O Lunar and Planetary Institute Provided by the NASA Astrophysics Data System Large Martian Craters and Basins

Total Page:16

File Type:pdf, Size:1020Kb

O Lunar and Planetary Institute Provided by the NASA Astrophysics Data System Large Martian Craters and Basins MARTIAN LARGE CRATER AND BASIN DEPOSITS: IMPLICATIONS FOR THE THICKNESS OF A SUBSURFACE VOLATILE LAYER AND SITE GEOLOGY AT VIKING LANDER 2. P.J.Mouginis-Mark Dept. Geological Sciences, Brown University, Providence RI 02912; and B.R.Hawke Hawaii Institute Geophysics, Honolulu Hawaii 96822. Introduction: Recent analyses of martian impact craters and basins larger than 50 km diameter have emphasized the identification and description of the ejecta materials, together with an issessment of the emplacement sequence for these deposits (1,2,3) . The objectives of such studies were to investigate the role that target volatiles may have played in the fluidization of large ejecta deposits, given the previously identified ground-flow morphology of the materials surrounding craters smal ler than 30 km (4). Theoretical models (5) and crater morphometry (6) have suggested that the thickness of this volatile layer may be of limited extent - the total volume possibly equiv- alent to a layer about 100 meters thick (7). Boyce and Witbeck (8) have identified a minimum crater diameter (2-4 km) before ejecta deposits i1 lus- trate the characteristic fluidized morphology, implying that at the time of crater formation the near-surface layers of the target were rel-atively volatile poor. Similarly, for craters larger than about 50 km, depth/diameter values for fresh martian craters (6) suggest that target volatiles may have been absent at depth, and so were not able to control the final crater mor- phology. This investigation addresses this inferred finite thickness of the target volatile layer from the interpretation of craters in the 50-200 km diameter range, and utilizes the morphology of fresh craters of this size to consider the possible influence that the crater Mie (105 km diameter) may have had on the site geology at the Viking Lander 2 site in Utopia Planitia. Observations: A variety of ball istic and ground-fl ow ejecta deposits have been recognized around the fresh martian craters Bamburg (55 km; 30W, 40'~) , Curie (120 km; OW, 280N), Lowell (190 km; 81°W, 52's) and Lyot (200 km; 330°w, 50°N) (refs. 1,2,9). A1 though different in detailed morphology, each of these craters possess : 1) A secondary crater field of ballistic origin; 2) Extensive lobate deposits emplaced by a ground-flow mechanism; and 3) Mass- flow materials close to the crater rim that were probably produced bj the failure and subsequent flow of volatile-rich ejecta originally emplaced on the crater rim (1,9). The recognition of partially buried secondary craters at Bamburg (1) and Lyot (2) imp1 ies that these craters were produced prior to the arrival of the ground-flow deposits, and that fragments of sufficient size to create 5 knl secondary craters were excavated from the cavity together with the more fluid ground-flow materials. Maximum travel distances for the lobate ejecta deposits (normalized to the diameter of the parent crater) are found to be in approximate inverse relationship to the size of the parent crater. At Bamburg, fluidized ejecta extends 2.1 D from the crater center (where D .is the crater diameter), at Curie to 1.9 D, and at Lyot to 1.4 D. Mass-flow materials, a1 though present at all the craters investigated, are most extensive around Curie, where additional evidence for post-emplacement ejecta flow is seen in the abnormally wide set of terraces within the crater (9). Aspects of the ejecta morphology indicate that the fluidization of this material was primarily the product of target properties, rather than the proposed atmospheric effects (10) . Channels on the surface of the ejecta deposits around Bamburg and Cerulli (110 km; 338O~, 32'~) indicate that the ejecta was volatile-rich at the time of deposition (1). In addition, a lobate flow south of Curie appears to have O Lunar and Planetary Institute Provided by the NASA Astrophysics Data System Large Martian Craters and Basins Mouginis-Mark P.J. and Hawke B.R. been created by the slumping of the mass-flow materials after their initial emplacement (9), indicating that ejecta fluidization could be achieved on Mars even with low-velocity materials that fa1 1 (at