2020 Ghost Hunt List
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Art Matching
Art Matching Program Type: Demonstration or Classroom Audience Type: Grade 4–adult Program Description: Students explore how artists from different cultures have used art to represent space-related phenomena. Topics: Moon, space travel, art, stars, sky-watching Process Skills Focus: Critical thinking, observing, creativity. LEARNING OBJECTIVES For Next Generation Science Standards alignment, see end of outline. • Many artists are inspired by astronomy and the universe. • Cultures often have their own interpretations of the sky and celestial phenomena. • Art is one of many ways to capture our observations of and reflections on the sky. TIME REQUIRED Advance Prep Set Up Activity Clean Up 15 minutes 5 minutes 10 minutes 5 minutes SITE REQUIREMENTS • Table or other flat surface • Chairs (optional, but helpful for elderly or young audiences) Art Matching 1 Lenses on the Sky OMSI 2017 PROGRAM FORMAT Segment Format Time Introduction Large group discussion 2 min Art Matching Group Activity 5 min Wrap-Up Large group discussion 3 min SUPPLIES Permanent Supplies Amount Notes Laminated pages showing the artists 5 and their work Laminated cards showing 5 astronomical images ADVANCE PREPARATION • Print out, cut, and laminate the pages showing the artists and their work (at the end of the document). • Print out, cut, and laminate the five cards showing the astronomical images (at the end of the document). • Complete the activity to familiarize yourself with the process. SET UP Spread out the five pages showing the artists and their work on the table. Below the pages, place the five cards showing the astronomical objects. INTRODUCTION 2 minutes Let students speculate before offering answers to any questions. -
Multiband Counterparts of Two Eclipsing Ultraluminous X-Ray Sources in M 51
MNRAS 000,1{16 (2017) Preprint 5 November 2018 Compiled using MNRAS LATEX style file v3.0 Multiband counterparts of two eclipsing ultraluminous X-ray sources in M 51 R. Urquhart,1? R. Soria,2;1;3 H.M. Johnston,3 M.W. Pakull,4 C. Motch,4 A. Schwope,5 J.C.A. Miller-Jones1 and G.E. Anderson1 1International Centre for Radio Astronomy Research, Curtin University, GPO Box U1987, Perth, WA 6845, Australia 2National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China 3Sydney Institute for Astronomy, School of Physics A28, The University of Sydney, Sydney, NSW 2006, Australia 4Observatoire astronomique, Universit´ede Strasbourg, CNRS, UMR 7550, 11 rue de l'Universit´e,67000, Strasbourg, France 5Leibniz-Institut f¨urAstrophysik Potsdam, An der Sternwarte 16, 14482, Potsdam, Germany Accepted XXX. Received YYY; in original form ZZZ ABSTRACT We present the discovery and interpretation of ionized nebulae around two ultra- luminous X-ray sources in M 51; both sources share the rare property of show- ing X-ray eclipses by their companion stars, and are therefore prime targets for follow-up studies. Using archival Hubble Space Telescope images, we found an elon- gated, 100-pc-long emission-line structure associated with one X-ray source (CXOM51 J132940.0+471237; ULX-1 for simplicity), and a more circular, ionized nebula at the location of the second source (CXOM51 J132939.5+471244; ULX-2 for simplicity). We observed both nebulae with the Large Binocular Telescope's Multi-Object Double Spectrograph. From our analysis of the optical spectra, we argue that the gas in the ULX-1 bubble is shock-ionized, consistent with the effect of a jet with a kinetic power of ≈2 ×1039 erg s−1. -
August 10Th 2019 August 2019 7:00Pm at the Herrett Center for Arts & Science College of Southern Idaho
