Hashing (Part 2)

Total Page:16

File Type:pdf, Size:1020Kb

Hashing (Part 2) Hashing (part 2) CSE 2011 Winter 2011 14 March 2011 1 Collision Handling Separate chaining Pbi(Probing (open a ddress ing ) Linear probing Quadratic probing Double hashing 2 1 Quadratic Probing Linear probing: Quadratic probing Insert item (k, e) A[i] is occupied i = h(k) Try A[(i+1) mod N]: used A[i] is occupied Try A[(i+22) mod N]: used Try A[(i+1) mod N]: used Try A[(i+32) mod N] Try A[(i+2) mod N] and so on and so on until an empty cell is found May not be able to find an empty cell if N is not prime, or the hash table is at least half full 3 Double Hashing Double hashing uses a Insert item (k, e) secondary hash function i = h(()k) d(k) and handles collisions A[i] is occupied by placing an item in the first available cell of the Try A[(i+d(k))mod N]: used series Try A[(i+2d(k))mod N]: used (i j d(k)) mod N Try A[(i+3d(k))mod N] for j 0, 1, … , N 1 and so on until The secondary hash an empty cell is found function d(k) cannot have zero values The table size N must be a prime to allow probing of all the cells 4 2 Example of Double Hashing kh(k ) d (k ) Probes Consider a hash 18 5 3 5 tbltable s tor ing itinteger 41 2 1 2 22 9 6 9 keys that handles 44 5 5 5 10 collision with double 59 7 4 7 32 6 3 6 hashing 315 4 590 N 13 73 8 4 8 h(k) k mod 13 d(k) 7 k mod 7 0123456789101112 Insert keys 18, 41, 22, 44, 59, 32, 31, 73, in this order 31 41 18 32 59 73 22 44 0123456789101112 5 Double Hashing (2) d(k) should be chosen to minimize clustering Common choice of compression map for the secondary hash function: d(k) q k mod q where q N q is a prime The possible values for d(k) are 1, 2, … , q Note: linear probing has d(k) 1. 6 3 Comparing Collision Handling Schemes = n/N Unsuccessful: key not found Successful: key found 7 Comparing Collision Handling Schemes (2) Separate chaining: Linear probing: items are – simple implementation clustered into contiguous – faster than open runs (primary clustering). addressing in general – using more memory Quadratic probing: secondary clustering. Open addressing: – using less memory Double hashing: – slower than chaining in distributes keys more general uniformly than linear probing does. – more complex removals 8 4 Performance of Hashing In the worst case, searches, The expected running time insertions and removals on a of all the dictionary ADT hash table take O(n) time. operations in a hash table is The worst case occurs when O(1). all the keys inserted into the In practice, hashing is very map collide. fast provided the load factor The load factor nN is not close to 100%. affects the performance of a rehashing. hash table. Applications of hash tables: Assuming that the hash small databases values are like random numbers, it can be shown compilers that the expected number of browser caches probes for an insertion with converting non-integer open addressing is keys to integers. 1 (1 ) 9 Keys That Are Strings We need to convert a string to an integer before hashing. One option is to add up the ASCII values of the characters in the string. Is this a good strategy? Polynomial accumulation: We partition the bits of the key into a sequence of components of fixed length (e.g., 8, 16 or 32 bits). x0 x1 … xn1 We evaluate the polynomial 2 n1 p(z) x0 x1 z x2 z … xn1z at a fixed value z, ignoring overflows. 10 5 Polynomial Accumulation Polynomial p(z) can be evaluated in O(n) time using Horner’s rule: The following polynomials are successively computed, each from the previous one in O(1) time p0(z) xn1 pi (z) xni1 zpi1(z) (i 1, 2, …, n 1) We have p(z) pn1(z) GdGood z values: 3337394133, 37, 39, 41. Especially suitable for strings z 33 gives at most 6 collisions on a set of 50,000 English words. 11 Summary Purpose of hash tables: If collision occurs, use to obtain O(()1) expected one of the collision query time using O(n+N) handling schemes, taking space. into account available If the keys are not memory space. integers, convert them to If the load factor nN integer keys. approaches the specified Map integer keys to the threshold, rehash. hash table entries using a compression map function. 12 6 Next time… Graphs (chapter 13) 13 7.
