fight Institute, Winthrop, WA; [email protected] 13 C. Hibbitts, Applied Physics Laboratory, Johns Hopkins University, Laurel, MD; 14 [email protected] 15 16 Abstract 17 18 Ganymede’s surface is composed mostly of water ice and other icy materials in addition to minor non-ice 19 components. The formation and evolution of Ganymede’s landforms highly depend on the nature of the 20 icy materials as they present various thermal and rheological behaviors. This chapter reviews the 21 currently known thermodynamic parameters of the ice phases and hydrates reported on Ganymede, which 22 seem to affect the evolution of the surface, using mainly results from the Voyager and Galileo missions. 23 24 Keywords: Ganymede; Ices; Ices, Mechanical Properties; Experimental techniques; Geological 25 processes 26 27 1 Introduction 28 29 Icy bodies of the outer solar system, including satellites of the gas giants, harbor surface ices made of 30 volatile molecules, clathrates, and complex molecules like hydrocarbons.
    [Show full text]
  • Ethane Clathrate Hydrate Infrared Signatures for Solar System Remote Sensing E Dartois, F Langlet
    Ethane clathrate hydrate infrared signatures for solar system remote sensing E Dartois, F Langlet To cite this version: E Dartois, F Langlet. Ethane clathrate hydrate infrared signatures for solar system remote sensing. Icarus, Elsevier, 2021. hal-03159998 HAL Id: hal-03159998 https://hal.archives-ouvertes.fr/hal-03159998 Submitted on 4 Mar 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Ethane clathrate hydrate infrared signatures for solar system remote sensing. E. Dartois1, F. Langlet2, 1 Institut des Sciences Moléculaires d’Orsay, CNRS, Université Paris-Saclay, Bât 520, Rue André Rivière, 91405 Orsay, France e-mail: [email protected] 2 Institut d’Astrophysique Spatiale (IAS), UMR8617, CNRS, Université Paris-Saclay, Bât. 121, 91405 Orsay, France keywords: Planetary ices, IR spectroscopy, Clathrate hydrate, Ethane, Remote sensing To appear in Icarus Abstract their retention time scales in solar system bodies, and also mod- ify their release conditions. b=The hydrate term is sometimes Hydrocarbons such as methane and ethane are present in many used as a semantic shortcut to designate clathrate hydrates but solar system objects, including comets, moons and planets. The must not be confused neither with hydrates nor with ice mixtures interaction of these hydrocarbons with water ice at low temper- where a molecule is interacting with water ice and not necessar- atures could lead to the formation of inclusion compounds, such ily mediated via an ordered crystalline cage.
    [Show full text]
  • Structural and Kinetic Studies of Structure I Gas Hydrates Via Low Temperature X-Ray Diffraction and High Resolution Neutron Diffraction
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2013 Structural and Kinetic Studies of Structure I Gas Hydrates via Low Temperature X-Ray Diffraction and High Resolution Neutron Diffraction Susan Michelle Everett [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Other Materials Science and Engineering Commons Recommended Citation Everett, Susan Michelle, "Structural and Kinetic Studies of Structure I Gas Hydrates via Low Temperature X-Ray Diffraction and High Resolution Neutron Diffraction. " PhD diss., University of Tennessee, 2013. https://trace.tennessee.edu/utk_graddiss/1718 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Susan Michelle Everett entitled "Structural and Kinetic Studies of Structure I Gas Hydrates via Low Temperature X-Ray Diffraction and High Resolution Neutron Diffraction." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Materials Science and Engineering. Claudia
    [Show full text]
  • Thermodynamic Studies on CO2 Capture Through Gas Hydrate Formation Technology
    Thermodynamic Studies on CO2 Capture through Gas Hydrate Formation Technology Poorandokht Ilani-Kashkouli MSc. Analytical Chemistry (Shiraz University, Shiraz, Iran, (Sept2009-Jan2012)) This dissertation (ENNO8RPH1) is submitted for the degree of doctorate of philosophy in Engineering (Ph.D. Eng) in the School of Chemical Engineering at the University of KwaZulu- Natal. Supervisor: Prof. Deresh Ramjugernath Co-supervisor(s): Prof. Amir H. Mohammadi, Dr. Paramespri Naidoo April 2015 Declaration I, Poorandokht Ilani-Kashkouli, declare that: i. The research reported in this dissertation, except where otherwise indicated is my original work. ii. This dissertation has not been submitted for any degree or examination at any university. iii. This dissertation does not contain other person’s data, pictures, graphs or other information, unless specifically acknowledged as being sourced from other persons. iv. This dissertation does not contain other person’s writing, unless specifically acknowledged as being sourced from other researchers. Where other written sources have been quoted then: a) Their words have been re-written but the general information attributed to them has been referenced; b) Where their exact words have been used, their writing has been placed inside quotation marks, and referenced. v. Where I have reproduced a publication of which I am an author or co-author I have indicated in detail which part of the publication was actually written by myself alone and have fully referenced such publications. vi. This dissertation does not contain text, graphics or tables copied and pasted from the internet, unless specifically acknowledged, and the source are detailed in the dissertation and in the References sections.