most) a few hundred meters, Imp1 ications for volatile layer thickness : A1 though the depth of excavation for martain cratering events is unknown, certain inferences can be drawn about the volatile layer from the observed depths of fresh martian craters and the characteristics of their ejecta materials. Fresh craters in the size range 50 - 200 km are predicted to be 2.3 - 4.9 km deep from morphometric measurements (6). In addition, each transient cavity probably excavated to a considerably greater depth (10 - 20 km ?), indicating that target materials from depths of several kilometers were probably incorporated within the ejecta. The observed occurrence of lobate ejecta flows around 200 km diameter craters (e.g. Lyot and Lowell) demonstrates that even for small basins on Mars a sufficient amount of volatile-rich material was excavated to fluidize the ejecta. The decrease in the normalized ejecta range, and the increasing frequency of secondary craters, probably indicate the contamination of the near-surface volatile-rich material with ejecta from strata sufficiently deep to be depleted in volatiles for these larger impact events. Site geology at Viking Lander 2: Fig.1 illustrates the inferred position of the Viking Lander 2 spacecraft (VL-2), which lies approximately 190 km to the west of the crater Mie (105 km; 220°W, 48ON). Morphologically, Mie is a large central-peaked crater with terraced walls and subdued interior deposits suggestive of an eolian mantle. Although poorly visible on the available Viking images, several ejecta deposits comparable to those described in this analysis for other craters can also be identified around Mie (11). The precise role that Mie may have played in controlling the local surface deposits at VL-2 is, however, poorly understood. Analyses of the boulder field observed from the lander show that a greater diversity of boulder morphologies (11, 12) and colors (13) exist at the Utopia Planitia site than have been observed at Viking Lander 1 in Chryse Planitia (13, 14). Such a range of boulder types may be attributable to the influence of Mie, which is more than an order of magnitude larger than any crater close to VL-1. From our investigations of other large craters on Mars, we would predict that the terrain surrounding Mie would have experienced secondary cratering and the emplacement of lobate ground-flows. Indeed, such fluidized deposits have been tentatively recognized close to the lander (11). If such an interpretation is val id, the variety of the VL-2 boulder shapes (12) may be a consequence of multiple modes of emplacement for materials derived from depths ranging from near-surface to more than 5 km. In collaboration with a detailed investigation of the VL-2 boulder field .(12), we are consequently pursuing the interpret- ation of the Utopia site as a further constraint to our analysis of large martian craters. References: 1) Mouginis-Mark P.J. (1979) PLPSC loth, 2651-2668. 2) Hawke B.R. and Mouginis-Mark P.J. (1981) NASA-TM 82385, 152-154. 3) Mouginis-Mark P.J. et al. (1980) Proc.Conf.Multi-ring Basins, submitted. 4) Carr M.H. et a1 . n977) J.Geophys .Res. 82, 4055-4065. 5) Fanale F.P. (1976) Icarus 28 179-202. 7) Judson S. and Kssbacher L.A. (1980) Proc.3rd Conf. Water plan. Regoliths, in press. 6) Cintala M.J. and Mouginis-Mark P.J. (1980) Geophys. Res. Lttrs. -7, 329-332. 8) Boyce J.M. and Witbeck N.E. (1981) NASA-TM 82385-9 O Lunar and Planetary Institute Provided by the NASA Astrophysics Data System Large Martian Craters and Basins Mouginis-Mark P ,J, and Hawk@ 3.R. Fig.1: The location of the Viking Lander 2 site ("+" in the center of the two landing ellipses) is within two crater diameters of the 105 km crater Mie (top right of image). Scaled to the craters Bamburg ("B") and Curie ("C") this places the landing site within the region where both ballistic and ground-flow ejecta emplacement are expected. Scale bar is 100 km. Part of JPL photomosaic P-17676. 140-143. 9) Mouginis-Mark P.J. and Head J,W, (1979) LPS X, 870-872. 10) Schultz P.H. and Gault D.E. (1979) J.Geophys.Res. 84,-7669-7687. 11) Mutch T.A. --et al. (1977) J.Geophys.Res. -82, 4452-4467. 12) Garvin J.B. --et al. (1981) The Moon and Planets, in press. 13) Strickland E.L. (1979) PLPSC loth, 3055-3077. 14) Binder A.B. --et al. (1977) J.Geophys.Res. -82, 4439- 4m O Lunar and Planetary Institute Provided by the NASA Astrophysics Data System .
