Novel Reconstruction and Quantification Methods for Oxygen-17 Magnetic Resonance Imaging at Clinical Field Strengths

Total Page:16

File Type:pdf, Size:1020Kb

Novel Reconstruction and Quantification Methods for Oxygen-17 Magnetic Resonance Imaging at Clinical Field Strengths Novel Reconstruction and Quantification Methods for Oxygen-17 Magnetic Resonance Imaging at Clinical Field Strengths Inaugural-Dissertation zur Erlangung des Doktorgrades der Fakultät für Mathematik und Physik der Albert-Ludwigs-Universität Freiburg im Breisgau vorgelegt von M.Sc. Dmitry Kurzhunov aus Kasan, Russland Juli 2017 This thesis is dedicated to my beloved parents: to my father, a physicist by profession and vocation, who opened the fascinating world of physics to me, guided me and helped me develop my potentials; and to my mother, who always supported me in my endeavors and motivated me to become happy and successful. Посвящается моим любимым родителям: моему папе, физику по профессии и по призванию, который открыл для меня захватывающий мир физики, а также направлял меня и помогал мне в раскрытии и развитии моего потенциала; и моей маме, которая всегда поддерживала меня в моих начинаниях и мотивировала мои стремления к счастью и успеху. Everybody has a capacity for a happy life Lev Landau Supervisor: Prof. Dr. Michael Bock Referee: Prof. Dr. Günter Reiter Examiners: Prof. Dr. Jens Timmer Prof. Dr. Oskar von der Lühe Examination day 19.09.1989 ABSTRACT Oxygen metabolism, which is altered by many neurodegenerative diseases such as Alzheimer’s disease or Parkinson’s disease and in brain tumor regions, is quantified by the cerebral metabolic rate of oxygen consumption (CMRO2). Positron emission tomography (PET) with the oxygen 15 isotope O is considered the gold standard for CMRO2 mapping in humans; however, it is rarely used due to the short isotope half-life of only 2 min, which requires costly on-site production. An alternative method is a direct dynamic 17O magnetic resonance imaging (MRI) with inhalation of 17 17 17 isotopically enriched O gas. In O MRI, signal changes from H2 O molecules are observed during and after inhalation of 17O gas, and the pharmacokinetic model is applied to quantify 17 CMRO2. CMRO2 measurements with O MRI are challenging due to low natural abundance of 17 * O isotope of 0.037 %, fast effective transversal relaxation (T2 ), and low signal-to-noise ratio (SNR) of 17O magnetic resonance (MR) images. Thus, it was previously only possible at ultra-high field (UHF; B0 ≥ 4 T) MRI systems. The aim of this work is to develop novel reconstruction, 17 quantification, and simulation methods to enable CMRO2 measurement with O MRI in a clini- cal 3 T MRI system. First, a flexible simulation framework with two types of phantoms (analytical brain tumor and numerical brain phantoms) was developed to find optimal imaging parameters such as readout bandwidth, and spatial (훥푥) and temporal (훥푡) resolutions. Optimal acquisition parameters found in the simulations were consistent with those previously used in 17O MRI at UHF. Therefore, 150 ≤ BW≤ 175 Hz/pixel, 8.0 ≤ 훥푥 ≤ 10 mm, and 훥푡 = 60 sec were used in four 17O MRI ex- periments with 17O gas inhalation. In these experiments, a rebreathing circuit which allows for re- inhalation of the stored 17O gas in subsequent inhalation cycles was implemented for efficient usage of rare and expensive 17O gas. To analyze the influence of the different model parameters on the identifiability of CMRO2, a profile likelihood (PL) analysis was performed for different settings of the model parameters. In particular, the 17O enrichment fraction of the inhaled 17O gas, 훼, was investigated assuming con- stant and linearly varying models. Identifiability