Intelligent Transportation Systems

Selected Broadcast & Cellular Systems for Transportation Prof. Dr. Thomas Strang Lecture Intelligent Transport Systems, Prof. Dr. Thomas Strang, SS 2010 Outline Exemplary Cellular Services for Transportation Exemplary Cellular Servicesfor Exemplary Broadcast Servicesfor Transportation Classification Scheme eCall Transport Protocol ExpertsGroup(TPEG) (RDS) Radio DataSystem DGPS viaRDS RDS-TMC Lecture Intelligent Transport Systems, Prof. Dr. Thomas Strang, SS 2010 Networking types Wireless Interconnections Individuality – Delay – + Range + Scalability Broadcast Relevance o Individuality o Delay o Range o Scalability Cellular + Individuality + Delay Range – Scalability – Ad-hoc M. Röckl and T. Strang, 2009 Strang, T. and M. Röckl Lecture Intelligent Transport Systems, Prof. Dr. Thomas Strang, SS 2010 Broadcast Wireless Interconnections Disadvantages of broadcast: Disadvantages of Broadcast is superiortoothertechnologies to distributeinformationthat Why broadcast? Less appropriate todistribute individualized information Long delays Unidirectional (can becomplemented by cellular communication) data comprises large amountof is invariantfor a longertimeperiod, users, is relevantfora largenumberof Good scalability:usablewithmillions ofreceivers Long range:severalhundreds ofkilometerspossible M. Röckl and T. Strang, 2009 Strang, T. and M. Röckl Lecture Intelligent Transport Systems, Prof. Dr. Thomas Strang, SS 2010 (RDS) Radio Data Lecture Intelligent Transport Systems, Prof. Dr. Thomas Strang, SS 2010 Introduction toRDS per second added to an FM transmitted radiosignal an FM (87.5 MHz–108MHz) per secondadded to Structured datastream of673payload bit/s divided in11.4datagroups German “AutofahrerRundfunk Information(ARI)”system Hierarchical radio: low-bitrate digitaldataserviceforFM Standardized as CENELEC EN50067andIEC62106 First RDSreceiverspresented atIFA’87inBerlin RDS hasbeendeveloped inthe80’s asEuropean successor ofthe air introduced by Bosch/Blaupunkt in 1974 Bosch/Blaupunkt in air introducedby Requirements for RDSincluded backward-compatibility to ARI ARI: AM-signal at 57kHzsubcarrier toindicateannouncement on Lecture Intelligent Transport Systems, Prof. Dr. Thomas Strang, SS 2010 RDS Applications Five mostimportantapplications („basic RDSfeatures“): mobile reception mode with car r with car mobile reception mode volume adjustments etc. announcements from time to frequencies (as channel numbers)oftransmitters thesameprogr particular programme regional code, andnumberpermittingidentificationofbroadcaster and All 5are implementedeverywhere and intendedprimarily tobeused in Traffic Announcement (TA) flag Traffic Programme (TP)flag lists: Oneormorelists,eachofup to25 Alternative Frequency(AF) name Programme Service(PS) Programme Identification(PI) : Setifprogramme provides traffic : 16-bit codecontainingcountrysymbol, :

: Set during announcement to enable during announcementto Set : : 8 alphanumeric case-sensitivechars : 8

