Title : Hashing By: Ritu Chaturvedi

Total Page:16

File Type:pdf, Size:1020Kb

Title : Hashing By: Ritu Chaturvedi Title : Hashing By: Ritu Chaturvedi 1 1. Internal Hashing 2. Hash Tables 3. Hashing Functions 4. Collision resolution techniques: 4.1 Open Addressing: 4.1.1 Linear Probing: Primary Clustering 4.1.2 Quadratic Probing Secondary Handling Clustering Overflows 4.1.3 Random Probing 4.1.4 Double Hashing 4.2 Separate Chaining 5. External Hashing 6. Applications 7. Conclusion 2 1. Internal Hashing Data can be stored in the main memory as well as on Secondary memory. Tables Files 2. Hash Table is defined as a collection n rows (records) and each row has m columns (fields). Example: Table (4 X 5) Column 1 Column 2 (Key) Column 3 Column 4 Column 5 Key is defined as a column entry in a row that uniquely identifies that row in the table. Every row in a table is unique. For simplicity: Rows Key 1 001 002 Address Space N Operations on Hash tables: Insertion Deletion Update Search 3 Searching Methods: Linear Search O(n) Binary Search O(log2n) Random Search using Hashing O(1) O(1) Search time is independent of the total number of records Hashing using key values can be INTERNAL or EXTERNAL Tables Files Hashing can be defined as a technique in which the actual address in the hash table of the record to be operated on is computed, given a key value. KEY SPACE ADDRESS SPACE 1 K1 K2 Ki N Key-to-Address Transformation is called a mapping or a Hashing Function. Mapping : one-to-one (Perfect Hashing) Many-to-one 4 Example: Key space: 89, 18, 49, 58, 9 1 2 H(X) = X mod 7 3 4 5 6 7 Preconditioning : converts the keys to a form which can be easily manipulated by a hashing function. 3.0 HASHING FUNCTIONS: Main Goals: - Speed - Keys should uniformly distributed over the address space 1. Division Remainder Method : H(X) = X mod M X key M prime number (size of the table) 2. Mid-Square Method : H(X) = X2 or some digits taken from X2 3. Folding : - Folding by Shifting : Partition X into several parts and then add the parts ignoring the carry - Folding by boundary : Partition X into several parts, reverse the digits in the first and the last partition and then add them all ignoring the carry Collision: 5 A collision between two keys K and K' occurs when both have to be stored in the table and both hash to the same address in the table. 4.0 COLLISION RESOLUTION TECHNIQUES: - Open Addressing - Separate Chaining Objective: to place colliding records elsewhere in the hash table. 4.1 OPEN ADDRESSING: If key X collides at location D, then other locations in the hash table are examined until a free one is found. The sequence in which other locations are examined can be formulated in several ways: 4.1.1. Linear Probing D, D+1, D+2, …M-1, M, 1,2, … D-1 Example: Key Space: J10, B2, S19, N14, X24, W23 Address Space: 0 .. 6 Preconditioning: Subscripts are used as keys Hash Function: H(X) = X mod 7 Probe Sequence No of Probes 1 0 1 1 2 1 3 3, 4 2 4 1 5 2, 3, 4, 5, 6 5 6 6 Load Factor = n / M where n is the number of keys entered M is the size of the table Problems with Linear Probing: - Deletion is complex - If > 0.8, performance degrades rapidly Cluster: is defined as a sequence of consecutive occupied locations in a hash table. On inserting a key X, if a collision occurs, X is added ultimately to the end of the cluster length of cluster increases by 1 ( maybe more than 1 !) Example: This feature is called Primary Clustering. 