was analyzed for white matter (WM) and grey matter (GM) brain regions separately, and the dependency on different priors was studied. Prior knowledge about only one 훼-related parameter was sufficient to resolve the CMRO2 non- identifiability, and the CMRO2 values (0.72 – 0.99 µmol/gtissue/min in WM, 1.02 – 1.78 15 µmol/gtissue/min in GM) were in good agreement with the results of O-PET studies. In particu- lar, the proposed advanced quantification model with non-constant α values significantly im- proved model fitting. The profile likelihood analysis showed that CMRO2 can be measured relia- bly in a 17O gas MRI experiment if the 17O enrichment fraction is used as prior information for the model calculations. A new method called DIrect Estimation of 17O ImageS (DIESIS) was suggested to correct for partial volume effects (PVEs), which are present in 17O MR images due low spatial resolution of * 8 to 10 mm and blurring from fast T2 decay of about 2 ms. DIESIS avoids full reconstruction of i Abstract MR images and directly estimates the 17O MR images from the measured data based on parcella- tion (i.e., segmentation of the 3D image to a predefined number of volumes) of the 3D 1H MR image. It is an alternative to conventional Kaiser-Bessel (KB) gridding method, where 17O signal has to be averaged over large brain regions to get the SNR sufficient for CMRO2 quantification 17 by the model fitting of the O signal-time curves. DIESIS provided correction of PVEs: CMRO2 decreased by 6 – 19% in WM and increased by 29 – 46 % in GM compared to KB gridding, thus 15 getting close to the CMRO2 values from O-PET studies. To test the feasibility of pixel-wise CMRO2 quantification (mapping) in a clinical 3 T MRI system, a new iterative reconstruction was proposed, which uses the edge information contained in a co- registered 1H MR image to construct a non-homogeneous anisotropic diffusion (AD) filter. AD- constrained reconstruction of 17O MR images was compared to conventional KB with and with- out Hanning filtering, and to iterative reconstruction with a total variation constraint. AD- constrained reconstruction provided 17O images with improved resolution of fine brain structures both in the numerical brain phantom and in two in vivo data sets of one healthy volunteer, and it resulted in higher SNR and provided CMRO2 maps, which were comparable with maps acquired at 9.4 T. The results of this work show feasibility of 17O MRI in clinical 3 T MRI systems and provide a 17 solid basis for clinical translation of O MRI for non-invasive CMRO2 quantification in tumor patients. ii ZUSAMMENFASSUNG Hirntumore und neurodegenerative Erkrankungen wie z.B. Alzheimer oder Parkinson zeigen einen veränderten Sauerstoffmetabolismus. Die Positronenemissionstomographie (15O-PET) mit dem Sauerstoffisotop 15O stellt den Goldstandard zur ortsaufgelösten Bestimmung der zerebralen 15 Sauerstoffumsatzrate (CMRO2) im Menschen dar. Aufgrund der kurzen Halbwertszeit von O (ca. 2 min) muss das Radiopharmakon vor Ort mit einem Zyklotron produziert werden, so dass die Verwendung von 15O-PET heute nur auf wenige Forschungszentren beschränkt ist. Eine al- ternative Methode zu PET bietet die Magnetresonanztomographie (MRT) mit dem nicht radioak- 17 17 17 tiven Sauerstoffisotop O. Bei der O-MRT werden die Signaländerungen von H2 O detektiert, welches nach der Gabe von angereichertem 17O-Gas im Zuge des Sauerstoffmetabolismus bzw. der oxidativen Phosphorylierung entsteht. Durch Anpassen eines pharmakokinetischen Modells 17 an den H2 O-Signalverlauf erhält man abschließend die CMRO2-Werte. Aufgrund der niedrigen natürlichen Häufigkeit des 17O-Isotops von 0,037% und dessen schneller effektiver transversaler * Relaxation (T2 ) ist