adios with automatedtuning functions features serving as „tuning aids“ „tuning as serving features Lecture Intelligent Transport Systems, Prof. Dr. Thomas Strang, SS 2010 RDS Applications(Cont‘d) disasters and hazardous chemical spills. disasters and emergency warningservices suchas national data for amount of by starttimeand datetoenable automatic on/off switchingofreceivers pop musicetc.) news, sport, current programmetype(e.g. mono, stereo) for thereceiver(e.g. Emergency Warning System (EWS) Emergency Warning System Radio Paging(RP) (RT) Radio Text Number (PIN) Programme Item (PTY) Programme Type Music Speech(MS)flag:Indicationwhethermusicor speech issent Decoder Information(DI) : 32or64characters oftextfordisplaybyreceivers : Paging function knownfrombeepersvia RDS : : Oneof31differentidentifiers to specifythe : Indicates one of a number ofoperatingmodes Indicates oneof : : Codeidentifying aparticularprogramme : Afeature using a very small Lecture Intelligent Transport Systems, Prof. Dr. Thomas Strang, SS 2010 PLANAT, Bundesamt für Umwelt, Schweiz Image: Excurse: DisasterManagement Cycle Disaster Pre- RDS-EWS Disaster Post- Lecture Intelligent Transport Systems, Prof. Dr. Thomas Strang, SS 2010 RDS Applications(Cont‘d) TA, PTYandPINoftheseservices for quickretuning,aswellTP, and AF broadcast servicesincludingPI transmit Traffic and Travel Information (TTI) messages and TravelInformation (TTI) transmit Traffic variable messagesigns DGPS messagesorcontrol of groups, e.g. available data still designed and implementedin be new applications to to receiversand associatedperipherals(e.g. printer) Traffic Message Channel (TMC): Popular adoption of theODA to Open DataApplication (ODA) Channel (TDC) Transparent Data Data channelforuseonlybybroadcaster In-House (IH): information (EON) Networks Enhanced Other Clock Time anddate(CT) : Reference time : Universal genericservicewhichpermits : : Providesfora continuousdatastream : cross-referencetoother Lecture Intelligent Transport Systems, Prof. Dr. Thomas Strang, SS 2010 0.03 Multiplex-Spectrum of BasebandSignal 7kz±2.5kHz ± 57 kHz RDS sub-carrier D. Kopitz and B. Marks. Source: RDS: The Radio DataSystem , Lecture Intelligent Transport Systems, Prof. Dr. Thomas Strang, SS 2010 Baseband Coding Structure Artech House, ISBN0-89006-744-9, 1999. Source: RDS: The Radio DataSystem , D.Kopitz and B. Marks. Lecture Intelligent Transport Systems, Prof. Dr. Thomas Strang, SS 2010 Error Protectionand Correction generator polynomial The codeisable tocorrectanysingleburstof aspanof5orlessbits The resultingcodehasthefollowing error-checkingcapabilities: Each transmitted26-bitblock does containa10bitCRCderivedwiththe spanning 11 bits,and about99,9%ofanylongerbursts Detects 100% error burstsspanning Correct allsingle anddoublebiterrorsinblock G(x) =x 10 + x 8 + x 7 + x 5 + x 4 ≤ + x 10 bits,99,8% of bursts 3 + 1 Lecture Intelligent Transport Systems, Prof. Dr. Thomas Strang, SS 2010 Flywheel Synchronization Mechanism receiver/decoder („flywheel sync“) group and blocksynchronisation in the system according to: an error-protectingcharacteristic preserving,blockspecificoffset the groupsorblocks. The purpose of adding the offset word is to provide a word is to The purposeof addingtheoffset Before transmission,theCRC checksumissubjecttoaddition (mod 2)of Data transmissionisfullysynchronous, andtherearenogapsbetween D groups B for type C, for type C, Agroups B A Block 1101 010000 0110 1101 00 0110 0110 00 00 1111 0011 10-bit Offset Words added to CRC to 10-bit OffsetWordsadded 0101 1010 00 Lecture Intelligent Transport Systems, Prof. Dr. Thomas Strang, SS 2010 Artech House, ISBN0-89006-744-9, 1999. Source: Message Format PI code RDS: The Radio DataSystem , D.Kopitz and B. Marks. 0 i group 104 bit 87.6 ms ≈ 87.6 contains PI code contains PI group positions within a fixed occupy same always in group 2 always in First blockalways Messages normally PTY and TPflags Lecture Intelligent Transport Systems, Prof. Dr. Thomas Strang, SS 2010 0A -group Example: Programme Service(PS)Name transmission channel overcome thechallenging this isamajor designcriteria to receiver – Obviously, data isbroadcasted in „chunks“and mustbeaccumulated at A totaloffourtype 0Agroupsarerequiredto transmitentirePSname Lecture Intelligent Transport Systems, Prof. Dr. Thomas Strang, SS 2010 Alternative Frequency (AF)Encoding 205 204 .. 2 1 206..255 0 Number Two listencodingmethods: Purpose: Facilitate theautomatic tuning. Method-B (> 25 alternatives): pairs of main transmitter + alternative 25 alternatives): pairsofmaintransmitter+ Method-B (> Method-A ( 1100 1101 1100 1100 0000 0010 0000 0001 .. 