4.1.2. Quadratic Probing 7 2 2 2 D, D+1 , D+2 , … D+i Example: Probe Sequence No of Probes 1 0 1 1 2 1 3 3, 4 2 4 1 5 2, 3, 6 3 6 4.1.3. Random Probing D = (D + C) mod M where C = random number relative to prime Example: Probe Sequence No of Probes 1 0 1 1 2 1 3 6, 3 2 4 1 5 0, 4 2 6 8 Secondary Clustering: If two keys collide, then the same random sequence is generated for both the keys. 4.1.4. Double Hashing D = (D+C) mod M A 2nd hash function is used to compute C . Example: H2(X) is C = X div 7 For X24: 6, 2, 5, 1, 4, 0 For R17: 5, 0, 2, 4, 6, 1 Problem with Open Addressing: Handling Overflows 9 4.2 SEPARATE CHAINING Prime Area: keys that are initially hashed Overflow Area: All colliding records Example: M-1 Average length of a linked list =1/ M * NI = N / M = I=0 A reasonable load factor for this method is 1.0. < 1 does not improve performance but costs extra space. 10 5.0 EXTERNAL HASHING: To suit characteristics of disk storage, a key maps to a series of address b Bucket = n / (M * b) Figure: block address bucket on disk number 0 Key Space . K1 . Ki M -1 M -2 11 Example: Key space: 21,51,98,87,19,25,70,83 Hash Function: 1. X goes into bucket 0 if X is between 1 and 20 1 if X is between 21 and 40 2 if X is between 41 and 60 3 if X is between 61 and 80 4 if X is between 81 and 100 2. If a key X collides at some location D, then X is placed in the set of colliding records so as to preserve the order of the keys if X1 < X2 then H(X1) < H(X2) Order-Preserving Function Example : buckets 0 1 2 3 4 12 6.0 Applications of Hashing: - Symbol tables used in Compilers - Spelling checkers 7.0 Conclusion: Hash tables are recommended to be used anywhere you need to perform numerous searches with the highest possible efficiency. The hash function should be chosen with care - the performance of all hashing methods depends on the use of a good hash function. The probe increment (or decrement) should be chosen such that it enumerates all table locations. The performance of the hashing method used should be always checked. Load factor of 1.0 is considered reasonable for Chaining. 0.5 is considered reasonable for Open Addressing. Theoretical results: Expected number of probes Not Found Found Chaining 1 + 1 + / 2 2 Linear probing 1 / 2 + 1 / 2 * (1- ) 1 / 2 + 1 / 2 * (1- ) Double hashing 1 / (1 - ) 1 / * ln (1 / (1 - )) 13 .
Recommended publications
  • Cmsc 132: Object-Oriented Programming Ii
    CMSC 132: OBJECT-ORIENTED PROGRAMMING II Hashing Department of Computer Science University of Maryland, College Park © Department of Computer Science UMD Announcements • Video “What most schools don’t teach” • http://www.youtube.com/watch?v=nKIu9yen5nc © Department of Computer Science UMD Introduction • If you need to find a value in a list what is the most efficient way to perform the search? • Linear search • Binary search • Can we have O(1)? © Department of Computer Science UMD Hashing • Remember that modulus allows us to map a number to a range • X % N → X mapped to value between 0 and N - 1 • Suppose you have 4 parking spaces and need to assign each resident a space. How can we do it? parkingSpace(ssn) = ssn % 4 • Problems?? • What if two residents are assigned the same spot? Collission! • What if we want to use name instead of ssn? • Generate integer out of the name • We just described hashing © Department of Computer Science UMD Hashing • Hashing • Technique for storing key-value entries into an array • In Java we will have an array of Objects where each Object has a key (e.g., student’s name) and a reference to data of interest (e.g., student’s grades) • The array is called the hash table • Ideally can result in O(1) search times • Hash Function • Takes a search key (Ki) and returns a location in the array (an integer index (hash index)) • A search key maps (hashes) to index i • Ideal Hash Function • If every search key corresponds to a unique element in the hash table © Department of Computer Science UMD Hashing • If we have a large range of possible search keys, but a subset of them are used, allocating a large table would a waste of significant space • Typical hash function (two steps) 1.