Recommended publications
  • Cmsc 132: Object-Oriented Programming Ii
    CMSC 132: OBJECT-ORIENTED PROGRAMMING II Hashing Department of Computer Science University of Maryland, College Park © Department of Computer Science UMD Announcements • Video “What most schools don’t teach” • http://www.youtube.com/watch?v=nKIu9yen5nc © Department of Computer Science UMD Introduction • If you need to find a value in a list what is the most efficient way to perform the search? • Linear search • Binary search • Can we have O(1)? © Department of Computer Science UMD Hashing • Remember that modulus allows us to map a number to a range • X % N → X mapped to value between 0 and N - 1 • Suppose you have 4 parking spaces and need to assign each resident a space. How can we do it? parkingSpace(ssn) = ssn % 4 • Problems?? • What if two residents are assigned the same spot? Collission! • What if we want to use name instead of ssn? • Generate integer out of the name • We just described hashing © Department of Computer Science UMD Hashing • Hashing • Technique for storing key-value entries into an array • In Java we will have an array of Objects where each Object has a key (e.g., student’s name) and a reference to data of interest (e.g., student’s grades) • The array is called the hash table • Ideally can result in O(1) search times • Hash Function • Takes a search key (Ki) and returns a location in the array (an integer index (hash index)) • A search key maps (hashes) to index i • Ideal Hash Function • If every search key corresponds to a unique element in the hash table © Department of Computer Science UMD Hashing • If we have a large range of possible search keys, but a subset of them are used, allocating a large table would a waste of significant space • Typical hash function (two steps) 1.
    [Show full text]
  • Lecture 12: Hash Tables
    CSI 3334, Data Structures Lecture 12: Hash Tables Date: 2012-10-10 Author(s): Philip Spencer, Chris Martin Lecturer: Fredrik Niemelä This lecture covers hashing, hash functions, collisions and how to deal with them, and probability of error in bloom filters. 1 Introduction to Hash Tables Hash Functions take input and randomly sort the input and evenly distribute it. An example of a hash function is randu: 31 ni+1 = 65539 ¤ nimod2 randu has flaws in that if you give it an odd number, it will only return odd num- bers. Also, all numbers generated by randu fit in 15 planes. An example of a bad hash function: return 9 2 Dealing with Collisions Definition 2.1 Separate Chaining - Adds to a linked list when collisions occur. Positives of Separate Chaining: There is no upper-bound on size of table and it’s easy to implement. Negatives of Separate Chaining: It gets slower as you have more collisions. Definition 2.2 Linear Probing - If the space is full, take the next space. Negatives of Linear Probing: Things linearly gather making it likely to cluster and slow down. This is known as primary clustering. This also increases the likelihood of new things being added to the cluster. It breaks when the hash table is full. 1 2 CSI 3334 – Fall 2012 Definition 2.3 Quadratic Probing - If the space is full, move i2spaces: Positives of Quadratic Probing: Avoids the primary clustering from linear probing. Negatives of Quadratic Probing: It breaks when the hash table is full. Secondary clustering occurs when things follow the same quadratic path slowing down hashing.
    [Show full text]
  • Hash Tables & Searching Algorithms
    Search Algorithms and Tables Chapter 11 Tables • A table, or dictionary, is an abstract data type whose data items are stored and retrieved according to a key value. • The items are called records. • Each record can have a number of data fields. • The data is ordered based on one of the fields, named the key field. • The record we are searching for has a key value that is called the target. • The table may be implemented using a variety of data structures: array, tree, heap, etc. Sequential Search public static int search(int[] a, int target) { int i = 0; boolean found = false; while ((i < a.length) && ! found) { if (a[i] == target) found = true; else i++; } if (found) return i; else return –1; } Sequential Search on Tables public static int search(someClass[] a, int target) { int i = 0; boolean found = false; while ((i < a.length) && !found){ if (a[i].getKey() == target) found = true; else i++; } if (found) return i; else return –1; } Sequential Search on N elements • Best Case Number of comparisons: 1 = O(1) • Average Case Number of comparisons: (1 + 2 + ... + N)/N = (N+1)/2 = O(N) • Worst Case Number of comparisons: N = O(N) Binary Search • Can be applied to any random-access data structure where the data elements are sorted. • Additional parameters: first – index of the first element to examine size – number of elements to search starting from the first element above Binary Search • Precondition: If size > 0, then the data structure must have size elements starting with the element denoted as the first element. In addition, these elements are sorted.