0000 0000 Binary Code ≤ 25alternatives):maintransmitter +alternatives list Not tobeused 107.9 MHz Carrier Frequency Filler Code for uneven # Filler Code for 87.7 MHz 87.6 MHz .. Special MeaningCodes Lecture Intelligent Transport Systems, Prof. Dr. Thomas Strang, SS 2010 Required DataRepetition Rates Any other 14A or14B 2A or2B 1A or1B 0A or0B Group types s hr sapefeiiiyt nelaetevrosknso messages of kinds needs various the the suit interleave to to flexibility ample is is, there xml uti:OFbodat D-M ihu o3groups/s to up RDS-TMC with Austria:ORFbroadcasts Example group;that of types various the of repetition of rhythm fixed no is There PI, PTY, TP, EON Features PI, PTY, TP, RT PI, PTY, TP, PIN Other applications PI, PS,PTY, TP, AF, TA, DI,MS Typicalof proportion 25% 10% 15% 10% transmitted groups ofthistype 40% (i.e. 4x0A/s) [Source: ResearchAndMarkets ] Lecture Intelligent Transport Systems, Prof. Dr. Thomas Strang, SS 2010 Traffic Message Channel (TMC) Traffic Message Coding at broadcaster-side needed Coding at Describing a trafficinformation event by: assist indynamic routeplanning Used to Given thecapacityofRDS,a maximum ofabout300TMCmessages/h! Receivers must beenabled to filteronly relevantmessages Language independentdigitally coded messages Objective: broadcastTrafficand TravelInformation(TTI) Universal event codes(upto 2048,currently ~1400) 16 bit) Local location codes(up toonly65.536 only– diversion Duration & Event (+parameters) parameters) Location (+ Lecture Intelligent Transport Systems, Prof. Dr. Thomas Strang, SS 2010 TMC /ALERT-Cmessages No arbitrary locations; instead,lookup infixedtable oflocations 8A -group Lecture Intelligent Transport Systems, Prof. Dr. Thomas Strang, SS 2010 Example Message would beencoded usingthefollowingelements: The message Pfaffenhofen exit U31 from the Holledau. Deviationrecommended via traffic between exit Pfaffenhofenandmotorwayinterchange Location Code Event Extend: 2fortwolocations backwardintheloctable Direction of event(+/-) Diversion (D) Duration (DP) Munich-Nuremberg, directionNuremberg,stationary Motorway A9 : 101for stationarytraffic : 1fordeviation being recommended : 0fornospecific duration : 12735 formotorwayinterchange Holledau : 1fornegative Lecture Intelligent Transport Systems, Prof. Dr. Thomas Strang, SS 2010 tables only? location lookup What doesitalsomean tohave xxxxxxxxx MFG Selbstverständlich stehe ich Ihnen Bitte setzenSiesichmit Ihrem dargestellt werden. nichterfasstenStra Locationkatalog und über werden digitalkodiert TMC vorliegen, wichtigsten TeilStraßennetzes. österreichischen Alle des Autobahnen, alle Schnellstraßen, alleBundesstraßen vorgegeben. ORF dem verkehrsrelevanten Ereignisse ist undEvent Location- einem fixen RDS-TMC basiertauf diese schon? Haben Sie Österreich). (Version 1.0- können, empfangen zu Österreich in Um TMC Ö3 strahltseit16.Oktober Lieber Ö3-Hörer! Answer of Ö3toaquestionfromtheaudience: 2002 TMC über die Ö3-Frequenz ab. Ö3-Frequenz die über 2002 TMC äde nVridn derkannI Händler in Verbindung - für weitere Rückfragen zur Verfügung. e Lne- eik-und Gemeindes ßen (Landes-, Bezirks- brauchen Sie die aktuelle Location Code CD Code aktuelle Location die brauchen Sie versendet. NurVerkehrsbehinderungen auf denvom und eine Auswahl wichtiger Landesstraßen - somit den somit und eine wichtiger Landesstraßen- Auswahl geographischen Punkte und katalog. DieSummeder geographischenPunkte Der österreichische Locationkatalog umfasst alle umfasst österreichische Locationkatalog Der Verkehrsbehinderungen, die hnen dieaktuellsteL-CD besorgen. traßen) können über TMC nicht traßen) könnenüberTMC der ORF-Verkehrsredaktion Lecture Intelligent Transport Systems, Prof. Dr. Thomas Strang, SS 2010 Security in TMC described at using an encryptedversionofthelocationtable quality TMC services(stillintheboundaries of thetechnicalcapabilities) Lack ofsecurity mechanism allows crazythings such astheones Some serviceproviders(e.g. private radiocompanies)sell„better“ TMC services isprovidedfree-of-charge The majorityof http://dev.inversepath.com/rds/cansecwest_2007.pdf Lecture Intelligent Transport Systems, Prof. Dr. Thomas Strang, SS 2010 There are several systems with global coverage: There areseveralsatellitenavigation systems Excurse: Global Navigation SatelliteSystems(GNSS) COMPASS (intheFuture) GALILEO (inthe future) GLONASS GPS civilian & public regulated civilian & 5 basicservices: Europe; Russia; military 2 basicservices USA; military 4 nav+1SAR-com Lecture Intelligent Transport Systems, Prof. Dr. Thomas Strang, SS 2010 The of the3unknowns determination requires thereceptionof thesignals Principle ofGNSS:Ranging of 3navigation satellites navigation signals fromthesatellitetoreceiver SatNav isbasedonthemeasurement ofthepropagationdelay ranges“ betweensatelliteand receiveraredetermined Ranging X R , Y R , Z R based onthemeasured ρ 1 time ρ 2 delays, so-called„pseudo X R , Y Æ R δ , Z t ρ 1 3 , δ R t Æ ρ 2 , i δ ρ = cδ t 1 3 , ρ 2 , t ρ i 3 Lecture Intelligent Transport Systems, Prof. Dr. Thomas Strang, SS 2010 Principle ofGNSS:Ranging Solution Problem: distance (in 1 distance (in to theclocksofsatellites ispracticallyimpossible which satellite’s clocks- Use signals of 4 different satellites to determine 3Dposition 4 differentsatellitesto Use signalsof A timeuncertaintyof1nsmeans 30cmin Hence, the receiver‘sclockisoffset withrespect the be synchronised to Receiver hasto μ s thesignaltravels300m)! ρ 1 ρ 2 ρ 3 ρ 4 Lecture Intelligent Transport Systems, Prof. Dr. Thomas Strang, SS 2010 Sources ofGNSSerrors Lecture Intelligent Transport Systems, Prof. Dr. Thomas Strang, SS 2010 Error MitigationbyAugmentation Wide Area Augmentation System Wide AreaAugmentation Monitoring Network correction Ground based data correction data Local Augmentation System Local Augmentation Monitor Station correction local data regional station DGPS … Lecture Intelligent Transport Systems, Prof. Dr. Thomas Strang, SS 2010 DGPS as RDS-ODApayload plctosta r iie o±1..5maccuracy applications that arelimitedto± manufacturers and areusedasa guideline for DGPSviaRDS No standardized