Recommended publications
  • Martian Crater Morphology
    ANALYSIS OF THE DEPTH-DIAMETER RELATIONSHIP OF MARTIAN CRATERS A Capstone Experience Thesis Presented by Jared Howenstine Completion Date: May 2006 Approved By: Professor M. Darby Dyar, Astronomy Professor Christopher Condit, Geology Professor Judith Young, Astronomy Abstract Title: Analysis of the Depth-Diameter Relationship of Martian Craters Author: Jared Howenstine, Astronomy Approved By: Judith Young, Astronomy Approved By: M. Darby Dyar, Astronomy Approved By: Christopher Condit, Geology CE Type: Departmental Honors Project Using a gridded version of maritan topography with the computer program Gridview, this project studied the depth-diameter relationship of martian impact craters. The work encompasses 361 profiles of impacts with diameters larger than 15 kilometers and is a continuation of work that was started at the Lunar and Planetary Institute in Houston, Texas under the guidance of Dr. Walter S. Keifer. Using the most ‘pristine,’ or deepest craters in the data a depth-diameter relationship was determined: d = 0.610D 0.327 , where d is the depth of the crater and D is the diameter of the crater, both in kilometers. This relationship can then be used to estimate the theoretical depth of any impact radius, and therefore can be used to estimate the pristine shape of the crater. With a depth-diameter ratio for a particular crater, the measured depth can then be compared to this theoretical value and an estimate of the amount of material within the crater, or fill, can then be calculated. The data includes 140 named impact craters, 3 basins, and 218 other impacts. The named data encompasses all named impact structures of greater than 100 kilometers in diameter.
    [Show full text]
  • Warfare in a Fragile World: Military Impact on the Human Environment
    Recent Slprt•• books World Armaments and Disarmament: SIPRI Yearbook 1979 World Armaments and Disarmament: SIPRI Yearbooks 1968-1979, Cumulative Index Nuclear Energy and Nuclear Weapon Proliferation Other related •• 8lprt books Ecological Consequences of the Second Ihdochina War Weapons of Mass Destruction and the Environment Publish~d on behalf of SIPRI by Taylor & Francis Ltd 10-14 Macklin Street London WC2B 5NF Distributed in the USA by Crane, Russak & Company Inc 3 East 44th Street New York NY 10017 USA and in Scandinavia by Almqvist & WikseH International PO Box 62 S-101 20 Stockholm Sweden For a complete list of SIPRI publications write to SIPRI Sveavagen 166 , S-113 46 Stockholm Sweden Stoekholol International Peace Research Institute Warfare in a Fragile World Military Impact onthe Human Environment Stockholm International Peace Research Institute SIPRI is an independent institute for research into problems of peace and conflict, especially those of disarmament and arms regulation. It was established in 1966 to commemorate Sweden's 150 years of unbroken peace. The Institute is financed by the Swedish Parliament. The staff, the Governing Board and the Scientific Council are international. As a consultative body, the Scientific Council is not responsible for the views expressed in the publications of the Institute. Governing Board Dr Rolf Bjornerstedt, Chairman (Sweden) Professor Robert Neild, Vice-Chairman (United Kingdom) Mr Tim Greve (Norway) Academician Ivan M£ilek (Czechoslovakia) Professor Leo Mates (Yugoslavia) Professor
    [Show full text]