das Signal-Rausch-Verhältnis (engl., SNR) klein und somit die Sensitivität der 17O-MRT im Vergleich zur 1H-MRT um fünf Größenordnungen geringer. Deswegen wurde 17O- MRT bisher nur an MR-Tomographen mit ultrahohen Magnetfeldern (B0 ≥ 4 T) durchgeführt. Das Ziel dieser Arbeit ist die Entwicklung eines Simulationsframeworks sowie neuartiger Quanti- fizierungsmethoden und Rekonstruktionsalgorithmen, um CMRO2 verlässlich an einem klini- schen 3 T MR-Tomographen bestimmen zu können. Zur Bestimmung der optimalen Aufnahmebandbreite (BW) sowie der zeitlichen (훥푡) und räumli- chen (훥푥) Auflösung wurde zunächst ein flexibles Simulationsframework entwickelt, bestehend aus zwei unterschiedlichen Phantomtypen (einem analytischen Hirntumorphantom und einem numerischen Hirnphantom). Die optimierten Simulationsparameter stimmten mit den Parame- tern der Ultrahoch-Messungen überein, daher wurden für alle vier durchgeführten 17O- Inhalationsexperimenten die folgenden Parameter gewählt: 150 ≤ BW ≤ 175 Hz/Pixel, 8,0 ≤ 훥푥 ≤ 10 mm und 훥푡 = 60 s, unter Verwendung des entwickelten Rückatemsystems. Um den Einfluss unterschiedlicher Modelparameter auf die Identifizierbarkeit des CMRO2 zu untersuchen, wurde die Profile-Likelihood-Analyse für unterschiedliche Parametereinstellungen durchgeführt, wobei der 17O-Anreicherungsgrad 훼 in zwei unterschiedlichen Modellen als kon- stant bzw. linear-verändert angenommen wurde. In Abhängigkeit unterschiedlichen Vorwissens wurde die Identifizierbarkeit der CMRO2-Bestimmung in grauen (GM) und weißen (WM) Hirn- regionen evaluiert. Es wurde gezeigt, dass Vorwissen von nur einem 훼-abhängigen Parameters notwendig ist, um CMRO2 verlässlich zu bestimmen. Die quantifizierten CMRO2-Raten (0,72 – 0,99 µmol/gtissue/min im WM, 1,02 – 1,78 µmol/gtissue/min im GM) waren in guter Über- einstimmung mit den Ergebnissen von 15O-PET Untersuchungen. Dabei zeigte das Modell die beste Übereinstimmung mit den gemessenen Werten, bei dem ein nichtkonstanter Verlauf von 훼 angenommen wurde. Die Profile-Likelihood-Analyse hat gezeigt, dass der CMRO2 mit Hilfe von 17O-MRT Inhalationsmessungen zuverlässig bestimmt werden kann. iii Zusammenfassung Zur Korrektur von Partialvolumeneffekten in den 17O-MR-Bildern, die aufgrund der geringen * räumlichen Auflösung von 8 bzw. 10 mm und kurzer T2 -Zeiten von ca. 2 ms vorhanden sind, wurde die neuartige Methode DIrect Estimation of
Recommended publications
  • The Evolution of Biomedical EPR (ESR)
    Biomedical Spectroscopy and Imaging 5 (2016) 5–26 5 DOI 10.3233/BSI-150128 IOS Press Review The evolution of biomedical EPR (ESR) Lawrence J. Berliner ∗ Department of Chemistry and Biochemistry, University of Denver, 2190 E Iliff Ave, Denver, Colorado, USA Tel.: +1 303 871 7476; Fax: +1 303 871 2254; E-mail: [email protected] Abstract. Since the first EPR/ESR spectrum of a paramagnetic substance was published over 70 years ago, the technical improvements did not occur until after/during World War II with the advent of radar technology. The approaches to biomedical problems started somewhat later with the real burst of activity starting after the birth of the spin label technique about 50 years ago. The applications to proteins, then membranes and nucleic acids, and later applications to cells and eventually in-vivo on small animals and now humans has led EPR/ESR to finally being recognized as a uniquely powerful technique in the toolbox of techniques probing macromolecules and their interactions, free radical biology and its eventual value as a diagnostic technique. This article gives an overview of EPR/ESR studies of biomedically related systems, including proteins and enzymes. It presents a very personal historical perspective, briefly reviews the origins of the technique and reflects on possible future directions. As with NMR, advances in molecular biology and technology drastically changed the nature and focus of the technique, particularly the site directed spin labeling method that has been invaluable in determining protein and macromolecular