mapping, split/reconstruct/mapping is proprietary! No standardized mapping, split/reconstruct/mapping is Example: RTCM formatitselfisunsuitable for RDSduetoexcessivebandwidth The lowdataratesofferedby RDSaresuitableonlyforDGPS RTCM SC-104DGPSprotocol formatiswidely used byGPS 333 bits asODA payload, split and independent of other sats. be possible Such message for9satellites (680bits) iscompressed to9x37= Type 1RTCM message (mostfrequentone) is500..700bitslong (recall: one ODAgroup typeA(e.g.11A)cancarry 37payload bits) 5maccuracy, 20-50bpswithinRDS-ODA sufficient To achieve± Compression (and decompression atreceiver)required several centimeters would Confer, ate.g.2.400bpsanaccuracy of Lecture Intelligent Transport Systems, Prof. Dr. Thomas Strang, SS 2010 Literature http://www.amazon.de/Rds-Radio-System-Artech-Telecommunications/dp/0890067449 Lecture Intelligent Transport Systems, Prof. Dr. Thomas Strang, SS 2010 Group (TPEG) Transport Protocol Experts Lecture Intelligent Transport Systems, Prof. Dr. Thomas Strang, SS 2010 Overview TPEG and Travel Information (TTI) and TravelInformation Services Association (TISA) project led byBMW Supported by TPEG Groupand TMCForumhavemerged to Broadcast transmissionof Standardized by CENandISO Founded in1998by Transport ProtocolExpertsGroup (TPEG) mobile.info European BroadcastingUnion (EBU) language-independent multi-modal in 2008 No. of layer 7 1 2 3 4 5 6 ISO/OSI refmodel Presentation Application Data Link Transport Physical Network Session Traveller Information • • • • Encryption Multiplexing Information encoding Error detection/correction TPEG protocol specification Arbitrary bearer M. Röckl and T. Strang, 2009 Strang, T. and M. Röckl TPEG Traffic Lecture Intelligent Transport Systems, Prof. Dr. Thomas Strang, SS 2010 TPEG mobile.info: TPEG Automotive M. Röckl and T. Strang, 2009 Strang, T. and M. Röckl Lecture Intelligent Transport Systems, Prof. Dr. Thomas Strang, SS 2010 Drawbacks of RDS-TMC TPEG No extensibility No encryption, authentication) security mechanisms(e.g. message No pre-defined location table location referencingaccordingto Static time Max. 300messagesata 2 Pre-defined eventdescriptions(max. data rate(~100byte/s) Low single bearer (RDS) a Limited to Application Public Transport Information Transport Public 11 11 Road Traffic Information Road Traffic types of events) types of Weather InformationWeather Bearer RDS-TMC TMC RDS GSM/UMTS Bearer independent Extensible (applicationplugins) Optional message encryption Dynamic locationreferencing Extensible eventtypes High data rates (depend on bearer) Variable number ofmessages DAB TPEG TPEG DMB Internet M. Röckl and T. Strang, 2009 Strang, T. and M. Röckl … Lecture Intelligent Transport Systems, Prof. Dr. Thomas Strang, SS 2010 Applications TPEG … (more will bedefined in thefuture) Parking Information PKI – Compact Event Traffic TEC – Public TransportInformation PTI – Messages Traffic Road RTM – Timetable changes for busses, trains, ferries, planes, etc. ferries, busses, trains, Timetable changes for Dynamic: Parking space availability Dynamic: Parking Static: Parking area information roadworks, accidents) tra road Event-driven messages for ffic information(e.g. congestion, M. Röckl and T. Strang, 2009 Strang, T. and M. Röckl Lecture Intelligent Transport Systems, Prof. Dr. Thomas Strang, SS 2010 Message Management Message format TPEG … Frame TPEG-Message Message Management Event Container (e.g.RTM) Frame TPEG-Message Multiplexed data stream Multiplexed data Event Container (e.g.PKI) TPEG-Message Location Container TPEG-Message Location Container M. Röckl and T. Strang, 2009 Strang, T. and M. Röckl … Lecture Intelligent Transport Systems, Prof. Dr. Thomas Strang, SS 2010 MID Message Management Container TPEG Equal format for all application types for Equal format (severity) parameters General specification of time(start&expiry times)andimportance MGT MET VER STA STO SEV UNV M. Röckl and T. Strang, 2009 Strang, T. and M. Röckl CRI Lecture Intelligent Transport Systems, Prof. Dr. Thomas Strang, SS 2010 Event Container TPEG congestion) container can bebasedondifferentkindsofapplication data: Extendable (additional applications can be defined) Extendable (additional applicationscanbe Events canbe linked withcause-effectrelation (accidentcauses Depending on thetypeofapplication (RTM, PKI, TEC,…)theevent T Road TrafficMessages RTM – lots) Points-of-Interest: e.g.parking (occupancy,numberoffreeparking Availability, delay Public transport: Individual transport: Accidents,congestion, road condition PKI – Parking Information Parking PKI – M. Röckl and T. Strang, 2009 Strang, T. and M. Röckl Lecture Intelligent Transport Systems, Prof. Dr. Thomas Strang, SS 2010 TPEG Automotive Profile(TAP) TPEG Parking Info (PKI): Parking Info (SPI): Speed Info Traffic Flow and Prediction (TFP): Traffic Weather(WEA): Local Hazard Warning(LHW): Traffic EventCompact(TEC): Profiles definefixedmessagety road, obstacles, “ghost driver”) slippery (e.g. Dangerous situations TMC Similar to roadworks, accidents) traffic information(e.g.congestion, road Event-driven messagesfor Occupancy, number of free parking lots speed restrictions E.g. temporal states of theroadnetwork Current andupcoming traffic Information about weather conditions pes for specific application fields (e.g. automotive) specific application fields(e.g. for pes