Snake River Skies The Newsletter of the Magic Valley Astronomical Society www.mvastro.org Membership Meeting MVAS President’s Message August 2019 Saturday, August 10th 2019 7:00pm at the Herrett Center for Arts & Science College of Southern Idaho. Colleagues, Public Star Party follows at the I hope you found the third week of July exhilarating. The 50th Anniversary of the first Centennial Observatory moon landing was the common theme. I capped my observance by watching the C- SPAN replay of the CBS broadcast. It was not only exciting to watch the landing, but Club Officers to listen to Walter Cronkite and Wally Schirra discuss what Neil Armstrong and Buzz Robert Mayer, President Aldrin was relaying back to us. It was fascinating to hear what we have either accepted or rejected for years come across as something brand new. Hearing [email protected] Michael Collins break in from his orbit above in the command module also reminded me of the major role he played and yet others in the past have often overlooked – Gary Leavitt, Vice President fortunately, he is now receiving the respect he deserves. If you didn’t catch that, [email protected] then hopefully you caught some other commemoration, such as Turner Classic Movies showing For All Mankind, a spellbinding documentary of what it was like for Dr. Jay Hartwell, Secretary all of the Apollo astronauts who made it to the moon. Jim Tubbs, Treasurer / ALCOR For me, these moments of commemoration made reading the moon landing’s [email protected] anniversary issue from the Association of Lunar and Planetary Observers (ALPO) 208-404-2999 come to life as they wrote about the features these astronauts were examining – including the little craters named after the three astronauts. -
BRAS Newsletter August 2013
www.brastro.org August 2013 Next meeting Aug 12th 7:00PM at the HRPO Dark Site Observing Dates: Primary on Aug. 3rd, Secondary on Aug. 10th Photo credit: Saturn taken on 20” OGS + Orion Starshoot - Ben Toman 1 What's in this issue: PRESIDENT'S MESSAGE....................................................................................................................3 NOTES FROM THE VICE PRESIDENT ............................................................................................4 MESSAGE FROM THE HRPO …....................................................................................................5 MONTHLY OBSERVING NOTES ....................................................................................................6 OUTREACH CHAIRPERSON’S NOTES .........................................................................................13 MEMBERSHIP APPLICATION .......................................................................................................14 2 PRESIDENT'S MESSAGE Hi Everyone, I hope you’ve been having a great Summer so far and had luck beating the heat as much as possible. The weather sure hasn’t been cooperative for observing, though! First I have a pretty cool announcement. Thanks to the efforts of club member Walt Cooney, there are 5 newly named asteroids in the sky. (53256) Sinitiere - Named for former BRAS Treasurer Bob Sinitiere (74439) Brenden - Named for founding member Craig Brenden (85878) Guzik - Named for LSU professor T. Greg Guzik (101722) Pursell - Named for founding member Wally Pursell -
Arxiv:2012.09981V1 [Astro-Ph.SR] 17 Dec 2020 2 O
Contrib. Astron. Obs. Skalnat´ePleso XX, 1 { 20, (2020) DOI: to be assigned later Flare stars in nearby Galactic open clusters based on TESS data Olga Maryeva1;2, Kamil Bicz3, Caiyun Xia4, Martina Baratella5, Patrik Cechvalaˇ 6 and Krisztian Vida7 1 Astronomical Institute of the Czech Academy of Sciences 251 65 Ondˇrejov,The Czech Republic(E-mail: [email protected]) 2 Lomonosov Moscow State University, Sternberg Astronomical Institute, Universitetsky pr. 13, 119234, Moscow, Russia 3 Astronomical Institute, University of Wroc law, Kopernika 11, 51-622 Wroc law, Poland 4 Department of Theoretical Physics and Astrophysics, Faculty of Science, Masaryk University, Kotl´aˇrsk´a2, 611 37 Brno, Czech Republic 5 Dipartimento di Fisica e Astronomia Galileo Galilei, Vicolo Osservatorio 3, 35122, Padova, Italy, (E-mail: [email protected]) 6 Department of Astronomy, Physics of the Earth and Meteorology, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynsk´adolina F-2, 842 48 Bratislava, Slovakia 7 Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, H-1121 Budapest, Konkoly Thege Mikl´os´ut15-17, Hungary Received: September ??, 2020; Accepted: ????????? ??, 2020 Abstract. The study is devoted to search for flare stars among confirmed members of Galactic open clusters using high-cadence photometry from TESS mission. We analyzed 957 high-cadence light curves of members from 136 open clusters. As a result, 56 flare stars were found, among them 8 hot B-A type ob- jects. Of all flares, 63 % were detected in sample of cool stars (Teff < 5000 K), and 29 % { in stars of spectral type G, while 23 % in K-type stars and ap- proximately 34% of all detected flares are in M-type stars. -
