Digital Transmission
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Moving Average Filters
CHAPTER 15 Moving Average Filters The moving average is the most common filter in DSP, mainly because it is the easiest digital filter to understand and use. In spite of its simplicity, the moving average filter is optimal for a common task: reducing random noise while retaining a sharp step response. This makes it the premier filter for time domain encoded signals. However, the moving average is the worst filter for frequency domain encoded signals, with little ability to separate one band of frequencies from another. Relatives of the moving average filter include the Gaussian, Blackman, and multiple- pass moving average. These have slightly better performance in the frequency domain, at the expense of increased computation time. Implementation by Convolution As the name implies, the moving average filter operates by averaging a number of points from the input signal to produce each point in the output signal. In equation form, this is written: EQUATION 15-1 Equation of the moving average filter. In M &1 this equation, x[ ] is the input signal, y[ ] is ' 1 % y[i] j x [i j ] the output signal, and M is the number of M j'0 points used in the moving average. This equation only uses points on one side of the output sample being calculated. Where x[ ] is the input signal, y[ ] is the output signal, and M is the number of points in the average. For example, in a 5 point moving average filter, point 80 in the output signal is given by: x [80] % x [81] % x [82] % x [83] % x [84] y [80] ' 5 277 278 The Scientist and Engineer's Guide to Digital Signal Processing As an alternative, the group of points from the input signal can be chosen symmetrically around the output point: x[78] % x[79] % x[80] % x[81] % x[82] y[80] ' 5 This corresponds to changing the summation in Eq. -
Designing Filters Using the Digital Filter Design Toolkit Rahman Jamal, Mike Cerna, John Hanks
NATIONAL Application Note 097 INSTRUMENTS® The Software is the Instrument ® Designing Filters Using the Digital Filter Design Toolkit Rahman Jamal, Mike Cerna, John Hanks Introduction The importance of digital filters is well established. Digital filters, and more generally digital signal processing algorithms, are classified as discrete-time systems. They are commonly implemented on a general purpose computer or on a dedicated digital signal processing (DSP) chip. Due to their well-known advantages, digital filters are often replacing classical analog filters. In this application note, we introduce a new digital filter design and analysis tool implemented in LabVIEW with which developers can graphically design classical IIR and FIR filters, interactively review filter responses, and save filter coefficients. In addition, real-world filter testing can be performed within the digital filter design application using a plug-in data acquisition board. Digital Filter Design Process Digital filters are used in a wide variety of signal processing applications, such as spectrum analysis, digital image processing, and pattern recognition. Digital filters eliminate a number of problems associated with their classical analog counterparts and thus are preferably used in place of analog filters. Digital filters belong to the class of discrete-time LTI (linear time invariant) systems, which are characterized by the properties of causality, recursibility, and stability. They can be characterized in the time domain by their unit-impulse response, and in the transform domain by their transfer function. Obviously, the unit-impulse response sequence of a causal LTI system could be of either finite or infinite duration and this property determines their classification into either finite impulse response (FIR) or infinite impulse response (IIR) system. -
Finite Impulse Response (FIR) Digital Filters (II) Ideal Impulse Response Design Examples Yogananda Isukapalli