M. Röckl and T. Strang, 2009 Strang, T. and M. Röckl

standardization Currently in Currently Lecture Intelligent Transport Systems, Prof. Dr. Thomas Strang, SS 2010 Location Referencing TPEG On-The-Fly Pre-coded by specificcodes Definition: Identification ofparts Æ on demand(On-The-Fly) encoded dynamically Locations are E.g. pre-defined locationtables encoded using Locations are ..ra eto intr {functi roadsectionsignature = e.g. and optional attributes + mandatory WGS-84) inter-linked coordinates(e.g. Locations are encodedby asetof Map actsadynamic locationtable and decoding of locations isdifferent decoding of and problem ifmapdata forencoding Loc333-ext2-3km (e.g. ALERT-C in TMC): (AGORA-C inTPEG): onal road class, form-of-way, road onal roadclass, the roadnetworkandot Schneebauer,Referencing Location Wartenberg On-The-Fly (2007): Map 1 her geographic objects descriptor, driving direction} M. Röckl and T. Strang, 2009 Strang, T. and M. Röckl Map 2 … Loc 334 Loc 333 Loc 332 Table Location Lecture Intelligent Transport Systems, Prof. Dr. Thomas Strang, SS 2010 TMC/ALERT-C TPEG approaches, intersections, servicestations,bridges and tunnels Loc333, ext 2 Loc333, ext road network Æ Linear locations are encoded by their start location and direction (e.g. location and start their encoded by Linear locations are their predecessorandsuccessor onthe Location codesarelinkedto Distances between consecutive codes maybelargerthan10km 2 16 difficult tospecifyexactlocations pre-defined hierarchical-ordered location codes forhighway ) andtheextent oflocationstillthestoplocation (e.g. M. Röckl and T. Strang, 2009 Strang, T. and M. Röckl 3km) Lecture Intelligent Transport Systems, Prof. Dr. Thomas Strang, SS 2010 AGORA-C TPEG available message or safetyalert the spatial information) ondemand(on-the-fly) for information Can beusedas extensiontoALERT-Cwhen locationcodeisnot 98% hit ratewith35 bytelocation codes isfeasible (“ Small size meta Standardized of referencepoints + location description(i.e.set Flexible, dynamic geo-referencing of trafficandsafety-related C” = compact) – less than60bytes less = compact)– footprint M. Röckl and T. Strang, 2009 Strang, T. and M. Röckl of atraffic Lecture Intelligent Transport Systems, Prof. Dr. Thomas Strang, SS 2010 Location Container TPEG Different types: Coordinates Korean-Node-Link: Korean locationreferencing VICS-Link: Japaneselocation referencing AGORA-C: Onlythickclients TPEG-Loc: Thin(w/omaps,only text)orthick(withmaps)clients ALERT-C: TMClocationreferencing WGS-84 WGS-84 Location Type Expansion Radius of Mode Type List Mode Type Height Coordinates Descriptor No. 1 Default Language TPEG-Loc Code Management Message Frame Descriptor No. 2 TPEG-Loc Location Coordinates Event Container (e.g. RTM) Descriptor No. 3 M. Röckl and T. Strang, 2009 Strang, T. and M. Röckl TPEG-Message Add. Location Description Intersection Name TPEG-Loc Container Location Descriptor Lecture Intelligent Transport Systems, Prof. Dr. Thomas Strang, SS 2010 Encryption TPEG Symmetric encryption (=shared keys)withcascading key hierarchy for: prevent correlation attacks control word, Service data:en/decryption with mess Services: en-/decryption of data with ev included in Individual devices:devicekey service keys ages with temporary session keys ( ages with Unbehaun, Design forScholz (2007): KeyEfficient ery device, en-/decryption of management ery device, en-/decryption of control word has to be changed frequently to control wordhas to Encoder ofTraffic InformationServices control word ) M. Röckl and T. Strang, 2009 Strang, T. and M. Röckl Decoder Lecture Intelligent Transport Systems, Prof. Dr. Thomas Strang, SS 2010 Formats TPEG tpegML TPEG Binary: Multimedia Broadcast (DMB) Multimedia Broadcast For transmission over the Internet or XML encoding For transmissionover Binary encoding : Word Sync Length Field Frame Type Header CRC Digital Audio Broadcast (DAB) Digital AudioBroadcast Component ID Service Service ID Encryption ID Length Field TPEG Message Service Component Digital Video Broadcast (DVB) Digital Video Broadcast Frame CRC TPEG Message Service Component Service 256 … Data 4x10 M. Röckl and T. Strang, 2009 Strang, T. and M. Röckl … Service Component or 9 Frame TPEG Message Digital Lecture Intelligent Transport Systems, Prof. Dr. Thomas Strang, SS 2010 tpegML TPEG