  • New Chryse and the Provinces
    New Chryse and the Provinces The city of New Chryse is actually several connected cities. The Upper City is located on a break in the crater rim, looking down past a steep rock to the Lower City. Inside the da Vinci crater rim lies the Inner City, also known as the Old City – Red Era tunnels and cave shelters, as well as several nanocomposite towers and cupolas on Mona Lys Ridge looking down on the lower parts of the city. The Lower city lies in a valley sloping down to the Harbour City, which fills a crater 20 kilometres to the East. The Harbour City crater is connected to Camiling Bay and the sea through two canyons and is very well protected from both wind and ice. South of the Lower City and Harbour City lies The Slopes, a straight slope into the sea that is covered with sprawl and slums. Mona Lys Ridge is a mixture of palatial estates surrounded by gardens, imposing official imperial buildings and towering ancient structures used by the highest ranks of the Empire. The central imperial administration and especially the Council is housed in the Deimos Needle, a diamondoid tower that together with its sibling the Phobos Needle dominate the skyline. Escalators allow swift and discreet transport down to the lower levels of the city, and can easily be defended by the police force. North of Mona Lys lies a secluded garden city for higher administrators, guild officials and lesser nobility. The Inner City is to a large extent part of Mona Lys, although most of the inhabitants of Mona Lys do not care much for the dusty old tunnels and hidden vaults – that is left to the Guild of Antiquarians who maintain and protect it.
    [Show full text]
  • Magnetized Impact Craters
    Icarus xxx (2011) xxx–xxx Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Predicted and observed magnetic signatures of martian (de)magnetized impact craters ⇑ Benoit Langlais a, , Erwan Thébault b a CNRS UMR 6112, Université de Nantes, Laboratoire de Planétologie et Géodynamique, 2 Rue de la Houssinière, F-44000 Nantes, France b CNRS UMR 7154, Institut de Physique du Globe de Paris, Équipe de Géomagnétisme, 1 Rue Cuvier, F-75005 Paris, France article info abstract Article history: The current morphology of the martian lithospheric magnetic field results from magnetization and Received 3 May 2010 demagnetization processes, both of which shaped the planet. The largest martian impact craters, Hellas, Revised 6 January 2011 Argyre, Isidis and Utopia, are not associated with intense magnetic fields at spacecraft altitude. This is Accepted 6 January 2011 usually interpreted as locally non- or de-magnetized areas, as large impactors may have reset the mag- Available online xxxx netization of the pre-impact material. We study the effects of impacts on the magnetic field. First, a care- ful analysis is performed to compute the impact demagnetization effects. We assume that the pre-impact Keywords: lithosphere acquired its magnetization while cooling in the presence of a global, centered and mainly Mars, Surface dipolar magnetic field, and that the subsequent demagnetization is restricted to the excavation area cre- Mars, Interior Impact processes ated by large craters, between 50- and 500-km diameter. Depth-to-diameter ratio of the transient craters Magnetic fields is set to 0.1, consistent with observed telluric bodies. Associated magnetic field is computed between 100- and 500-km altitude.