Finite Impulse Response (FIR) Digital Filters (II) Ideal Impulse Response Design Examples Yogananda Isukapalli 1 • FIR Filter Design Problem Given H(z) or H(ejw), find filter coefficients {b0, b1, b2, ….. bN-1} which are equal to {h0, h1, h2, ….hN-1} in the case of FIR filters. 1 z-1 z-1 z-1 z-1 x[n] h0 h1 h2 h3 hN-2 hN-1 1 1 1 1 1 y[n] Consider a general (infinite impulse response) definition: ¥ H (z) = å h[n] z-n n=-¥ 2 From complex variable theory, the inverse transform is: 1 n -1 h[n] = ò H (z)z dz 2pj C Where C is a counterclockwise closed contour in the region of convergence of H(z) and encircling the origin of the z-plane • Evaluating H(z) on the unit circle ( z = ejw ) : ¥ H (e jw ) = åh[n]e- jnw n=-¥ 1 p h[n] = ò H (e jw )e jnwdw where dz = jejw dw 2p -p 3 • Design of an ideal low pass FIR digital filter H(ejw) K -2p -p -wc 0 wc p 2p w Find ideal low pass impulse response {h[n]} 1 p h [n] = H (e jw )e jnwdw LP ò 2p -p 1 wc = Ke jnwdw 2p ò -wc Hence K h [n] = sin(nw ) n = 0, ±1, ±2, …. ±¥ LP np c 4 Let K = 1, wc = p/4, n = 0, ±1, …, ±10 The impulse response coefficients are n = 0, h[n] = 0.25 n = ±4, h[n] = 0 = ±1, = 0.225 = ±5, = -0.043 = ±2, = 0.159 = ±6, = -0.053 = ±3, = 0.075 = ±7, = -0.032 n = ±8, h[n] = 0 = ±9, = 0.025 = ±10, = 0.032 5 Non Causal FIR Impulse Response We can make it causal if we shift hLP[n] by 10 units to the right: K h [n] = sin((n -10)w ) LP (n -10)p c n = 0, 1, 2, …. -
Postdoctoral Fellow and Research Engineer Positions
Postdoctoral Fellow and Research Engineer Positions National University of Singapore Principal Investigator: Dr. Yang Liu Email: [email protected]; [email protected]; Homepage:https://www.eng.nus.edu.sg/cee/staff/liu-yang/ 1. Postdoctoral Fellow - 00CUR Description The research project is funded under Artificial Intelligent–Enterprise Digital Platform (AI-EDP) Programme in the areas of Smart City and Smart MRO. The postdoctoral researcher will work in ST Engineering & NUS Joint Lab and collaborate with the Transportation Group in the Department of Civil and Environmental Engineering, the Decision Analysis Group in the Department of Industrial System Engineering and Management, the AI Research group in the Department of Electrical and Computer Engineering at NUS and ST Engineering. The research project aims to develop a methodology framework to generate intelligent traffic diffusion plans and information dissemination strategies by analyzing historical traffic data. It is expected to deliver intelligent tools to access traffic accident impact and to generate traffic diffusion strategies by machine/deep learning, simulation, and optimization techniques. The postdoctoral researcher will lead the research project, supervise research students, and write research proposals and reports. This is a full-time position, and the duration of the first contract is one year. There is an opportunity to extend the position to multiple years, depending on the performance in the first year and the availability of funding. Qualifications • Ph.D. degree -
Compiling Maplesim C Code for Simulation in Vissim
Compiling MapleSim C Code for Simulation in VisSim 1 Introduction MapleSim generates ANSI C code from any model. The code contains the differential equations that describe the model dynamics, and a solver. Moreover, the code is royalty-free, and can be used in any simulation tool (or development project) that accepts external code. VisSim is a signal-flow simulation tool with strength in embedded systems programming, real-time data acquisition and OPC. This document will describe the steps required to • Generate C code from a MapleSim model of a DC Motor. The C code will contain a solver. • Implement the C code in a simulation DLL for VisSim. VisSim provides a DLL Wizard that sets up a Visual Studio C project for a simulation DLL. MapleSim code will be copied into this project. After a few modifications, the project will be compiled to a DLL. The DLL can then be used as a block in a VisSim simulation. The techniques demonstrated in this document can used to implement MapleSim code in any other