M5 Somerset - Expect delays southbound Expect at Somerset - M5 severity_factor='&rtm31_3;'> start_time='2008-11-05T21:21:46+0' message_ge version_number='5' message_id='63329' roadworks location_type="&loc1_5;"> direction_type="&loc2_7;"/> descriptor="North descriptor_type="&loc3_25;" descriptor_type="&loc3_32;" descriptor_type="&loc3_24;" descriptor_type="&loc3_8;" latitude="51.4773" inator_name='BBC Travel'/> J19, Portishead,J19, becauseroadworks. of neration_time='2008-11-05T21:21:45+0' neration_time='2008-11-05T21:21:45+0'

Source: http://www.bbc.co.uk/travelne

Container

Event Event Location Container Location Management ws/tpeg/en/local/r Container M. Röckl and T. Strang, 2009 Strang, T. and M. Röckl Message

tm/rtm_tpeg.xml Road Traffic Message Traffic Road Lecture Intelligent Transport Systems, Prof. Dr. Thomas Strang, SS 2010 XSL Transformation TPEG <…> XSL …. <…> XSL Source: http://www.bbc.co.uk/travelne Stylesheets The expected delay is 1minute.” delay The expected There are roadworks (road signs southbound at J19, Portishead. J19, southbound at work) onM5 Somerset map links External ws/tpeg/en/local/r M. Röckl and T. Strang, 2009 Strang, T. and M. Röckl tm/rtm_tpeg.xml Lecture Intelligent Transport Systems, Prof. Dr. Thomas Strang, SS 2010 Networking types Recap: WirelessInterconnections Individuality – Delay – + Range + Scalability Broadcast Relevance o Individuality o Delay o Range o Scalability Cellular + Individuality + Delay Range – Scalability – Ad-hoc M. Röckl and T. Strang, 2009 Strang, T. and M. Röckl Lecture Intelligent Transport Systems, Prof. Dr. Thomas Strang, SS 2010 Cellular Wireless Interconnections Disadvantages of cellular: Disadvantages of Cellular is superiorto other technologies to distributeinformation that Why cellular? Requires addressing and link setup link Requires addressingand SIM-card management is not neglectible Expensive forend-user, particularifroaming data comprises medium amountof is relevantforspecific users(pointtopoint), receivers millions of Average scalability:usablewith coverage High penetration& Medium range: uptotensofkilometers tonextbasestation Lecture Intelligent Transport Systems, Prof. Dr. Thomas Strang, SS 2010 Example for use ofCellular: Lecture Intelligent Transport Systems, Prof. Dr. Thomas Strang, SS 2010 h iemtes-Golden Hour principle - Why timematters rate Death 100% 25% 50% 75% minutes 1 2 3 5 10 15 Dr. M. Cara, 1981 30 Heart stop Respiration stop 1 2 Massive Bleeding 5 10 15 hour Lecture Intelligent Transport Systems, Prof. Dr. Thomas Strang, SS 2010 eCall InformationFlow FSD: Full set of data FSD: Fullset MSD: Minimum ofdata set Line’s Fixed Mobile FSD 1-1-2 MSD Telecom operators PSAP: Public Safety Point Answering Center Call request Information To other Countries Database Central- PSAP 1-1-2 centres gency Emer- Room Control database AIRC Fire-fighter VIN Police Ambulance Lecture Intelligent Transport Systems, Prof. Dr. Thomas Strang, SS 2010 eCall Requirements for Cellular(GSM) eCall Requirements availability, bidirectionalpoint-to-point Robust and Reliable communication system with highdegree of Robust andReliable communication system No modificationstoexistingcellular networksshouldbenecessary Capability of MSDtransmissionwhenroamingabroad(usingfree112 call) Transmission of MSDmustbe Transmission of vehicleMSD(140bytes) In-band modems Out-of-bands modems SMS prioritized SMS transmission maybedelayedandnotprioritized Endorsed by 3GPPinthemeantime Data channels may notbeavailable everywhere, usually not But preferredby someinstitutions,suchas fast (<4sec)andreliable (acknowledged) simultaneously Steiger-Stiftung with voicecall Lecture Intelligent Transport Systems, Prof. Dr. Thomas Strang, SS 2010 eCall in-bandmodem withcellulararchitecture