    [Show full text]
  • Carbon Dioxide Clathrate Hydrate Formation at Low Temperature. Diffusion-Limited Kinetics Growth As Monitored by FTIR E
    Carbon dioxide clathrate hydrate formation at low temperature. Diffusion-limited kinetics growth as monitored by FTIR E. Dartois1, F. Langlet2, 1 Institut des Sciences Moléculaires d’Orsay, CNRS, Université Paris-Saclay, Bât 520, Rue André Rivière, 91405 Orsay, France e-mail: [email protected] 2 Institut d’Astrophysique Spatiale (IAS), UMR8617, CNRS, Université Paris-Saclay, Bât. 121, 91405 Orsay, France keywords: Infrared: planetary systems; Planets and satellites: composition; Comets: general; Methods: laboratory: solid state; Solid state: volatile; Molecular processes To appear in Astronomy & Astrophysics Abstract tion in climate change if natural fields are destabilised (Riboulot et al. 2018). Carbon dioxide clathrate hydrate is of interest for The formation and presence of clathrate hydrates could influ- fundamental research on Earth, or for its potential use in green- ence the composition and stability of planetary ices and comets; house gas sequestration (Duc et al. 2007; House et al. 2006). they are at the heart of the development of numerous complex planetary models, all of which include the necessary condition In a planetary or astrophysical context, clathrate hydrates imposed by their stability curves, some of which include the are considered because they can retain volatile molecules at cage occupancy or host-guest content and the hydration number, pressures higher than the pure compound that would otherwise but fewer take into account the kinetics aspects. We measure sublimate under most astrophysical conditions, and/or influence the temperature-dependent-diffusion-controlled formation of the the geophysics of large bodies (e.g. Fortes & Choukroun 2010; carbon dioxide clathrate hydrate in the 155-210 K range in or- Choukroun et al.
    [Show full text]
  • Planetary & Solar System Sciences
    EGU General Assembly 2012 EGU General Assembly 2012 Programme Group Programme PS – Planetary & Solar System Sciences Monday, 23 April ........................................................................................................................................................................ 2 PS1.1 ........................................................................................................................................................................................ 2 PS2.2 ........................................................................................................................................................................................ 2 GD1.1/PS2.7 .............................................................................................................................................................................. 3 PS3.3 ........................................................................................................................................................................................ 4 PS5.3/ST6.4 ............................................................................................................................................................................... 4 ST2.4/PS5.4 ............................................................................................................................................................................... 6 Tuesday, 24 April ......................................................................................................................................................................