    [Show full text]
  • Possible Origin of Chlorobenzene Detected by SAM Instrument at Gale Crater, Mars: Synergy of Iron Oxides and Perchlorate and Consequences for Organic Matter Analysis
    Eighth International Conference on Mars (2014) 1201.pdf Possible origin of chlorobenzene detected by SAM instrument at Gale crater, Mars: synergy of iron oxides and perchlorate and consequences for organic matter analysis. P. Francois1, P. Coll1, C. Szopa2, T. Georgelin3, A. Buch4, C. Freissinet5,6, I. Belmahdi4, A. McAdam5, J. Eigenbrode5, D. Glavin5, S. Kashyap5, A. R. Navarro- Gonzalez7, P. Mahaffy5 and M. Cabane2. [email protected]. 1LISA, Univ. Paris-Est Créteil, Univ. Denis Diderot & CNRS 94010 Créteil, France 2LATMOS, Univ. Pierre et Marie Curie, Univ. Versailles Saint- Quentin & CNRS, 75005 Paris, France 3LRS, Univ. Pierre et Marie Curie, Ivry sur Seine, France 4LGPM, Ecole Centrale de Paris, 92295 Châtenay-Malabry 5NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA 6NASA Postdoctoral Program Administered by Oak Ridge Associated Universities, Oak Ridge, Tennessee 37831, USA 7Universidad Nacional Autónoma de México, México, D.F. 04510, Mexico Introduction: The Sample Analysis at Mars rates [5]. Apart from an oxychlorine phase, CB sam- (SAM) instrument on the Curiosity rover is designed to ples also contain iron oxides (e.g. hematite, magnetite) determine the inventory of organic and inorganic vola- [6] which could oxidize organic compounds and cata- tiles thermally evolved from solid samples notably by lyze their decomposition leading to differences in the using a combination of evolved gas analysis (EGA) amount and/or nature of the observed pyrolysis prod- and pyrolysis gas chromatography mass spectrometry ucts [7, 8]. A synergy between oxychlorine phases and (pyr-GC-MS) [1]. Multiple portions from three solid iron oxides in the presence of a carbon source can samples have been analyzed by SAM : a scoop of ba- potentially lead to the formation of CBZ, without any saltic sand at Rocknest (RN) and two drilled samples of specific need for aromatic precursors.
    [Show full text]
  • The Structure and Mechanical Properties of Hemp Fibers-Reinforced Poly(-Caprolactone)
    applied sciences Article The Structure and Mechanical Properties of Hemp Fibers-Reinforced Poly("-Caprolactone) Composites Modified by Electron Beam Irradiation Rafał Malinowski 1,* , Aneta Raszkowska-Kaczor 1, Krzysztof Moraczewski 2 , Wojciech Głuszewski 3 , Volodymyr Krasinskyi 4 and Lauren Wedderburn 1 1 Łukasiewicz Research Network—Institute for Engineering of Polymer Materials and Dyes, 55 M. Skłodowska-Curie Street, 87-100 Toru´n,Poland; [email protected] (A.R.-K.); [email protected] (L.W.) 2 Institute of Materials Engineering, Kazimierz Wielki University, 30 Chodkiewicza Street, 85-064 Bydgoszcz, Poland; [email protected] 3 Institute of Nuclear Chemistry and Technology, 16 Dorodna Street, 03-195 Warsaw, Poland; [email protected] 4 Department of Chemical Technology of Plastics Processing, Lviv Polytechnic National University, 12 Stepan Bandera Street, 79-013 Lviv, Ukraine; [email protected] * Correspondence: [email protected]; Tel.: +48-53-060-0220 Abstract: The need for the development of new biodegradable materials and modification of the properties the current ones possess has essentially increased in recent years. The aim of this study Citation: Malinowski, R.; was the comparison of changes occurring in poly("-caprolactone) (PCL) due to its modification by Raszkowska-Kaczor, A.; high-energy electron beam derived from a linear electron accelerator, as well as the addition of natural Moraczewski, K.; Głuszewski, W.; fibers in the form of cut hemp fibers. Changes to the fibers structure in the obtained composites and Krasinskyi, V.; Wedderburn, L. The the geometrical surface structure of sample fractures with the use of scanning electron microscopy Structure and Mechanical Properties were investigated.