    [Show full text]
  • Chapter 5 Hashing
    Introduction hashing performs basic operations, such as insertion, Chapter 5 deletion, and finds in average time Hashing 2 Hashing Hashing Functions a hash table is merely an of some fixed size let be the set of search keys hashing converts into locations in a hash hash functions map into the set of in the table hash table searching on the key becomes something like array lookup ideally, distributes over the slots of the hash table, to minimize collisions hashing is typically a many-to-one map: multiple keys are if we are hashing items, we want the number of items mapped to the same array index hashed to each location to be close to mapping multiple keys to the same position results in a example: Library of Congress Classification System ____________ that must be resolved hash function if we look at the first part of the call numbers two parts to hashing: (e.g., E470, PN1995) a hash function, which transforms keys into array indices collision resolution involves going to the stacks and a collision resolution procedure looking through the books almost all of CS is hashed to QA75 and QA76 (BAD) 3 4 Hashing Functions Hashing Functions suppose we are storing a set of nonnegative integers we can also use the hash function below for floating point given , we can obtain hash values between 0 and 1 with the numbers if we interpret the bits as an ______________ hash function two ways to do this in C, assuming long int and double when is divided by types have the same length fast operation, but we need to be careful when choosing first method uses
    [Show full text]
  • Cuckoo Hashing
    Cuckoo Hashing Rasmus Pagh* BRICSy, Department of Computer Science, Aarhus University Ny Munkegade Bldg. 540, DK{8000 A˚rhus C, Denmark. E-mail: [email protected] and Flemming Friche Rodlerz ON-AIR A/S, Digtervejen 9, 9200 Aalborg SV, Denmark. E-mail: ff[email protected] We present a simple dictionary with worst case constant lookup time, equal- ing the theoretical performance of the classic dynamic perfect hashing scheme of Dietzfelbinger et al. (Dynamic perfect hashing: Upper and lower bounds. SIAM J. Comput., 23(4):738{761, 1994). The space usage is similar to that of binary search trees, i.e., three words per key on average. Besides being conceptually much simpler than previous dynamic dictionaries with worst case constant lookup time, our data structure is interesting in that it does not use perfect hashing, but rather a variant of open addressing where keys can be moved back in their probe sequences. An implementation inspired by our algorithm, but using weaker hash func- tions, is found to be quite practical. It is competitive with the best known dictionaries having an average case (but no nontrivial worst case) guarantee. Key Words: data structures, dictionaries, information retrieval, searching, hash- ing, experiments * Partially supported by the Future and Emerging Technologies programme of the EU under contract number IST-1999-14186 (ALCOM-FT). This work was initiated while visiting Stanford University. y Basic Research in Computer Science (www.brics.dk), funded by the Danish National Research Foundation. z This work was done while at Aarhus University. 1 2 PAGH AND RODLER 1. INTRODUCTION The dictionary data structure is ubiquitous in computer science.
    [Show full text]
  • Double Hashing
    Double Hashing Intro & Coding Hashing Hashing - provides O(1) time on average for insert, search and delete Hash function - maps a big number or string to a small integer that can be used as index in hash table. Collision - Two keys resulting in same index. Hashing – a Simple Example ● Arbitrary Size à Fix Size 0 1 2 3 4 Hashing – a Simple Example ● Arbitrary Size à Fix Size Insert(0) 0 % 5 = 0 0 1 2 3 4 0 Hashing – a Simple Example ● Arbitrary Size à Fix Size Insert(0) 0 % 5 = 0 Insert(5321) 5321 % 5 = 1 0 1 2 3 4 0 5321 Hashing – a Simple Example ● Arbitrary Size à Fix Size Insert(0) 0 % 5 = 0 Insert(5321) 5321 % 5 = 1 Insert(-8002) -8002 % 5 = 3 0 1 2 3 4 0 5321 -8002 Hashing – a Simple Example ● Arbitrary Size à Fix Size Insert(0) 0 % 5 = 0 Insert(5321) 5321 % 5 = 1 Insert(-8002) -8002 % 5 = 3 Insert(20000) 20000 % 5 = 0 0 1 2 3 4 0 5321 -8002 Modular Hashing ● Overall a good simple, general approach to implement a hash map ● Basic formula: ○ h(x) = c(x) mod m ■ Where c(x) converts x into a (possibly) large integer ● Generally want m to be a prime number ○ Consider m = 100 ○ Only the least significant digits matter ■ h(1) = h(401) = h(4372901) Collision Resolution ● A strategy for handling the case when two or more keys to be inserted hash to the same index. ● Closed Addressing § Separate Chaining ● Open Addressing § Linear Probing § Quadratic Probing § Double Hashing Separate Chaining ● Make each cell of hash table point to a linked list of records that have same hash function value Key Hash Value S 2 0 E 0 1 A 0 2 R 4 3 C 4 4 H 4