    [Show full text]
  • Clathrate Desalination Plant, Preliminary Research Study
    CLATHRATE DESALINATION PLANT PRELIMINARY RESEARCH STUDY BY Richard A. McCormack Richard K. Andersen 8 Thermal Energy Storage, Inc. 6335 Ferris Square, Suite E San Diego, California 92121 Contract No. 1425-3-CR-81-19520 Water Treatment Technology Program Report No. 5 June 1995 U.S. DEPARTMENT OF THE INTERIOR Bureau of Reclamation Technical Service Center Water Treatment Engineering and Research Group Form Approved REPORT DOCUMENTATION PAGE Oh48 No. 0704-0188 0~15 Highway. SUW ‘X4. crlln9ton. V4 22202-4302. and 10 the OfWe 01 Management and Budget. Paperwork Reducteon PrOJecr (07040188). Washington, DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED 5. FUNDING NUMBERS CLATHRATE DESALINATION PLANT PRELIMINARY RESEARCH STUDY Contract No. 1425-3-CR-81-19520 6. AUTH%(S) Richard A. McCormack Richacd K. Andersen I : ! 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS Thermtil Energy Storage, Inc. 6335 Ferris Square, Suite E San Diego, CA 92121 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS 10. SPONSORlNG/MONlTORlNG AGENCY REPORT NUMBER Bureau of Reclamation Denver Federal Center Water Treatment PO Box 25007 Technology Program Denver, CO 80225-0007 Report No. 5 11. SUPPLEMENTARY NOTES t 12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE Available from the National Technical Information Service, I Operations Division, 5285 Port Royal Road, Springfield, 1 Virginia 22161 ! 1 t / t j 13. ABSTRACT (Maxrmvm 200 words) jThis report presents preliminary research, design, and cost estimates for a clathrate 1 ifreeze desalination method and system. A clathrate former is injected through the linner pipe of a submerged pipeline to a predetermined ocean depth at which the ocean itemperature is less than the clathrate forming temperature.
    [Show full text]
  • Experimental Study of Gas Hydrate Formation and Destabilisation Using a Novel High-Pressure Apparatus
    Marine and Petroleum Geology Archimer June 2010, Volume 27, Issue 6, Pages 1157-1165 http://archimer.ifremer.fr http://dx.doi.org/10.1016/j.marpetgeo.2010.03.002 © 2010 Elsevier Ltd All rights reserved. ailable on the publisher Web site Experimental study of gas hydrate formation and destabilisation using a novel high-pressure apparatus L. Ruffinea, *, J.P. Donvala, J.L. Charloua, A. Cremièrea and B.H. Zehnderb a IFREMER, Centre de Brest, Département de Géosciences Marines, 29280 Plouzané, France b SITEC-Sieber Engineering AG, Aschbach 621, CH – 8124 Maur, Switzerland *: Corresponding author : L. Ruffine, Tel.: +33 2 98 22 48 88; fax: +33 2 98 22 45 70, email address : [email protected] blisher-authenticated version is av Abstract: A novel variable-volume type high-pressure apparatus has been designed, constructed and used for gas hydrate investigations. The apparatus has an operating temperature ranging from 253 K to 473 K and pressure ranging from 0.1 MPa to 60 MPa. Its central component consists of a viewing windows cell to which several sensors or analytical instruments can be connected. At its present configuration, a Raman spectrometer and a gas chromatograph are connected for the study of the liquid (or solid) and the gas phases respectively. The apparatus was used for the study of two different systems. The first system was composed of carbon dioxide (CO2) and water for which the hydrate formation and dissolution has been investigated by injecting water into liquid CO2. The evolution of the system was monitored by means of visual observation in combination with Raman spectroscopy.
    [Show full text]
  • Rsc Cp C1cp21856e 1..8
    View Online / Journal Homepage / Table of Contents for this issue PCCP Dynamic Article Links Cite this: Phys. Chem. Chem. Phys., 2011, 13, 19765–19772 www.rsc.org/pccp PAPER Clathrate hydrate formation after CO2–H2O vapour deposition Christian Mitterdorfer,a Marion Bauerb and Thomas Loerting*a Received 8th June 2011, Accepted 8th September 2011 DOI: 10.1039/c1cp21856e We study vapour condensation of carbon dioxide and water at 77 K in a high-vacuum apparatus, transfer the sample to a piston-cylinder apparatus kept at 77 K and subsequently heat it at 20 MPa to 200 K. Samples are monitored by in situ volumetric experiments and after quench-recovery to 77 K and 1 bar by powder X-ray diffraction. At 77 K a heterogeneous mixture of amorphous solid water (ASW) and crystalline carbon dioxide is produced, both by co-deposition and sequential deposition of CO2 and H2O. This heterogeneous mixture transforms to a mixture of cubic structure I carbon dioxide clathrate and crystalline carbon dioxide in the temperature range 160–200 K at 20 MPa. However, no crystalline ice is detected. This is, to the best of our knowledge, the first report of CO2 clathrate hydrate formation from co-deposits of ASW and CO2. The presence of external CO2 vapour pressure in the annealing stage is not necessary for clathrate formation. The solid–solid transformation is accompanied by a density increase. Desorption of crystalline CO2 atop the ASW sample is inhibited by applying 20 MPa in a piston-cylinder apparatus, and ultimately the clathrate is stabilized inside layers of crystalline CO2 rather than in cubic or hexagonal ice.