    [Show full text]
  • Lecture 12: Hash Tables
    CSI 3334, Data Structures Lecture 12: Hash Tables Date: 2012-10-10 Author(s): Philip Spencer, Chris Martin Lecturer: Fredrik Niemelä This lecture covers hashing, hash functions, collisions and how to deal with them, and probability of error in bloom filters. 1 Introduction to Hash Tables Hash Functions take input and randomly sort the input and evenly distribute it. An example of a hash function is randu: 31 ni+1 = 65539 ¤ nimod2 randu has flaws in that if you give it an odd number, it will only return odd num- bers. Also, all numbers generated by randu fit in 15 planes. An example of a bad hash function: return 9 2 Dealing with Collisions Definition 2.1 Separate Chaining - Adds to a linked list when collisions occur. Positives of Separate Chaining: There is no upper-bound on size of table and it’s easy to implement. Negatives of Separate Chaining: It gets slower as you have more collisions. Definition 2.2 Linear Probing - If the space is full, take the next space. Negatives of Linear Probing: Things linearly gather making it likely to cluster and slow down. This is known as primary clustering. This also increases the likelihood of new things being added to the cluster. It breaks when the hash table is full. 1 2 CSI 3334 – Fall 2012 Definition 2.3 Quadratic Probing - If the space is full, move i2spaces: Positives of Quadratic Probing: Avoids the primary clustering from linear probing. Negatives of Quadratic Probing: It breaks when the hash table is full. Secondary clustering occurs when things follow the same quadratic path slowing down hashing.
    [Show full text]
  • Lecture 26 — Hash Tables
    Parallel and Sequential Data Structures and Algorithms — Lecture 26 15-210 (Spring 2012) Lecture 26 — Hash Tables Parallel and Sequential Data Structures and Algorithms, 15-210 (Spring 2012) Lectured by Margaret Reid-Miller — 24 April 2012 Today: - Hashing - Hash Tables 1 Hashing hash: transitive verb1 1. (a) to chop (as meat and potatoes) into small pieces (b) confuse, muddle 2. ... This is the definition of hash from which the computer term was derived. The idea of hashing as originally conceived was to take values and to chop and mix them to the point that the original values are muddled. The term as used in computer science dates back to the early 1950’s. More formally the idea of hashing is to approximate a random function h : α β from a source (or universe) set U of type α to a destination set of type β. Most often the source! set is significantly larger than the destination set, so the function not only chops and mixes but also reduces. In fact the source set might have infinite size, such as all character strings, while the destination set always has finite size. Also the source set might consist of complicated elements, such as the set of all directed graphs, while the destination are typically the integers in some fixed range. Hash functions are therefore many to one functions. Using an actual randomly selected function from the set of all functions from α to β is typically not practical due to the number of such functions and hence the size (number of bits) needed to represent such a function.
    [Show full text]
  • Hashing (Part 2)
    Hashing (part 2) CSE 2011 Winter 2011 14 March 2011 1 Collision Handling Separate chaining Pbi(Probing (open a ddress ing ) Linear probing Quadratic probing Double hashing 2 1 Quadratic Probing Linear probing: Quadratic probing Insert item (k, e) A[i] is occupied i = h(k) Try A[(i+1) mod N]: used A[i] is occupied Try A[(i+22) mod N]: used Try A[(i+1) mod N]: used Try A[(i+32) mod N] Try A[(i+2) mod N] and so on and so on until an empty cell is found May not be able to find an empty cell if N is not prime, or the hash table is at least half full 3 Double Hashing Double hashing uses a Insert item (k, e) secondary hash function i = h(()k) d(k) and handles collisions A[i] is occupied by placing an item in the first available cell of the Try A[(i+d(k))mod N]: used series Try A[(i+2d(k))mod N]: used (i j d(k)) mod N Try A[(i+3d(k))mod N] for j 0, 1, … , N 1 and so on until The secondary hash an empty cell is found function d(k) cannot have zero values The table size N must be a prime to allow probing of all the cells 4 2 Example of Double Hashing kh(k ) d (k ) Probes Consider a hash 18 5 3 5 tbltable s tor ing itinteger 41 2 1 2 22 9 6 9 keys that handles 44 5 5 5 10 collision with double 59 7 4 7 32 6 3 6 hashing 315 4 590 N 13 73 8 4 8 h(k) k mod 13 d(k) 7 k mod 7 0123456789101112 Insert keys 18, 41, 22, 44, 59, 32, 31, 73, in this order 31 41 18 32 59 73 22 44 0123456789101112 5 Double Hashing (2) d(k) should be chosen to minimize clustering Common choice of compression map for the secondary hash function: d(k) q k mod q where q N q is a prime The possible values for d(k) are 1, 2, … , q Note: linear probing has d(k) 1.