    [Show full text]
  • Electron Paramagnetic Resonance (EPR) Spectroscopy a Versatile and Little-Known Tool in Life Sciences and Related Applications
    Electron paramagnetic resonance (EPR) spectroscopy A versatile and little-known tool in life sciences and related applications Paola Fattibene, Donatella Pietraforte, Emanuela Bortolin, Mattea Chirico, Cinzia De Angelis, Sara Della Monaca, Egidio Iorio, Maria Elena Pisanu, Maria Cristina Quattrini Core Facilities, Istituto Superiore di Sanità, Rome, Italy Contents What are magnetic resonances and what is EPR? Systems measurable by EPR Examples of applications Practical weak points What are magnetic resonances and what is EPR? EPR and NMR share the same physical principle. The rotating spin of electrons or nuclei interact with external magnetic (static and alternate) fields. H H H H │ │ │ │ H − O − C − C − H H − O − C − C − H B0 B0 │ │ │ │ H H H H B1 (radiofrequency) B1 (microwave) EPR NMR Only unzero electron spins are detectable by EPR. This are present only in atoms or molecules with one unpaired electron (instead of two) in one or more orbitals (paramagnetic species). EPR – the twin sister of NMR Electron Paramagnetic Resonance & Nuclear Magnetic Resonance A parallel story 1938 1st description and measurements of NMR by Isidor Rabi (Nobel Prize in Physics in 1944). 1944 1st observation of electron spin resonance by Yevgeny Zavoisky 1946 Felix Bloch and Edward Mills Purcell expanded NMR (shared Nobel Prize in Physics in 1952). 1952 Varian Associates developed the first NMR unit. 1957 First commercialized EPR by JEOL Ltd. Why is EPR less known and less spread than NMR? 1. Because most stable molecules have all their electrons paired. This weakness is also its strength because it makes EPR specific for unpaired electrons: if a signal is detected, it certainly comes from an unpaired electron.
    [Show full text]
  • Modern Development of Magnetic Resonance 2018
    MODERN DEVELOPMENT OF MAGNETIC RESONANCE program 2018 KAZAN * RUSSIA OF MA NT GN E E M T P IC O L R E E V S E O N D A N N R C E E D O M K 18 AZAN 20 MODERN DEVELOPMENT OF MAGNETIC RESONANCE PROGRAM OF THE INTERNATIONAL CONFERENCE KAZAN, SEPTEMBER 24–28, 2018 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, re- production by photocopying machines or similar means, and storage in data banks. © 2018 Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, Kazan © 2018 Igor A. Aksenov, graphic design Printed in Russian Federation Published by Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, Kazan www.kfti.knc.ru 5 CHAIRMEn Alexey A. Kalachev Kev M. Salikhov PRogram Committee Kev Salikhov, chairman (Russia) Albert Aganov (Russia) Vadim Atsarkin (Russia) Pavel Baranov (Russia) Marina Bennati (Germany) Bernhard Blümich (Germany) Michael Bowman (USA) Sabine Van Doorslaer (Belgium) Rushana Eremina (Russia) Jack Freed (USA) Ilgiz Garifullin (Russia) Alexey Kalachev (Russia) Walter Kockenberger (Great Britain) Wolfgang Lubitz (Germany) Klaus Möbius (Germany) Hitoshi Ohta (Japan) Igor Ovchinnikov (Russia) Vladimir Skirda (Russia) Murat Tagirov (Russia) Takeji Takui (Japan) Valery Tarasov (Russia) Yurii Tsvetkov (Russia) Violeta Voronkova (Russia) 6 Modern Development of Magnetic Resonance Local OrgAnIzIng Committee Kalachev A.A., chairman Kupriyanova O.O. Mamin R.F., vice-chairman Kurkina N.G. Voronkova V.K., scientific secretary Latypov V.A. Akhmin S.M. Mosina L.V.