Eclipse Newsletter
ECLIPSE NEWSLETTER The Eclipse Newsletter is dedicated to increasing the knowledge of Astronomy, Astrophysics, Cosmology and related subjects. VOLUMN 2 NUMBER 1 JANUARY – FEBRUARY 2018 PLEASE SEND ALL PHOTOS, QUESTIONS AND REQUST FOR ARTICLES TO [email protected] 1 MCAO PUBLIC NIGHTS AND FAMILY NIGHTS. The general public and MCAO members are invited to visit the Observatory on select Monday evenings at 8PM for Public Night programs. These programs include discussions and illustrated talks on astronomy, planetarium programs and offer the opportunity to view the planets, moon and other objects through the telescope, weather permitting. Due to limited parking and seating at the observatory, admission is by reservation only. Public Night attendance is limited to adults and students 5th grade and above. If you are interested in making reservations for a public night, you can contact us by calling 302-654- 6407 between the hours of 9 am and 1 pm Monday through Friday. Or you can email us any time at [email protected] or [email protected]. The public nights will be presented even if the weather does not permit observation through the telescope. The admission fees are $3 for adults and $2 for children. There is no admission cost for MCAO members, but reservations are still required. If you are interested in becoming a MCAO member, please see the link for membership. We also offer family memberships. Family Nights are scheduled from late spring to early fall on Friday nights at 8:30PM. These programs are opportunities for families with younger children to see and learn about astronomy by looking at and enjoying the sky and its wonders. -
Filter Performance Comparisons for Some Common Nebulae
Filter Performance Comparisons For Some Common Nebulae By Dave Knisely Light Pollution and various “nebula” filters have been around since the late 1970’s, and amateurs have been using them ever since to bring out detail (and even some objects) which were difficult to impossible to see before in modest apertures. When I started using them in the early 1980’s, specific information about which filter might work on a given object (or even whether certain filters were useful at all) was often hard to come by. Even those accounts that were available often had incomplete or inaccurate information. Getting some observational experience with the Lumicon line of filters helped, but there were still some unanswered questions. I wondered how the various filters would rank on- average against each other for a large number of objects, and whether there was a “best overall” filter. In particular, I also wondered if the much-maligned H-Beta filter was useful on more objects than the two or three targets most often mentioned in publications. In the summer of 1999, I decided to begin some more comprehensive observations to try and answer these questions and determine how to best use these filters overall. I formulated a basic survey covering a moderate number of emission and planetary nebulae to obtain some statistics on filter performance to try to address the following questions: 1. How do the various filter types compare as to what (on average) they show on a given nebula? 2. Is there one overall “best” nebula filter which will work on the largest number of objects? 3. -
MESSIER 13 RA(2000) : 16H 41M 42S DEC(2000): +36° 27'