    [Show full text]
  • Linear Probing Revisited: Tombstones Mark the Death of Primary Clustering
    Linear Probing Revisited: Tombstones Mark the Death of Primary Clustering Michael A. Bender* Bradley C. Kuszmaul William Kuszmaul† Stony Brook Google Inc. MIT Abstract First introduced in 1954, the linear-probing hash table is among the oldest data structures in computer science, and thanks to its unrivaled data locality, linear probing continues to be one of the fastest hash tables in practice. It is widely believed and taught, however, that linear probing should never be used at high load factors; this is because of an effect known as primary clustering which causes insertions at a load factor of 1 − 1=x to take expected time Θ(x2) (rather than the intuitive running time of Θ(x)). The dangers of primary clustering, first discovered by Knuth in 1963, have now been taught to generations of computer scientists, and have influenced the design of some of the most widely used hash tables in production. We show that primary clustering is not the foregone conclusion that it is reputed to be. We demonstrate that seemingly small design decisions in how deletions are implemented have dramatic effects on the asymptotic performance of insertions: if these design decisions are made correctly, then even if a hash table operates continuously at a load factor of 1 − Θ(1=x), the expected amortized cost per insertion/deletion is O~(x). This is because the tombstones left behind by deletions can actually cause an anti-clustering effect that combats primary clustering. Interestingly, these design decisions, despite their remarkable effects, have historically been viewed as simply implementation-level engineering choices.
    [Show full text]
  • Hashing and Hash Tables
    Hash tables Professors Clark F. Olson and Carol Zander Hash tables Binary search trees are data structures that allow us to perform many operations in O(log n) time on average for a collection of n objects (and balanced binary search trees can guarantee this in the worst case). However, if we are only concerned with insert/delete/retrieve operations (not sorting, searching, findMin, or findMax) then we can sometimes do even better. Hash tables are able to perform these operations in O(1) average time under some assumptions. The basic idea is to use a hash function that maps the items we need to store into positions in an array where it can be stored. Since ASCII characters use seven bits, we could hash all three‐letter strings according to the following function: hash(string3) = int(string3[0]) + int(string3[1]) * 128 + int(string3[2]) * 128 * 128 This guarantees that each three‐letter string is hashed to a different number. In the ideal case, you know every object that you could ever need to store in advance and you can devise a “perfect” hash function that maps each object to a different number and use each number from 0 to n‐1, where n is the number of objects that you need to store. There are cases where this can be achieved. One example is hashing keywords in a programming language. You know all of the n keywords in advance and sometimes a function can be determined that maps these perfectly into the n values from 0 to n‐1.
    [Show full text]
  • Hash Tables with Open Addressing
    Outline 1 Open Addressing Computer Science 331 2 Operations Hash Tables with Open Addressing Search Insert Delete Mike Jacobson 3 Collision Resolution Department of Computer Science University of Calgary Linear Probing Quadratic Probing Lecture #20 Double Hashing Analysis 4 Summary Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 1 / 26 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 2 / 26 Open Addressing Open Addressing Open Addressing Example 0 1 2 3 4 5 6 7 T: NIL 25 2 NIL 12 NIL 14 22 In a hash table with open addressing, all elements are stored in the hash table itself. U = f1; 2;:::; 200g For 0 i < m, T [i] is either m = 8 an element of the dictionary being stored, T : as shown above NIL, or h0 : Function such that DELETED (to be described shortly!) h0 : f1; 2;:::; 200g ! f0; 1;:::; 7g Note: The textbook refers to DELETED as a \dummy value." Eg. h0(k) = k mod 8 for k 2 U: h0 used here for rst try to place key in table. Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 3 / 26 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 4 / 26 Open Addressing Open Addressing New De nition of a Hash Function Probe Sequence We may need to make more than one attempt to nd a place to insert an The sequence of addresses element. hh(k; 0); h(k; 1);:::; h(k; m 1)i We'll use hash functions of the form is called the probe sequence for key k h : U ¢ f0; 1;:::; m 1g ! f0; 1;:::; m 1g Initial Requirement: h(k; i): Location to choose to place key k on an i th attempt to insert the key, if the locations examined on attempts hh(k; 0); h(k; 1);:::; h(k; m 1)i 0; 1;:::; i 1 were already full.