environment. MapleSim’s royalty -free C code can be implemented in other modeling environment s, such as VisSim MapleSim’s C code can also be used in Mathcad 2 API for the Maplesim Code The C code generated by MapleSim contains four significant functions. • SolverSetup(t0, *ic, *u, *p, *y, h, *S) • SolverStep(*u, *S) where SolverStep is EulerStep, RK2Step, RK3Step or RK4Step • SolverUpdate(*u, *p, first, internal, *S) • SolverOutputs(*y, *S) u are the inputs, p are subsystem parameters (i.e. variables defined in a subsystem mask), ic are the initial conditions, y are the outputs, t0 is the initial time, and h is the time step. -
ELEG 5173L Digital Signal Processing Ch. 5 Digital Filters
Department of Electrical Engineering University of Arkansas ELEG 5173L Digital Signal Processing Ch. 5 Digital Filters Dr. Jingxian Wu [email protected] 2 OUTLINE • FIR and IIR Filters • Filter Structures • Analog Filters • FIR Filter Design • IIR Filter Design 3 FIR V.S. IIR • LTI discrete-time system – Difference equation in time domain N M y(n) ak y(n k) bk x(n k) k 1 k 0 – Transfer function in z-domain N M k k Y (z) akY (z)z bk X (z)z k 1 k 0 M k bk z Y (z) k 0 H (z) N X (z) k 1 ak z k 1 4 FIR V.S. IIR • Finite impulse response (FIR) – difference equation in the time domain M y(n) bk x(n k) k 0 – Transfer function in the Z-domain M Y (z) k H (z) bk z X (z) k 0 – Impulse response h(n) [b ,b ,,b ] 0 1 M • The impulse response is of finite length finite impulse response 5 FIR V.S. IIR • Infinite impulse response (IIR) – Difference equation in the time domain N M y(n) ak y(n k) bk x(n k) k1 k0 – Transfer function in the z-domain M k bk z Y(z) k0 H (z) N X (z) k 1 ak z k1 – Impulse response can be obtained through inverse-z transform, and it has infinite length 6 FIR V.S. IIR • Example – Find the impulse response of the following system. Is it a FIR or IIR filter? Is it stable? 1 y(n) y(n 2) x(n) 4 7 FIR V.S. -
Filename Extensions
Filename Extensions Generated 22 February 1999 from Filex database with 3240 items. ! # $ & ) 0 1 2 3 4 6 7 8 9 @ S Z _ a b c d e f g h i j k l m n o p q r s t u v w x y z ~ • ! .!!! Usually README file # .### Compressed volume file (DoubleSpace) .### Temp file (QTIC) .#24 Printer data file for 24 pin matrix printer (LocoScript) .#gf Font file (MetaFont) .#ib Printer data file (LocoScript) .#sc Printer data file (LocoScript) .#st Standard mode printer definitions (LocoScript) $ .$$$ Temporary file .$$f Database (OS/2) .$$p Notes (OS/2) .$$s Spreadsheet (OS/2) .$00 Pipe file (DOS) .$1 ZX Spectrum file in HOBETA format .$d$ Data (OS/2 Planner) .$db Temporary file (dBASE IV) .$ed Editor temporary file (MS C) .$ln TLink response file (Borland C++) .$o1 Pipe file (DOS) .$vm Virtual manager temporary file (Windows 3.x) & .&&& Temporary file ) .)2( LHA archiver temporary file (LHA) 0 .0 Compressed harddisk data (DoubleSpace) .000 Common filename extension (GEOS) .000 Compressed harddisk data (DoubleSpace) .001 Fax (Hayes JT FAX) (many) .075 75x75 dpi display font (Ventura Publisher) .085 85x85 dpi display font (Ventura Publisher) .091 91x91 dpi display font (Ventura Publisher) .096 96x96 dpi display font (Ventura Publisher) .0b Printer font with lineDraw extended character set (PageMaker) 1 .1 Unformatted manual page (Roff/nroff/troff/groff) .10x Bitmap graphics (Gemini 10x printer graphics file) .123 Data (Lotus123 97) .12m Smartmaster file (Lotus123 97) .15u Printer font with PI font set (PageMaker) .1st Usually README.1ST text 2 .24b Bitmap -
Digital Signal Processing Filter Design