[Werner et al., 2008] Lecture Intelligent Transport Systems, Prof. Dr. Thomas Strang, SS 2010 occurance reporting. detection Accident Accident minutes Range: hours - hours – Days before before time time and and Traditional timeline(phone callonly,withoutMSD) call, sec Set up 5 s 3,5 minutes window message setup, reception and evaluation at evaluation and reception setup, message window minutes 3,5 secs smis Tran time sion PSAP, forwarding to emergency rooms and dispatching. roomsand toemergency forwarding PSAP, 4 . 10 secs Arriving Answer Averag ing 5 – PSAP secs. = 7 at forwarding to 2nd 2nd to forwarding Evaluation and and Evaluation stage PSAPs/ control room. control 10 -90 secs -90 10 10 secs incomin answer answer 90% of control g calls within Psap/ stage stage room room 2nd 2nd Dispatch Dispatch 60 – 90 90 60 – time. secs [Source: PSAP Expert meeting on eCall, 2006] 6 – 15 minutes, 1st assesment Arriving at the atthe Arriving scene 10 secs incomin answer answer 90% of 90% control control g calls within room 1st assesment on the spot the 1st assesment on 2nd dispatching afterassessment, Dispatch 60 – 60 90 Time starts counting again. counting starts Time time. secs 6 – 15 minutes, 15 6 – 1st assesment Arriving at the the at Arriving scene Lecture Intelligent Transport Systems, Prof. Dr. Thomas Strang, SS 2010 Days –hoursDays - minutes PSAP Expert meeting PSAP Expert on eCall, 2006] [Source: time before detection Accident occurance and reporting. Range:

MSD timepotential

S

s

c

e

e

a

5

t

c

l

u

l

s

,

p

4

m

n

T

s

r

i

t

s

a

e i

m

s

n

c

i

s

s e

o

.

A

A

A

n

7

r

5

v

P

r

s

s

i

e

s

v

S

w

e

r

e

i

A

c

a

n

e

o

1

c

u

s

g

g

r

P

s

r

0

i

p

n

.

= e

a

a

S

g

t

v

t

o

c

o

e

c

l

1

n

u

i

d

7

t

m

c

e

i

f

E

o

o

m

o

n

1

P

o

v

n

c

r

t

u

t

r

s

0

i

w

a

o

r

S

o

o

n

n

a

e

w

o

t

l

n

a

a

o

A

u

u

s

2

t

n

c

i

e

i

t

g

r

e

m

t

a

t

P

n

f

d

c

r

e

d

h

d

e

c

o

t

u

d

t

s

.

s

i

i

h

s

n

o

l

p

r

a

/

e

a

o

g

n

r

s

o

n

f

e

w

p

c

s

l

i

e

e

a

e

m

P

r

v

l

t

c

l

i

i 2

i

.

M

s

n

i

m

n

a

n

1

n

a

a

9

a

g

l

S

c

0

l

r

e

d

n

p

0

s

t

o

o

i

D

t

s

/

%

o

s

i

i

o

s

c

m

w

s

m

w

,

n

e

t

o

m

a

i

i

c

o

e

e

t

n

n

o

h

g

s

f

r

,

t

g

f

i

e

r

n

o

l

D

D

6

6

i

0

s

i

0

s

p

p

a

a

9 t

c

9

t

0

c

h

0

h

s

t

s

e

i

t

m

S

e

i

m

c

c

i

s

e

m

s

e

.