    [Show full text]
  • MA/CSSE 473 Day 28
    MA/CSSE 473 Day 28 Hashing review B-tree overview Dynamic Programming MA/CSSE 473 Day 28 • Convex Hull Late Day until Saturday at 8 AM HW 11 is a good one to try to earn an extra late day. It is shorter than most assignments. • Take‐home exam available by Oct 29 (Friday) at 9:55 AM, due Nov 1 (Monday) at 8 AM. • Student Questions Convo schedule • Hashing summary Monday: •B‐Trees –a quick look Section 1: 9:35 AM •Dynamic Programming Section 2: 10:20 AM 1 Take‐Home Exam • Available no later than 9:55 AM on Friday October 29. Due 8 AM Monday, Nov 2 •Two parts, each with a time limit of 3‐4 hours –exact limit will be set after I finish writing questions. –Measured from time of ANGEL view of problems to submission back to ANGEL drop box. •Covers through HW 12 and Section 8.2. •A small number of problems (3‐5 in each part) •For most problems, partial credit for good ideas, even if you don't entirely get it. •A blackout on communicating with other students about this course during the entire period from exam availability to exam due time. Some Hashing Details •The next slides are from CSSE 230. •They are here in case you didn't "get it" the first time. •We will not go over all of them in detail in class. •If you don't understand the effect of clustering, you might find the animation that is linked from the slides especially helpful. 2 Collision Resolution: Linear Probing •When an item hashes to a table location occupied by a non‐equal item, simply use the next available space.
    [Show full text]
  • Comparative Analysis of Linear Probing, Quadratic Probing and Double
    International Journal of Scientific & Engineering Research, Volume 5, Issue 4, April-2014 685 ISSN 2229-5518 COMPARATIVE ANALYSIS OF LINEAR PROBING, QUADRATIC PROBING AND DOUBLE HASHING TECHNIQUES FOR RESOLVING COLLUSION IN A HASH TABLE Saifullahi Aminu Bello1 Ahmed Mukhtar Liman2 Abubakar Sulaiman Gezawa3 Abdurra’uf Garba4 Abubakar Ado5 Abstract— Hash tables are very common data structures. They provide efficient key based operations to insert and search for data in containers. Like many other things in Computer Science, there are tradeoffs associated to the use of hash tables. They are not good choices when there is a need for sort and select operations. There are two main issues regarding the implementation of hash based containers: the hash function and the collision resolution mechanism. The hash function is responsible for the arithmetic operation that transforms a particular key into a particular table address. The collision resolution mechanism is responsible for dealing with keys that hash to the same address. In this research paper ways by which collision is resolved are implemented, comparison between them is made and conditions under which one techniques may be preferable than others are outlined. Index Terms— Double hashing, hash function , hash table, linear probing , load factor, open addressing, quadratic probing, —————————— —————————— 1 INTRODUCTION HE two main methods of collision resolution in hash ta- cost is nearly constant as the load factor increases from 0 up to T bles are are chaining (close addressing) and open address- 0.7 or so. Beyond that point, the probability of collisions and ing. The three main techniques under open addressing are the cost of handling them increases.
    [Show full text]
  • Lecture 12: Introduction to Hashing
    Data Structures in Java Lecture 12: Introduction to Hashing. 10/19/2015 Daniel Bauer Homework • Due Friday, 11:59pm. • Jarvis is now grading HW3. Recitation Sessions • Recitations this week: • Review of balanced search trees. • Implementing AVL rotations. • Implementing maps with BSTs. • Hashing (Friday/Next Mon & Tue). Midterm • Midterm next Wednesday (in-class) • Closed books/notes/electronic devices. • Ideally, bring a pen, water, and nothing else. • 60 minutes • Midterm review this Wednesday in class. How to Prepare? • Midterm will cover all content up to (and including) this week. • Know all ADTs, operations defined on them, data structures, running times. • Know basics of running time analysis (big-O). • Understand recursion, inductive proofs, tree traversals, … • Practice questions out today. Discussed Wednesday. • Good idea to review slides & homework! How to Prepare Even More? • Optional: • Solve Weiss textbook exercises and discuss on Piazza. • Try to implement data structures from scratch. Map ADT • A map is collection of (key, value) pairs. • Keys are unique, values need not be (keys are a Set!). • Two operations: • get(key) returns the value associated with this key • put(key, value) (overwrites existing keys) key1 value1 key2 value2 key3 value3 key4 Implementing Maps Implementing Maps • Option 1: Use any set implementation to store special (key,value) objects. • Comparing these objects means comparing the key (testing for equality or implementing the Comparable interface) Implementing Maps • Option 1: Use any set implementation to store special (key,value) objects. • Comparing these objects means comparing the key (testing for equality or implementing the Comparable interface) • Option 2: Specialized implementations • B+ Tree: nodes contain keys, leaves contain values.