2065-27 Advanced Training Course on FPGA Design and VHDL for Hardware Simulation and Synthesis 26 October - 20 November, 2009 Digital Signal Processing Filter Design Massimiliano Nolich DEEI Facolta' di Ingegneria Universita' degli Studi di Trieste via Valerio, 10, 34127 Trieste Italy Filter design 1 Design considerations: a framework |H(f)| 1 C ıp 1 ıp ıs f 0 fp fs Passband Transition Stopband band The design of a digital filter involves five steps: Specification: The characteristics of the filter often have to be specified in the frequency domain. For example, for frequency selective filters (lowpass, highpass, bandpass, etc.) the specification usually involves tolerance limits as shown above. Coefficient calculation: Approximation methods have to be used to calculate the values hŒk for a FIR implementation, or ak, bk for an IIR implementation. Equivalently, this involves finding a filter which has H.z/ satisfying the requirements. Realisation: This involves converting H.z/ into a suitable filter structure. Block or flow diagrams are often used to depict filter structures, and show the computational procedure for implementing the digital filter. 1 Analysis of finite wordlength effects: In practice one should check that the quantisation used in the implementation does not degrade the performance of the filter to a point where it is unusable. Implementation: The filter is implemented in software or hardware. The criteria for selecting the implementation method involve issues such as real-time performance, complexity, processing requirements, and availability of equipment. 2 Finite impulse response (FIR) filter design A FIR filter is characterised by the equations N 1 yŒn D hŒkxŒn k kXD0 N 1 H.z/ D hŒkzk: kXD0 The following are useful properties of FIR filters: They are always stable — the system function contains no poles. -
Lecture 2 - Digital Filters
Lecture 2 - Digital Filters 2.1 Digital filtering Digital filtering can be implemented either in hardware or software; in the first case, the numerical processor is either a special-purpose chip or it is assembled out of a set of digital integrated circuits which provide the essential building blocks of a digital filtering operation – storage, delay, addition/subtraction and multiplication by constants. On the other hand, a general-purpose mini-or micro-computer can also be programmed as a digital filter, in which case the numerical processor is the computer’s CPU, GPU and memory. Filtering may be applied to signals which are then transformed back to the analogue domain using a digital to analogue convertor or worked with entirely in the digital domain. 33 2.1.1 Reasons for using a digital rather than an analogue filter The numerical processor can easily be (re-)programmed to implement a num- • ber of different filters. The accuracy of a digital filter is dependent only on the round-off error in • the arithmetic. This has two advantages: – the accuracy is predictable and hence the performance of the digital signal processing algorithm is known apriori. – The round-off error can be minimized with appropriate design techniques and hence digital filters can meet very tight specifications on magnitude and phase characteristics (which would be almost impossible to achieve with analogue filters because of component tolerances and circuit noise). The widespread use of mini- and micro-computers in engineering has greatly • increased the number of digital signals recorded and processed. Power sup- ply and temperature variations have no effect on a programme stored in a computer. -
A Comparison of Software Engines for Simulation of Closed-Loop Control Systems
New Jersey Institute of Technology Digital Commons @ NJIT Theses Electronic Theses and Dissertations Spring 5-31-2010 A comparison of software engines for simulation of closed-loop control systems Sanket D. Nikam New Jersey Institute of Technology Follow this and additional works at: https://digitalcommons.njit.edu/theses Part of the Electrical and Electronics Commons Recommended Citation Nikam, Sanket D., "A comparison of software engines for simulation of closed-loop control systems" (2010). Theses. 68. https://digitalcommons.njit.edu/theses/68 This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons @ NJIT. For more information, please contact [email protected]. Cprht Wrnn & trtn h prht l f th Untd Stt (tl , Untd Stt Cd vrn th n f phtp r thr rprdtn f prhtd trl. Undr rtn ndtn pfd n th l, lbrr nd rhv r thrzd t frnh phtp r thr rprdtn. On f th pfd ndtn tht th phtp r rprdtn nt t b “d fr n prp thr thn prvt td, hlrhp, r rrh. If , r rt fr, r ltr , phtp r rprdtn fr prp n x f “fr tht r b lbl fr prht nfrnnt, h ntttn rrv th rht t rf t pt pn rdr f, n t jdnt, flfllnt f th rdr ld nvlv vltn f prht l. l t: h thr rtn th prht hl th r Inttt f hnl rrv th rht t dtrbt th th r drttn rntn nt: If d nt h t prnt th p, thn lt “ fr: frt p t: lt p n th prnt dl rn h n tn lbrr h rvd f th prnl nfrtn nd ll ntr fr th pprvl p nd brphl th f th nd drttn n rdr t prtt th dntt f I rdt nd flt. -