    [Show full text]
  • Inferences of Martian Atmospheric Dust and Water Ice Content Derived from Radiative Transfer Models of Passive Msl Observations by Mastcam
    44th Lunar and Planetary Science Conference (2013) 1288.pdf INFERENCES OF MARTIAN ATMOSPHERIC DUST AND WATER ICE CONTENT DERIVED FROM RADIATIVE TRANSFER MODELS OF PASSIVE MSL OBSERVATIONS BY MASTCAM. E. M. McCul- lough1, J. E. Moores 1,2, R. Francis1, and the MSL Science Team. 1Centre for Planetary Science and Exploration (The University of Western Ontario, London, ON, Canada, [email protected]), 2Now at: Centre for Research in Earth and Space Sciences (CRESS, York University, Toronto, ON, Canada). Introduction: While the Mars Science Laboratory cameras [3]. The 440 nm and 750 nm combination of (MSL) Spacecraft was not designed primarily as a ve- wavelengths was chosen because this ratio is the least hicle from which to study the martian atmosphere, the ambiguous for distinguishing ice from dust. recent landing of MSL's rover Curiosity has provided The MastCam's left and right cameras can be used opportunities to extend the science return of the exist- simultaneously to image the sky, with a 440 nm blue ing instrument complement to include observations of filter on the right camera and a 750 nm red filter on the atmospheric water ice and dust. left. Alternately, sequential images taken in both wave- The participating science project “Observations of lengths with a single camera (typically MastCam Left), Water Ice and Winds from the MSL Rover” [1], in- can be used. The latter is the simplest case with which cluded proposed atmospheric measurements using sev- to begin as many camera-specific parameters will be eral MSL imagers. To date, several such data products identical for the pair of images.
    [Show full text]
  • Appendix I Lunar and Martian Nomenclature
    APPENDIX I LUNAR AND MARTIAN NOMENCLATURE LUNAR AND MARTIAN NOMENCLATURE A large number of names of craters and other features on the Moon and Mars, were accepted by the IAU General Assemblies X (Moscow, 1958), XI (Berkeley, 1961), XII (Hamburg, 1964), XIV (Brighton, 1970), and XV (Sydney, 1973). The names were suggested by the appropriate IAU Commissions (16 and 17). In particular the Lunar names accepted at the XIVth and XVth General Assemblies were recommended by the 'Working Group on Lunar Nomenclature' under the Chairmanship of Dr D. H. Menzel. The Martian names were suggested by the 'Working Group on Martian Nomenclature' under the Chairmanship of Dr G. de Vaucouleurs. At the XVth General Assembly a new 'Working Group on Planetary System Nomenclature' was formed (Chairman: Dr P. M. Millman) comprising various Task Groups, one for each particular subject. For further references see: [AU Trans. X, 259-263, 1960; XIB, 236-238, 1962; Xlffi, 203-204, 1966; xnffi, 99-105, 1968; XIVB, 63, 129, 139, 1971; Space Sci. Rev. 12, 136-186, 1971. Because at the recent General Assemblies some small changes, or corrections, were made, the complete list of Lunar and Martian Topographic Features is published here. Table 1 Lunar Craters Abbe 58S,174E Balboa 19N,83W Abbot 6N,55E Baldet 54S, 151W Abel 34S,85E Balmer 20S,70E Abul Wafa 2N,ll7E Banachiewicz 5N,80E Adams 32S,69E Banting 26N,16E Aitken 17S,173E Barbier 248, 158E AI-Biruni 18N,93E Barnard 30S,86E Alden 24S, lllE Barringer 29S,151W Aldrin I.4N,22.1E Bartels 24N,90W Alekhin 68S,131W Becquerei
    [Show full text]
  • Global Geometric Properties of Martian Impact Craters: a Preliminary Assessment Using Mars Orbiter Laser Altimeter (Mola)