    [Show full text]
  • Open Addressing
    Outline 1 Open Addressing Computer Science 331 2 Operations Hash Tables: Open Addressing Search Insert Delete Mike Jacobson 3 Collision Resolution Department of Computer Science University of Calgary Linear Probing Quadratic Probing Lecture #19 Double Hashing Analysis 4 Summary Mike Jacobson (University of Calgary) Computer Science 331 Lecture #19 1 / 25 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #19 2 / 25 Open Addressing Open Addressing Open Addressing Example 0 1 2 3 4 5 6 7 T: NIL 25 2 NIL 12 NIL 14 22 In a hash table with open addressing, all elements are stored in the hash table itself. U = {1, 2,..., 200} For 0 ≤ i < m, T [i] is either m = 8 an element of the dictionary being stored, T : as shown above NIL, or h0 : Function such that DELETED (to be described shortly!) h0 : {1, 2,..., 200} → {0, 1,..., 7} Note: The textbook refers to DELETED as a “dummy value.” Eg. h0(k) = k mod 8 for k ∈ U. h0 used here for first try to place key in table. Mike Jacobson (University of Calgary) Computer Science 331 Lecture #19 3 / 25 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #19 4 / 25 Open Addressing Open Addressing New Definition of a Hash Function Probe Sequence We may need to make more than one attempt to find a place to insert The sequence of addresses an element. hh(k, 0), h(k, 1),..., h(k, m − 1)i We’ll use hash functions of the form is called the probe sequence for key k h : U × {0, 1,..., m − 1} → {0, 1,..., m − 1} Nonstandard Requirement: some references, including Introduction h(k, i): Location to choose to place key k on an ith attempt to to Algorithms, require that insert the key, if the locations examined on attempts 0, 1,..., i − 1 were already full.
    [Show full text]
  • CMSC 420 – 0201 – Fall 2019 Lecture 11
    CMSC 420 – 0201 – Fall 2019 Lecture 11 Hashing – Handling Collisions Hashing - Recap . We store the keys in a table containing entries . We assume that the table size is at least a small constant factor larger than . We scatter the keys throughout the table using a pseudo-random hash function − [0 … 1] − Store at entry ( ) in the table ℎ ∈ − . = Sometimes differentℎ keys collide: , but ≠ ℎ ℎ 2 CMSC 420 – Dave Mount Hashing - Recap Defining issues . What is the hash function? Recall common methods: − Multiplicative hashing: ( ) = ( ) mod mod (for 0 and prime ) − Linear hashing: ( ) = ( + ) mod mod (for 0 and prime ) ℎ ≠ − Polynomial: = , , , , … , , = ( + + + + ) mod ℎ ≠ 2 3 − Universal hashing: 0 ,1( 2) =3 (( + ) mod 0) mod1 (where,2 3 and are random and is prime) ℎ ⋯ ℎ . How to resolve collisions? We will consider several methods: − Separate chaining − Linear probing − Quadratic probing − Double hashing 3 CMSC 420 – Dave Mount Separate Chaining . Given a hash table table[] with entries . table[i] stores a linked list containing the keys such that ( ) = ℎ 4 CMSC 420 – Dave Mount Separate Chaining Hash operations reduce to linked-list operations . insert(x, v): Compute i=h(x), invoke table[i].insert(x,v) . delete(x): Compute i=h(x), invoke table[i].delete(x) . find(x): Compute i=h(x), invoke table[i].find(x) 5 CMSC 420 – Dave Mount Separate Chaining Load factor and running time . Given a hash table table[m] containing entries . Define load factor: = . Assuming keys are uniformly distributed, there are on average entries per list . Expected search times: − Successful search (key found): Need to search half the list on average = 1 + − Unsuccessful search (key not found): Need to search entire list ⁄2 = 1 + 6 CMSC 420 – Dave Mount Controlling the Load Factor Rehashing .
    [Show full text]