    [Show full text]
  • Lecture 26 — Hash Tables
    Parallel and Sequential Data Structures and Algorithms — Lecture 26 15-210 (Spring 2012) Lecture 26 — Hash Tables Parallel and Sequential Data Structures and Algorithms, 15-210 (Spring 2012) Lectured by Margaret Reid-Miller — 24 April 2012 Today: - Hashing - Hash Tables 1 Hashing hash: transitive verb1 1. (a) to chop (as meat and potatoes) into small pieces (b) confuse, muddle 2. ... This is the definition of hash from which the computer term was derived. The idea of hashing as originally conceived was to take values and to chop and mix them to the point that the original values are muddled. The term as used in computer science dates back to the early 1950’s. More formally the idea of hashing is to approximate a random function h : α β from a source (or universe) set U of type α to a destination set of type β. Most often the source! set is significantly larger than the destination set, so the function not only chops and mixes but also reduces. In fact the source set might have infinite size, such as all character strings, while the destination set always has finite size. Also the source set might consist of complicated elements, such as the set of all directed graphs, while the destination are typically the integers in some fixed range. Hash functions are therefore many to one functions. Using an actual randomly selected function from the set of all functions from α to β is typically not practical due to the number of such functions and hence the size (number of bits) needed to represent such a function.
    [Show full text]
  • Linear Probing with Constant Independence
    Linear Probing with Constant Independence Anna Pagh, Rasmus Pagh, and Milan Ruˇzi´c IT University of Copenhagen, Rued Langgaards Vej 7, 2300 København S, Denmark. Abstract. Hashing with linear probing dates back to the 1950s, and is among the most studied algorithms. In recent years it has become one of the most important hash table organizations since it uses the cache of modern computers very well. Unfortunately, previous analysis rely either on complicated and space consuming hash functions, or on the unrealistic assumption of free access to a truly random hash function. Already Carter and Wegman, in their seminal paper on universal hashing, raised the question of extending their analysis to linear probing. However, we show in this paper that linear probing using a pairwise independent family may have expected logarithmic cost per operation. On the positive side, we show that 5-wise independence is enough to ensure constant expected time per operation. This resolves the question of finding a space and time efficient hash function that provably ensures good performance for linear probing. 1 Introduction Hashing with linear probing is perhaps the simplest algorithm for storing and accessing a set of keys that obtains nontrivial performance. Given a hash function h, a key x is inserted in an array by searching for the first vacant array position in the sequence h(x), h(x) + 1, h(x) + 2,... (Here, addition is modulo r, the size of the array.) Retrieval of a key proceeds similarly, until either the key is found, or a vacant position is encountered, in which case the key is not present in the data structure.
    [Show full text]
  • More Analysis of Double Hashing for Balanced Allocations
    More Analysis of Double Hashing for Balanced Allocations Michael Mitzenmacher⋆ Harvard University, School of Engineering and Applied Sciences [email protected] Abstract. With double hashing, for a key x, one generates two hash values f(x) and g(x), and then uses combinations (f(x)+ ig(x)) mod n for i = 0, 1, 2,... to generate multiple hash values in the range [0, n − 1] from the initial two. For balanced allocations, keys are hashed into a hash table where each bucket can hold multiple keys, and each key is placed in the least loaded of d choices. It has been shown previously that asymp- totically the performance of double hashing and fully random hashing is the same in the balanced allocation paradigm using fluid limit methods. Here we extend a coupling argument used by Lueker and Molodowitch to show that double hashing and ideal uniform hashing are asymptotically equivalent in the setting of open address hash tables to the balanced al- location setting, providing further insight into this phenomenon. We also discuss the potential for and bottlenecks limiting the use this approach for other multiple choice hashing schemes. 1 Introduction An interesting result from the hashing literature shows that, for open addressing, double hashing has the same asymptotic performance as uniform hashing. We explain the result in more detail. In open addressing, we have a hash table with n cells into which we insert m keys; we use α = m/n to refer to the load factor. Each element is placed according to a probe sequence, which is a permutation of the cells.