    [Show full text]
  • Copyright © 2020 by Yutong Liu
    FACTORS AFFECTING GREENHOUSE GAS PRODUCTION AND ENRICHMENT OF NOVEL MICROORGANISMS FROM S1 BOG, MINNESOTA A Thesis Presented to The Academic Faculty By Yutong Liu In Partial Fulfillment of the Requirements for the Degree Master of Science in Civil and Environmental Engineering Georgia Institute of Technology May 2020 COPYRIGHT © 2020 BY YUTONG LIU FACTORS AFFECTING GREENHOUSE GAS PRODUCTION AND ENRICHMENT OF NOVEL MICROORGANISMS FROM S1 BOG, MINNESOTA Approved by: Dr. Joel Kostka, Co-Advisor School of biological Sciences Georgia Institute of Technology Dr. Spyros Pavlostathis, Co-Advisor School of Civil and Environmental Engineering Georgia Institute of Technology Dr. Joe Brown School of Civil and Environmental Engineering Georgia Institute of Technology Date Approved:04/23/2020 ACKNOWLEDGEMENTS First of all, I would like to thank my parents for supporting me and always encouraging me on my academic journey. Thank you so much for giving me umlimited love and care. I would like to regard this thesis article as a gift for your always support. Also, thank you for my relatives who supported me in many different ways, always in the deep of my heart. Much appreciation to my advisor, Dr. Joel Kostka. Thank you so much for providing me the excellent chance to work in your lab. You provided me the best academic environment you can; You always give me useful instructions when I have a difficult time and thank you for your patience and kindness. You care about me not only academically but also in my daily life. I really enjoy working and experiencing my Master’s journey with you. I would like to also thank my academic advisor, who is also my Master’s thesis co-advisor, Dr.
    [Show full text]
  • Carbon Isotope Fractionation During the Formation of CO2 Hydrate and Equilibrium Pressures of 12CO2 and 13CO2 Hydrates
    molecules Article Carbon Isotope Fractionation during the Formation of CO2 12 Hydrate and Equilibrium Pressures of CO2 and 13 CO2 Hydrates Hiromi Kimura 1, Go Fuseya 1 , Satoshi Takeya 2 and Akihiro Hachikubo 3,* 1 Kitami Institute of Technology, Graduate School of Engineering, 165 Koen-cho, Kitami 090-8507, Japan; [email protected] (H.K.); [email protected] (G.F.) 2 National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), Central 5, Higashi 1-1-1, Tsukuba 305-8565, Japan; [email protected] 3 Environmental and Energy Resources Research Center, Kitami Institute of Technology, 165 Koen-cho, Kitami 090-8507, Japan * Correspondence: [email protected] Abstract: Knowledge of carbon isotope fractionation is needed in order to discuss the formation and dissociation of naturally occurring CO2 hydrates. We investigated carbon isotope fractionation during 12 13 CO2 hydrate formation and measured the three-phase equilibria of CO2–H2O and CO2–H2O systems. From a crystal structure viewpoint, the difference in the Raman spectra of hydrate-bound 12 13 13 CO2 and CO2 was revealed, although their unit cell size was similar. The δ C of hydrate-bound CO2 was lower than that of the residual CO2 (1.0–1.5‰) in a formation temperature ranging between 226 K and 278 K. The results show that the small difference between equilibrium pressures of Citation: Kimura, H.; Fuseya, G.; 12 13 ~0.01 MPa in CO2 and CO2 hydrates causes carbon isotope fractionation of ~1‰. However, the Takeya, S.; Hachikubo, A. Carbon 12 13 difference between equilibrium pressures in the CO2–H2O and CO2–H2O systems was smaller Isotope Fractionation during the than the standard uncertainties of measurement; more accurate pressure measurement is required Formation of CO2 Hydrate and 12 for quantitative discussion.
    [Show full text]