    [Show full text]
  • Radioactivity and X-Rays
    Radioactivity and X-rays Applications and health effects by Thormod Henriksen Preface The present book is an update and extension of three previous books from groups of scientists at the University of Oslo. The books are: I. Radioaktivitet – Stråling – Helse Written by; Thormod Henriksen, Finn Ingebretsen, Anders Storruste and Erling Stranden. Universitetsforlaget AS 1987 ISBN 82-00-03339-2 I would like to thank my coauthors for all discussions and for all the data used in this book. The book was released only a few months after the Chernobyl accident. II. Stråling og Helse Written by Thormod Henriksen, Finn Ingebretsen, Anders Storruste, Terje Strand, Tove Svendby and Per Wethe. Institute of Physics, University of Oslo 1993 and 1995 ISBN 82-992073-2-0 This book was an update of the book above. It has been used in several courses at The University of Oslo. Furthermore, the book was again up- dated in 1998 and published on the Internet. The address is: www.afl.hitos.no/mfysikk/rad/straling_innh.htm III. Radiation and Health Written by Thormod Henriksen and H. David Maillie Taylor & Francis 2003 ISBN 0-415-27162-2 This English written book was mainly a translation from the books above. I would like to take this opportunity to thank David for all help with the translation. The three books concentrated to a large extent on the basic properties of ionizing radiation. Efforts were made to describe the background ra- diation as well as the release of radioactivity from reactor accidents and fallout from nuclear explosions in the atmosphere. These subjects were of high interest in the aftermath of the Chernobyl accident.
    [Show full text]
  • R.M. Akhmadullin, R.R. Spiridonova, A.M. Kochnev BASIC AND
    Russian Federation Ministry of Education and Science Federal Agency for Education State Educational Establishment of Higher Professional Education "Kazan National Research Technological University" R.M. Akhmadullin, R.R. Spiridonova, A.M. Kochnev R. Akhmadullin, R. Spiridonova, A. Kochnev BASIC AND APPLIED POLYMER RESEARCH METHODS BASIC AND APPLIED POLYMER RESEARCH METHODS Tutorial Tutorial Kazan KNRTU Kazan, 2012 2012 1 УДК 678.01:53 Основы экспериментальных методов исследования в области полиме- CONTENT ров: Учебное пособие / Р.М. Ахмадуллин, Р.Р. Спиридонова, А.М. Кочнев; Федер. Агенство по образованию, Казан. нац. исслед. технол. 1. ESSENCE OF RESEARCH METHODS 6 ун-т. – Казань: КНИТУ, 2012. – 75с. 1.1 Concepts and Definitions 6 1.2 Scientific Research 6 Рассмотрены основные методы исследования полимеров, применяе- 1.3 Scientific Research Methods 8 мые в отечественной и зарубежной практике. Среди них ядерный 2. CHROMATOGRAPHY METHODS 10 магнитный резонанс, электронный парамагнитный резонанс; инфра- 2.1 Basic Concepts, Terminology 10 красная, рентгеновская, УФ и видимая спектроскопии; хроматография, 2.2 Chromatography Techniques 12 масс-спектрометрия, термогравиаметрические методы анализа, кало- 2.2.1 Chromatographic bed shape 12 риметрия, дилатометрия; оценка стойкости полимеров к внешним воз- 2.2.2 Physical state of mobile phase 14 действиям и эффективности действия стабилизаторов. 2.2.3 Separation mechanism 15 Учебное пособие предназначено для студентов 5 курса полимерного 2.2.4 Special Techniques 16 факультета обучающихся по направлению подготовки 020015 «Хими- 2.3 Chromatograph 18 ческая технология», знакомых с основными понятиями и законами 3. GAS CHROMATOGRAPHY 19 химии и физики высокомолекулярных соединений, методами их син- 3.1 Gas Chromatograph 20 теза, кинетическими и термодинамическими закономерностями поли- 3.2 Qualitative Analysis 21 меризации и поликонденсации, фазовыми и физическими состояниями 3.3 Quantitative Analysis 22 полимеров.