MESSIER 13 RA(2000) : 16h 41m 42s DEC(2000): +36° 27’ 41” BASIC INFORMATION OBJECT TYPE: Globular Cluster CONSTELLATION: Hercules BEST VIEW: Late July DISCOVERY: Edmond Halley, 1714 DISTANCE: 25,100 ly DIAMETER: 145 ly APPARENT MAGNITUDE: +5.8 APPARENT DIMENSIONS: 20’ Starry Night FOV: 1.00 Lyra FOV: 60.00 Libra MESSIER 6 (Butterfly Cluster) RA(2000) : 17Ophiuchus h 40m 20s DEC(2000): -32° 15’ 12” M6 Sagitta Serpens Cauda Vulpecula Scutum Scorpius Aquila M6 FOV: 5.00 Telrad Delphinus Norma Sagittarius Corona Australis Ara Equuleus M6 Triangulum Australe BASIC INFORMATION OBJECT TYPE: Open Cluster Telescopium CONSTELLATION: Scorpius Capricornus BEST VIEW: August DISCOVERY: Giovanni Batista Hodierna, c. 1654 DISTANCE: 1600 ly MicroscopiumDIAMETER: 12 – 25 ly Pavo APPARENT MAGNITUDE: +4.2 APPARENT DIMENSIONS: 25’ – 54’ AGE: 50 – 100 million years Telrad Indus MESSIER 7 (Ptolemy’s Cluster) RA(2000) : 17h 53m 51s DEC(2000): -34° 47’ 36” BASIC INFORMATION OBJECT TYPE: Open Cluster CONSTELLATION: Scorpius BEST VIEW: August DISCOVERY: Claudius Ptolemy, 130 A.D. DISTANCE: 900 – 1000 ly DIAMETER: 20 – 25 ly APPARENT MAGNITUDE: +3.3 APPARENT DIMENSIONS: 80’ AGE: ~220 million years FOV:Starry 1.00Night FOV: 60.00 Hercules Libra MESSIER 8 (THE LAGOON NEBULA) RA(2000) : 18h 03m 37s DEC(2000): -24° 23’ 12” Lyra M8 Ophiuchus Serpens Cauda Cygnus Scorpius Sagitta M8 FOV: 5.00 Scutum Telrad Vulpecula Aquila Ara Corona Australis Sagittarius Delphinus M8 BASIC INFORMATION Telescopium OBJECT TYPE: Star Forming Region CONSTELLATION: Sagittarius Equuleus BEST -
Precollimator for X-Ray Telescope (Stray-Light Baffle) Mindrum Precision, Inc Kurt Ponsor Mirror Tech/SBIR Workshop Wednesday, Nov 2017
Mindrum.com Precollimator for X-Ray Telescope (stray-light baffle) Mindrum Precision, Inc Kurt Ponsor Mirror Tech/SBIR Workshop Wednesday, Nov 2017 1 Overview Mindrum.com Precollimator •Past •Present •Future 2 Past Mindrum.com • Space X-Ray Telescopes (XRT) • Basic Structure • Effectiveness • Past Construction 3 Space X-Ray Telescopes Mindrum.com • XMM-Newton 1999 • Chandra 1999 • HETE-2 2000-07 • INTEGRAL 2002 4 ESA/NASA Space X-Ray Telescopes Mindrum.com • Swift 2004 • Suzaku 2005-2015 • AGILE 2007 • NuSTAR 2012 5 NASA/JPL/ASI/JAXA Space X-Ray Telescopes Mindrum.com • Astrosat 2015 • Hitomi (ASTRO-H) 2016-2016 • NICER (ISS) 2017 • HXMT/Insight 慧眼 2017 6 NASA/JPL/CNSA Space X-Ray Telescopes Mindrum.com NASA/JPL-Caltech Harrison, F.A. et al. (2013; ApJ, 770, 103) 7 doi:10.1088/0004-637X/770/2/103 Basic Structure XRT Mindrum.com Grazing Incidence 8 NASA/JPL-Caltech Basic Structure: NuSTAR Mirrors Mindrum.com 9 NASA/JPL-Caltech Basic Structure XRT Mindrum.com • XMM Newton XRT 10 ESA Basic Structure XRT Mindrum.com • XMM-Newton mirrors D. de Chambure, XMM Project (ESTEC)/ESA 11 Basic Structure XRT Mindrum.com • Thermal Precollimator on ROSAT 12 http://www.xray.mpe.mpg.de/ Basic Structure XRT Mindrum.com • AGILE Precollimator 13 http://agile.asdc.asi.it Basic Structure Mindrum.com • Spektr-RG 2018 14 MPE Basic Structure: Stray X-Rays Mindrum.com 15 NASA/JPL-Caltech Basic Structure: Grazing Mindrum.com 16 NASA X-Ray Effectiveness: Straylight Mindrum.com • Correct Reflection • Secondary Only • Backside Reflection • Primary Only 17 X-Ray Effectiveness Mindrum.com • The Crab Nebula by: ROSAT (1990) Chandra 18 S. -
Messier Objects
Messier Objects From the Stocker Astroscience Center at Florida International University Miami Florida The Messier Project Main contributors: • Daniel Puentes • Steven Revesz • Bobby Martinez Charles Messier • Gabriel Salazar • Riya Gandhi • Dr. James Webb – Director, Stocker Astroscience center • All images reduced and combined using MIRA image processing software. (Mirametrics) What are Messier Objects? • Messier objects are a list of astronomical sources compiled by Charles Messier, an 18th and early 19th century astronomer. He created a list of distracting objects to avoid while comet hunting. This list now contains over 110 objects, many of which are the most famous astronomical bodies known. The list contains planetary nebula, star clusters, and other galaxies. - Bobby Martinez The Telescope The telescope used to take these images is an Astronomical Consultants and Equipment (ACE) 