    [Show full text]
  • An Overview of Cuckoo Hashing Charles Chen
    An Overview of Cuckoo Hashing Charles Chen 1 Abstract Cuckoo Hashing is a technique for resolving collisions in hash tables that produces a dic- tionary with constant-time worst-case lookup and deletion operations as well as amortized constant-time insertion operations. First introduced by Pagh in 2001 [3] as an extension of a previous static dictionary data structure, Cuckoo Hashing was the first such hash table with practically small constant factors [4]. Here, we first outline existing hash table collision poli- cies and go on to analyze the Cuckoo Hashing scheme in detail. Next, we give an overview of (c; k)-universal hash families, and finally, we summarize some selected experimental results comparing the varied collision policies. 2 Introduction The dictionary is a fundamental data structure in computer science, allowing users to store key-value pairs and look up by key the corresponding value in the data structure. The hash table provides one of the most common and one of the fastest implementations of the dictionary data structure, allowing for amortized constant-time lookup, insertion and deletion operations.1 In its archetypal form, a hash function h computed on the space of keys is used to map each key to a location in a set of bucket locations fb0; ··· ; br−1g. The key, as well as, potentially, some auxiliary data (termed the value), is stored at the appropriate bucket location upon insertion. Upon deletion, the key with its value is removed from the appropriate bucket, and in lookup, such a key-value pair, if it exists, is retrieved by looking at the bucket location corresponding to the hashed key value.
    [Show full text]
  • Hashing, Load Balancing and Multiple Choice
    Full text available at: http://dx.doi.org/10.1561/0400000070 Hashing, Load Balancing and Multiple Choice Udi Wieder VMware Research [email protected] Boston — Delft Full text available at: http://dx.doi.org/10.1561/0400000070 Foundations and Trends R in Theoretical Computer Science Published, sold and distributed by: now Publishers Inc. PO Box 1024 Hanover, MA 02339 United States Tel. +1-781-985-4510 www.nowpublishers.com [email protected] Outside North America: now Publishers Inc. PO Box 179 2600 AD Delft The Netherlands Tel. +31-6-51115274 The preferred citation for this publication is U. Wieder. Hashing, Load Balancing and Multiple Choice. Foundations and Trends R in Theoretical Computer Science, vol. 12, no. 3-4, pp. 275–379, 2016. R This Foundations and Trends issue was typeset in LATEX using a class file designed by Neal Parikh. Printed on acid-free paper. ISBN: 978-1-68083-282-2 c 2017 U. Wieder All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, mechanical, photocopying, recording or otherwise, without prior written permission of the publishers. Photocopying. In the USA: This journal is registered at the Copyright Clearance Cen- ter, Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for internal or personal use, or the internal or personal use of specific clients, is granted by now Publishers Inc for users registered with the Copyright Clearance Center (CCC). The ‘services’ for users can be found on the internet at: www.copyright.com For those organizations that have been granted a photocopy license, a separate system of payment has been arranged.
    [Show full text]
  • Linear Probing Revisited: Tombstones Mark the Death of Primary Clustering
    Linear Probing Revisited: Tombstones Mark the Death of Primary Clustering Michael A. Bender* Bradley C. Kuszmaul William Kuszmaul† Stony Brook Google Inc. MIT Abstract First introduced in 1954, the linear-probing hash table is among the oldest data structures in computer science, and thanks to its unrivaled data locality, linear probing continues to be one of the fastest hash tables in practice. It is widely believed and taught, however, that linear probing should never be used at high load factors; this is because of an effect known as primary clustering which causes insertions at a load factor of 1 − 1=x to take expected time Θ(x2) (rather than the intuitive running time of Θ(x)). The dangers of primary clustering, first discovered by Knuth in 1963, have now been taught to generations of computer scientists, and have influenced the design of some of the most widely used hash tables in production. We show that primary clustering is not the foregone conclusion that it is reputed to be. We demonstrate that seemingly small design decisions in how deletions are implemented have dramatic effects on the asymptotic performance of insertions: if these design decisions are made correctly, then even if a hash table operates continuously at a load factor of 1 − Θ(1=x), the expected amortized cost per insertion/deletion is O~(x). This is because the tombstones left behind by deletions can actually cause an anti-clustering effect that combats primary clustering. Interestingly, these design decisions, despite their remarkable effects, have historically been viewed as simply implementation-level engineering choices.
    [Show full text]