    [Show full text]
  • Creativity Anoiko 2011
    Creativity Anoiko 2011 PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sun, 27 Mar 2011 10:09:26 UTC Contents Articles Intelligence 1 Convergent thinking 11 Divergent thinking 12 J. P. Guilford 13 Robert Sternberg 16 Triarchic theory of intelligence 20 Creativity 23 Ellis Paul Torrance 42 Edward de Bono 46 Imagination 51 Mental image 55 Convergent and divergent production 62 Lateral thinking 63 Thinking outside the box 65 Invention 67 Timeline of historic inventions 75 Innovation 111 Patent 124 Problem solving 133 TRIZ 141 Creativity techniques 146 Brainstorming 148 Improvisation 154 Creative problem solving 158 Intuition (knowledge) 160 Metaphor 164 Ideas bank 169 Decision tree 170 Association (psychology) 174 Random juxtaposition 174 Creative destruction 175 References Article Sources and Contributors 184 Image Sources, Licenses and Contributors 189 Article Licenses License 191 Intelligence 1 Intelligence Intelligence is a term describing one or more capacities of the mind. In different contexts this can be defined in different ways, including the capacities for abstract thought, understanding, communication, reasoning, learning, planning, emotional intelligence and problem solving. Intelligence is most widely studied in humans, but is also observed in animals and plants. Artificial intelligence is the intelligence of machines or the simulation of intelligence in machines. Numerous definitions of and hypotheses about intelligence have been proposed since before the twentieth century, with no consensus reached by scholars. Within the discipline of psychology, various approaches to human intelligence have been adopted. The psychometric approach is especially familiar to the general public, as well as being the most researched and by far the most widely used in practical settings.[1] History of the term Intelligence derives from the Latin verb intelligere which derives from inter-legere meaning to "pick out" or discern.
    [Show full text]
  • EPR-Spektroskopie
    Einführung in die EPR-Spektroskopie Björn Corzilius Wintersemester 2018/2019 16.10.2018 Allgemeine Hinweise WS 2018/19 Vorlesung Dienstags 17:00-18:15 Uhr B2 Übung Dienstag 16:00-17:00 Uhr B2 2 SWS / 4 CP Modul: Einführung in die Theorie der Magnetischen Resonanz Wahlpflichtmodul in Physikalischer & Theoretischer Chemie Weitere Vorlesungen aus dem Modul: Einführung in die Festkörper-NMR Spektroskopie Einführung in die Hochauflösende NMR Spektroskopie 2 Veranstaltungen für das Modul benötigt, 3 möglich; EPR ist verpflichtend zur Anerkennung Übungen zur Vorlesung: Übungsaufgaben auf der Webseite (www.solidstateDNP.de) unter teaching Abgabe des bearbeiteten Übungsblattes in der darauf folgenden Übungsstunde Tutorin: Victoria Aladin ([email protected]) Leistungsnachweis für EPR Spektroskopie: Klausur (oder mündliche Abschlussprüfung) Anmeldung ab letzter Semesterwoche im Sekretariat bei Frau Schneider N140/Raum17 16.10.2018 1 Literatur • Allgemein • Chechik, Carter, Murphy: EPR, Oxford Chemistry Primers • Lund et al.: Principles and Applications of ESR Spectroscopy, Springer 2011 • Wertz & Bolton: ESR: Elementary Theory and Practical Applications, 1986 • Weil & Bolton: EPR: Elementary Theory and Practical Applications, 2007 • Carrington & McLachlan: Introduction to MR, Halper 1970 • Eaton, Eaton, Weber: Quantitative EPR, Springer, 2010 • Theorie • Schweiger, Jeschke: Principles of pulse electron paramagnetic resonance, Oxford Press 2001 • Slichter: Principles of Magnetic Resonance, Springer 1980 • Poole & Farach: Theorie of Magnetic