24- inch (0.61-meter) Ritchey-Chretien reflecting telescope. It has a focal ratio of F6.2 and is supported on a structure independent of the building that houses it. It is equipped with a Finger Lakes 1kx1k CCD camera cooled to -30o C at the Cassegrain focus. It is equipped with dual filter wheels, the first containing UBVRI scientific filters and the second RGBL color filters. Messier 1 Found 6,500 light years away in the constellation of Taurus, the Crab Nebula (known as M1) is a supernova remnant. The original supernova that formed the crab nebula was observed by Chinese, Japanese and Arab astronomers in 1054 AD as an incredibly bright “Guest star” which was visible for over twenty-two months. The supernova that produced the Crab Nebula is thought to have been an evolved star roughly ten times more massive than the Sun. -
Investigating the Beehive Cluster with Gaia Blaise Whitesell — Astronomy Capstone 2019
Investigating the Beehive Cluster with Gaia Blaise Whitesell — Astronomy Capstone 2019 In this problem set, we will explore the capabilities of the publicly available data from Gaia DR2, which can be found at http://gea.esac.esa.int/archive/ or queried directly from within Python. We will focus on a single target: the Beehive cluster (M44, also known as Praesepe or NGC 2632). This open cluster is located at a distance of roughly 200 pc in the constellation Cancer with coordinates (α; δ) = (130:1°; 19:67°). We will download Gaia data in the vicinity of the cluster, select only the stars belonging to the cluster, and then characterize the properties of those stars in the cluster. 1. Getting Data For our analysis we need these columns from the Gaia DR2 database gaiadr2.gaia_source: source_id A numeric identifier for the object ra Right ascension (degrees) dec Declination (degrees) parallax Parallax (mas) pmra Proper motion in right ascension (mas/yr) pmdec Proper motion in declination (mas/yr) phot_g_mean_mag Magnitude in Gaia G band (mags) bp_rp Gaia BP–RP color (mags) Select objects within 4 degrees of the cluster center. At the rough distance of the Beehive cluster, how many parsecs does that correspond to? We want to include objects at least that far in front and behind the cluster. Since we don’t know distances as precisely, we should expand the range by a factor of 3 or 4 to avoid missing cluster stars. What parallaxes (in mas) does this distance range correspond to? Use those parallax values as conditions to exclude objects far away from the cluster. -
Curriculum Vitae - 24 March 2020
Dr. Eric E. Mamajek Curriculum Vitae - 24 March 2020 Jet Propulsion Laboratory Phone: (818) 354-2153 4800 Oak Grove Drive FAX: (818) 393-4950 MS 321-162 [email protected] Pasadena, CA 91109-8099 https://science.jpl.nasa.gov/people/Mamajek/ Positions 2020- Discipline Program Manager - Exoplanets, Astro. & Physics Directorate, JPL/Caltech 2016- Deputy Program Chief Scientist, NASA Exoplanet Exploration Program, JPL/Caltech 2017- Professor of Physics & Astronomy (Research), University of Rochester 2016-2017 Visiting Professor, Physics & Astronomy, University of Rochester 2016 Professor, Physics & Astronomy, University of Rochester 2013-2016 Associate Professor, Physics & Astronomy, University of Rochester 2011-2012 Associate Astronomer, NOAO, Cerro Tololo Inter-American Observatory 2008-2013 Assistant Professor, Physics & Astronomy, University of Rochester (on leave 2011-2012) 2004-2008 Clay Postdoctoral Fellow, Harvard-Smithsonian Center for Astrophysics 2000-2004 Graduate Research Assistant, University of Arizona, Astronomy 1999-2000 Graduate Teaching Assistant, University of Arizona, Astronomy 1998-1999 J. William Fulbright Fellow, Australia, ADFA/UNSW School of Physics Languages English (native), Spanish (advanced) Education 2004 Ph.D. The University of Arizona, Astronomy 2001 M.S. The University of Arizona, Astronomy 2000 M.Sc. The University of New South Wales, ADFA, Physics 1998 B.S. The Pennsylvania State University, Astronomy & Astrophysics, Physics 1993 H.S. Bethel Park High School Research Interests Formation and Evolution