    GLOBAL GEOMETRIC PROPERTIES OF MARTIAN IMPACT CRATERS: A PRELIMINARY ASSESSMENT USING MARS ORBITER LASER ALTIMETER (MOLA). J. B. Garvin1, S. E. H. Sakimoto2, C. Schnetzler3, and J. J. Frawley4, 1(NASAÕs GSFC, Code 921, Greenbelt, MD 20771 USA; [email protected]), 2(USRA at NASAÕs GSFC, Code 921, Greenbelt, MD 20771), 3(SSAI at NASAÕs GSFC) 4(H-STX and Herring Bay Geophysics at NASAÕs GSFC). Introduction: Impact craters on Mars have been ÒshapeÓ (n), central peak height, diameter D, volume, used to provide fundamental insights into the proper- shape, and many others. In this report, we treat the ties of the martian crust, the role of volatiles, the rela- crater depth versus diameter relationship, the crater rim tive age of the surface, and on the physics of impact height vs. diameter pattern, the statistics of ejecta cratering in the Solar System [1,2,6]. Before the three- thickness and its spatial distribution, and cavity geo- dimensional information provided by the Mars Orbiter metric properties, including interior deposit geometry. Laser Altimeter (MOLA) instrument which is currently Crater depth vs. Diameter: Using MOLA topog- operating in Mars orbit aboard the Mars Global Sur- raphic profile data, we have computed the total depth veyor (MGS), impact features were characterized mor- (from rim crest to lowest point on crater cavity floor) phologically using orbital images from Mariner 9 and and true depth (i.e., from pre-impact surface to mean Viking. Fresh-appearing craters were identified and crater floor level) for over 1300 craters. When we exam- measurements of their geometric properties were de- ine the correlation of depth d against diameter D, a rived from various image-based methods [3,6].
    [Show full text]
  • Impact Craters) Into the Subsurface
    SUBSURFACE MINERAL HETEROGENEITY IN THE MARTIAN CRUST AS SEEN BY THE THERMAL EMISSION IMAGING SYSTEM (THEMIS): VIEWS FROM NATURAL “WINDOWS” (IMPACT CRATERS) INTO THE SUBSURFACE. L. L. Tornabene1 , J. E. Moersch1, H. Y. McSween Jr.1, J. A. Piatek1 and P. R. Christensen2; 1Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, Tennessee 37996-1410, 2 Department of Geological Sciences, Arizona State University, Tempe, Arizona 85287–6305, USA. Introduction and Background: Impact craters have been effectively used as a “natural drill” into the crust of the moon, the Earth and on Mars, giving us a glimpse of the mineral and lithologic compositions that are otherwise not exposed or present on surfaces. A lunar study by Tomp- kins and Pieters [1] has demonstrated that Lunar Clementine data could be used to show that numerous craters on the Moon excavated distinct compositions within both the cen- tral uplift and craters walls/terraces of several complex cra- ters with respect to the surrounding lunar surface composi- tion. Later, Tornabene et al [2] demonstrated how Haughton impact structure was an excellent terrestrial analog for dem- onstrating the utility of using craters for studying both near- subsurface and the shallow crust of Mars. Using ASTER Thermal infrared (TIR) data, as an analog for THEMIS TIR, three subsurface units were distinguished within the structure as units that were excavated and uplifted by the impact event. These units, if not for the regional tilt and erosion, would otherwise not be presently exposed if not for the Haughton event. Meanwhile, recent studies on Mars by the Opportunity rover [3] revealed our first clear view of out- cropping bedrock of sedimentary layers within the walls of Eagle and Endurance craters.