    [Show full text]
  • Pestel Analysis of Russia
    A Global Country Study Report On Russia Submitted to Institute Code: 769 Institute Name: GIDC Rajju Shroff ROFEL Institute of Management Studies Vapi In partial Fulfilment of the Requirement of the award for the degree of Master of Business Administration (MBA) By Gujarat Technological University Ahmedabad Prepared by: Students of MBA (Semester - III and IV) PART – I OVERVIEW OF BUSINESS & TRADE IN RUSSIA DEMOGRAPHIC PROFILE OF RUSSIA Population – 138,739,892 (July 2011 est.) Age structure – 0-14 years: 15.2% (male 10,818,203/female 10,256,611) 15-64 years: 71.8% (male 47,480,851/female 52,113,279) 65 years and over: 13% (male 5,456,639/female 12,614,309) (2011 est.) Median age – Total: 38.7 years Male: 35.5 years Female: 41.9 years (2011 est.) Population growth rate – 0.47% (2011 est.) Birth rate – 11.05 births/1,000 population (2011 est.) Death rate – 16.04 deaths/1,000 population (July 2011 est.) Urbanization – Urban population: 73% of total population (2010) Rate of urbanization: -0.2% annual rate of change (2010-15 est.) Sex ratio – At birth: 1.06 male(s)/female Under 15 years: 1.06 male(s)/female 15-64 years: 0.92 male(s)/female 65 years and over: 0.44 male(s)/female Total population ratio: 0.85 male(s)/female (2011 est.) Infant mortality rate – Total: 10.08 deaths/1,000 live births Male: 11.58 deaths/1,000 live births Female: 8.49 deaths/1,000 live births (2011 est.) Life expectancy at birth – Total population: 66.29 years Male: 59.8 years Female: 73.17 years (2011 est.) Ethnic groups – Russian 79.8%, Tatar 3.8%, Ukrainian 2%,
    [Show full text]
  • Visões Da Luz Esta Obra Junta Várias Contribuições De Especialistas Em Áreas Muito Diversas Do Saber, Para Discutir O Tema ‘Luz’ De Vários Pontos De Vista
    Francisco Gil Visões Lídia Catarino [Coord.] da Luz Visões da Luz Esta obra junta várias contribuições de especialistas em áreas muito diversas do saber, para discutir o tema ‘Luz’ de vários pontos de vista. Os temas reunidos nesta obra provêm das áreas de Física, Filosofia, Transcendência, Química, Ótica, Geologia, Literatura, História das Ciências, História, Geografia, Relações Internacionais, Biologia, Psicologia, Arte, Cinema e Fotografia, Medicina e Museologia. Os textos reflectem parcialmente os conteúdos apresentados no colóquio interdisciplinar ‘Visões da Luz’ realizado em Outubro de 2015, por ocasião do Ano Internacional da Luz de 2015, sob a égide do III-UC e aberto ao meio académico e à sociedade, em particular, a professores dos Ensinos Básico e Secundário. Visions of Light This work brings together various contributions from experts in very diverse areas of knowledge, to discuss the theme ‘Light’ from various points of view. The subjects gathered in this work come from the areas of Physics, Philosophy, Transcendence, Chemistry, Optics, Literature, History of Sciences, History, Geography, International Relations, Biology, Psychology, Art, Cinema and Photography, Medicine and Museology. The texts partially reflect the contents presented at the interdisciplinary colloquium ‘Visões da Luz’ held in October 2015, on the occasion of the International Year of Light 2015, under the aegis of III-UC and open to academia and society, to teachers of the Basic and Secondary Education. Francisco Gil — Doutorado em Física Experimental pela Universidade de Coimbra (UC), é professor no Departamento de Física e investigador do Centro de Física da UC (CFisUC) e da Unidade de I&D Química-Física Molecular da UC.