Digital Signal Processing Tom Davinson
First SPES School on Experimental Techniques with Radioactive Beams INFN LNS Catania – November 2011 Experimental Challenges Lecture 4: Digital Signal Processing Tom Davinson School of Physics & Astronomy N I VE R U S I E T H Y T O H F G E D R I N B U Objectives & Outline Practical introduction to DSP concepts and techniques Emphasis on nuclear physics applications I intend to keep it simple … … even if it’s not … … I don’t intend to teach you VHDL! • Sampling Theorem • Aliasing • Filtering? Shaping? What’s the difference? … and why do we do it? • Digital signal processing • Digital filters semi-gaussian, moving window deconvolution • Hardware • To DSP or not to DSP? • Summary • Further reading Sampling Sampling Periodic measurement of analogue input signal by ADC Sampling Theorem An analogue input signal limited to a bandwidth fBW can be reproduced from its samples with no loss of information if it is regularly sampled at a frequency fs 2fBW The sampling frequency fs= 2fBW is called the Nyquist frequency (rate) Note: in practice the sampling frequency is usually >5x the signal bandwidth Aliasing: the problem Continuous, sinusoidal signal frequency f sampled at frequency fs (fs < f) Aliasing misrepresents the frequency as a lower frequency f < 0.5fs Aliasing: the solution Use low-pass filter to restrict bandwidth of input signal to satisfy Nyquist criterion fs 2fBW Digital Signal Processing D…igi wtahl aSt ignneaxtl? Processing Digital signal processing is the software controlled processing of sequential data derived from a digitised analogue signal. Some of the advantages of digital signal processing are: • functionality possible to implement functions which are difficult, impractical or impossible to achieve using hardware, e.g. -
Lecture 5 - Digital Filters
Lecture 5 - Digital Filters 5.1 Digital filtering Digital filtering can be implemented either in hardware or software; in the first case, the numerical processor is either a special-purpose chip or it is assembled out of a set of digital integrated circuits which provide the essential building blocks of a digital filtering operation – storage, delay, addition/subtraction and multiplica- tion by constants. On the other hand, a general-purpose mini-or micro-computer can also be programmed as a digital filter, in which case the numerical processor is the computer’s CPU and memory. Filtering may be applied to signals which are then transformed back to the analogue domain using a digital to analogue convertor or worked with entirely in the digital domain (e.g. biomedical signals are digitised, filtered and analysed to detect some abnormal activity). 5.1.1 Reasons for using a digital rather than an analogue filter The numerical processor can easily be (re-)programmed to implement a number of different filters. The accuracy of a digital filter is dependent only on the round-off error in the arithmetic. This has two advantages: – the accuracy is predictable and hence the performance of the digital signal processing algorithm is known a priori. – The round-off error can be minimized with appropriate design tech- niques and hence digital filters can meet very tight specifications on magnitude and phase characteristics (which would be almost impossi- ble to achieve with analogue filters because of component tolerances and circuit noise). 59 The widespread use of mini- and micro-computers in engineering has greatly increased the number of digital signals recorded and processed.