    [Show full text]
  • MARS ORBITAL DATA — METHODS and INTERPRETATION 6:30 P.M
    Lunar and Planetary Science XXXIX (2008) sess614.pdf Thursday, March 13, 2008 POSTER SESSION II: MARS ORBITAL DATA — METHODS AND INTERPRETATION 6:30 p.m. Fitness Center Farrand W. H. Johnson J. R. Schmidt M. E. Bell J. F. III VNIR Spectral Differences on Natural and Brushed/Wind-abraded Surfaces on Home Plate, Gusev Crater, Mars: Spirit Pancam and HiRISE Color Observations [#1774] Color differences between the eastern and western rims of Home Plate are examined using Spirit Pancam and HiRISE color observations. Differences between near-field and remote observations are considered. Rice M. S. Bell J. F. III Wang A. Cloutis E. A. Vis-NIR Spectral Characterization of Si-rich Deposits at Gusev Crater, Mars [#2138] The Spirit rover has discovered high concentrations of silica at Gusev Crater, and a distinct spectral feature near 1000 nm appears to be diagnostic of these materials. We hypothesize that the presence of H2O or OH may be responsible for this feature. Combe J.-Ph. McCord T. B. Mars-Express/HRSC Spectral Data of MER Landing Sites Analyzed by a Multiple-Endmember Linear Spectral Linear Unmixing Model (MELSUM) [#2381] HRSC multispectral data are analyzed for mapping the main surface spectral components and photometric properties of Mars. The unique geometry of observation of this dataset is investigated. Results will be compared to field observations from the MERs. Hauber E. Gwinner K. Gendrin A. Fueten F. Stesky R. Pelkey S. Reiss D. Zegers T. E. MacKinnon P. Jaumann R. Bibring J.-P. Neukum G. Hebes Chasma, Mars: Slopes and Stratigraphy of Interior Layered Deposits [#2375] We present new data from HRSC and CTX on the topography, stratigraphy, and structure of Interior Layered Deposits in Hebes Chasma, Valles Marineris, Mars.
    [Show full text]
  • May 2017 Nhsca Duals 92 Elementary 92 Middle
    MAY 2017 NHSCA DUALS 60 MATS 92 ELEMENTARY 92 MIDDLE SCHOOL 184 HIGH SCHOOL 1233 MS WRESTLERS MS Ms 4m First Name Last Name Info 1 75 Luke Seagraves 6 2 80 Isaac Landis 3 85 Micah Crenshaw 7 4 90 Karson Kline 7 PJW State Qualifier 5 90 Mason Prinkey 8 6 100 Taylor Weaver 7 PJW State 3rd place, MAWA Eastern National 4th place, Northeast region freestyle and Greco-Roman 2nd Multiple time PJW State Qualifier, PJW State runner-up, PJW Empire 7th place, NUWAY National 7 105 Nolan Fenton 7 Champio 8 112 Cole Felker 7 9 119 Mark McGonigal 7 Multiple time PJW State Placewinner 6 time PJW State Qualifier, 5 time PJW placewinner, MAWA Eastern National Chamption, TOC multiple 10 127 Hunter Weitosh 8 ti 11 135 Hayes Jones 8 Inter County Conference Champion 12 135 Dakota Mascho 7 4 time PJW State Qualifier, PJW 3rd place, PJW runner-up, PJW State Champion 13 154 Ethan Yingling 8 Multiple time PJW State Qualifier 14 180 Conner Davis 15 180 Andrew Erskine MS Ms 84 Athletes First Name Last Name Info 1 80 Josh Domino 2 90 Keegan Herbst 3 95 Daniel Taylor 4 100 Kade Bradbury 5 100 Anakin Burks 6 112 Buddy Stine 7 119 Nick Nazzaro 8 127 Jaylon Burks 9 127 Naomi Vaughn 10 142 Ben Richardson 11 154 Griffin Symthers Ms All American MS First Name Last Name Info Wrestling Club 1 75 Nathan Pelesky 2 80 Dylan Coy 7th 3 85 Owen Reinsel 4 90 Luke Geibig MS Ms 4m First Name Last Name Info 5 95 Noah Teeter 6 100 Kris Oddo 7 105 Tony Salopek 8 112 Tyler Cymmerman 9 119 John Alteri 10 127 Shawn Getty 11 135 Brody Kunselman 12 142 Hudson Holbay 13 154 Dayton Pitzer 14 165 Jake Sabol 15 230 Cullen Lynch MS Ms Battlezone Black First Name Last Name Info 1 75 Codie Cuerbo 2017 Junior High State Placer, 4xGrade School State Placer, 9-1 Jr.
    [Show full text]