    [Show full text]
  • Application of Radiation in Medicine
    Application of radiation in medicine Chapter 9 Radiation used for diagnostic purposes In this chapter we shall discuss the use of radiation of different kind for medical imaging. This include ordinary x-ray film, the use of contrast media, fluorescent screens, image intensifiers, CT and the use of digital technology to all x-ray systems. In the case of x-rays the source is on the outside of the pa- tient and the detector is on the other side – unless in the case of backscattered x-rays. We also intend to look in more detail into the use of radioactive isotopes for diagnostic purposes. When isotopes are used, it is always the g-radiation that gives the information. Furthermore, the iso- topes are inside the body – and it is the g-photons coming out that yield the information. Two types of information are obtained; a). Information about where the isotopes are localized, b). Whether the distribution of activity deviates from normal in an organ or part of the body. We shall give the devel- opment of nuclear medicine including the PET-technique. Both x-rays and isotopes will give a radiation dose to the patient. The doses are rather small, – and should not be of any concern – unless the LNT hypothesis and collective doses are used. In order to complete the diagnostic field we shall mention a couple of other methods such as mag- netic resonance (MR or MRI) and ultrasound. In the case of MR electromagnetic radiation is used in combination with a strong magnetic field. The electromagnetic radiation is within the radio frequency field and can not ionize.
    [Show full text]
  • CALL for SPONSORSHIP 7Th Russian Summer School in Information Retrieval (Russir 2013) Monday September 16 – Friday September 2
    CALL FOR SPONSORSHIP 7th Russian Summer School in Information Retrieval (RuSSIR 2013) Monday September 16 – Friday September 20, 2013 Kazan, Russia http://russir.org The 6th Russian Summer School in Information Retrieval (RuSSIR 2013) will be held on September 16-20, 2013 in Kazan, Russia. The school is co-organized by Kazan Federal University ( www.kpfu.ru ) and Russian Information Retrieval Evaluation Seminar (ROMIP, http://romip.ru ). The school will have a focus on audio search . The mission of the RuSSIR school series is to enable students to learn about modern problems and methods in information retrieval and related disciplines, to stimulate scientific research and collaboration in the field; and to create environment for informal contacts between scientists, students and industry profes- sionals. RuSSIR 2013 will offer up to seven courses (in parallel sessions) and host approximately 130 partici- pants. RuSSIR 2013 is planned to feature a track of courses focusing on voice search, search over audio ar- chives and transcripts, as well as various problems in music information retrieval. The working language of the school is English. The target audience of the school is advanced graduate and PhD students, post-doctoral researchers, aca- demic and industrial researchers, and developers. Participation in the school is competitive: the candidates are selected by the program committee based on extensive applications, which results in high-level and motivated participants. Participation in RuSSIRs (including school materials and social program) is free of charge for students; a considerable part of the budget is spent on accommodation and travel grants for students. RuSSIR 2012 School organizers invite IT companies and funds to sponsor the school.
    [Show full text]
  • Radiation and Health
    Radiation and Health by Thormod Henriksen and Biophysics group at UiO Preface The present book is an update and extension of three previous books from groups of scientists at the University of Oslo. The books are: I. Radioaktivitet – Stråling – Helse Written by; Thormod Henriksen, Finn Ingebretsen, Anders Storruste and Erling Stranden. Universitetsforlaget AS 1987 ISBN 82-00-03339-2 I would like to thank my coauthors for all discussions and for all the data used in this book. The book was released only a few months after the Chernobyl accident. II. Stråling og Helse Written by Thormod Henriksen, Finn Ingebretsen, Anders Storruste, Terje Strand, Tove Svendby and Per Wethe. Institute of Physics, University of Oslo 1993 and 1995 ISBN 82-992073-2-0 This book was an update of the book above. It has been used in several courses at The University of Oslo. Furthermore, the book was again up- dated in 1998 and published on the Internet. The address is: http://www.mn.uio.no/fysikk/tjenester/kunnskap/straling/ III. Radiation and Health Written by Thormod Henriksen and H. David Maillie Taylor & Francis 2003 ISBN 0-415-27162-2 This English written book was mainly a translation from the books above. I would like to take this opportunity to thank David for all help with the translation. The three books concentrated to a large extent on the basic properties of ionizing radiation. Efforts were made to describe the background ra- diation as well as the release of radioactivity from reactor accidents and fallout from nuclear explosions in the atmosphere.
    [Show full text]