.

u

l

t

a

n

e

o

u

A

s

A

r

r

r

d

6

r

1

i

6

v

i

1

i

s

v

s

i

s

n

p

i

t

n

t

1

g

a

a

1

g

a

5

t

s

5

a

c

s

a

s

m

h

t

s

m

e

t

i

e

t

n

i

s

t h

n

i

s

h

n

g

m

e

u

m

e

u

t

e

s

t e

e

s

e

n

c

s

n

c

e

s

t

,

e

t

,

n

n

e e Lecture Intelligent Transport Systems, Prof. Dr. Thomas Strang, SS 2010 Location accuracy required foreCall Location accuracy ehia esbe locnieigcs benefitaspects. technical feasible,alsoconsidering cost– Expectation when combined Galileo – GPS is available: is GPS Expectation whencombinedGalileo – PSAPs willmonitorthatandmodify theirrequirements when Natural migration tobetteraccuracyexpected. For thesakeofswiftimplementation. expertgroup 100mconsidered sufficient bytheeCall 50 – Also inproblem areas More accurate More robust. Lecture Intelligent Transport Systems, Prof. Dr. Thomas Strang, SS 2010 Why aiming for best accuracy? Why aimingforbest detected only after5 weeks! an example on London’s M25 orbitalringroad.Acar was A carcansimply vanishintotheshrub,afew yearsagotherewas Canyons andgorges inmountainouslikewise. away! may be10km what sideoftheditchorcanal At aditchorcanal,1meter will givetheproperdistinctionon connected to trafficcontrolsystemsinthefuture. Distinguish exactly thelanewhereincident occurred, tobe here! via thefastestpossibleroute; theGoldenHourprinciple counts Accurate routeguidance and pre-empting the routetoincident area. define search Last known positionas accurateaspossible to shore. floating on thesurface canrenderacartotallyinvisible from the A carcangetsubmersed withoutleaving a trace; thewaterplants the incidentoccurred,nextbridge Lecture Intelligent Transport Systems, Prof. Dr. Thomas Strang, SS 2010 Integrated Communication System Ensure that both112Voice andMSDreach thesamePSAP operator system. Vehicle-integrated communication Only PSAPoperatorcanterminate theeCall. Car should talk tothe PSAPoperator,notGSMmobile. To operatelongertermactivities (pursuits). To trytokeepthemconscious. To reassurepeople. lost from its bracket. lost fromits Solid mike &speaker Person can betrapped, notabletoreachthemobile if itis Mobile device could easilygetlostincaseofacrash. Lecture Intelligent Transport Systems, Prof. Dr. Thomas Strang, SS 2010 Minimum Set of Data, PSAP perspective Minimum SetofData, further development as technology improvesover time. for but expressthe need to consolidate agreed PSAPs PSAPs require the MSD dispatching seriousness andparallel data toassess additional services need PSAPs/emergency Being standardised by ISO/CEN Being standardised by Rescue. As definedinGST qualifier eCall Service provideridentifier Vehicle identification travel Location includingdirectionof Timestamp Lecture Intelligent Transport Systems, Prof. Dr. Thomas Strang, SS 2010 Performance criteria, PSAP perspective Timing Operational procedures Map accuracy the 2ndstagePSAP oremergencycontrolroom <10 Sec. Forreceiving theMSDand visualising the location <10 Sec. Forvoiceresponse Time toarriveon thelocationofemergency unit emergency Dispatching of Answering of incoming emergency callsfromthe112centre by Forwarding to 2ndstage PSAPoremergencycontrol room incoming calls Evaluation of emergency calls Answering incoming Each roadmusthaveaname Road naming– locallevel lowest Road geometry– measuredagainstWGS84 15 meters– Lecture Intelligent Transport Systems, Prof. Dr. Thomas Strang, SS 2010 ADAC eCallFieldStudy in2007 ful (93%) success- 773 834 calls, countries in 3 locations 450 at about (ÖAMTC-Wien, ADAC-Halleand ACI-Milano) Out of Test calls Using in-band GSM modemstotransmit MSDtonational call center Proof ofconcept,inparticular for cross-country aspects March-Mai 2007,Germany/Austria/Italy [Source: ADAC] Lecture Intelligent Transport Systems, Prof. Dr. Thomas Strang, SS 2010 ADAC eCall Field Study in 2007 (cont‘d) ADAC eCallFieldStudy in2007 which is significantly better thanearly requirements 94% of theeCalls reached thecallcenters within35seconds, [Source: ADAC] 1 eurmnsmr tign ntemeantime the stringent in more requirements 1 (85%)