Microformats the Next (Small) Thing on the Semantic Web?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Privacy Protection for Smartphones: an Ontology-Based Firewall Johanne Vincent, Christine Porquet, Maroua Borsali, Harold Leboulanger
Privacy Protection for Smartphones: An Ontology-Based Firewall Johanne Vincent, Christine Porquet, Maroua Borsali, Harold Leboulanger To cite this version: Johanne Vincent, Christine Porquet, Maroua Borsali, Harold Leboulanger. Privacy Protection for Smartphones: An Ontology-Based Firewall. 5th Workshop on Information Security Theory and Prac- tices (WISTP), Jun 2011, Heraklion, Crete, Greece. pp.371-380, 10.1007/978-3-642-21040-2_27. hal-00801738 HAL Id: hal-00801738 https://hal.archives-ouvertes.fr/hal-00801738 Submitted on 18 Mar 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Privacy Protection for Smartphones: An Ontology-Based Firewall Johann Vincent, Christine Porquet, Maroua Borsali, and Harold Leboulanger GREYC Laboratory, ENSICAEN - CNRS University of Caen-Basse-Normandie, 14000 Caen, France {johann.vincent,christine.porquet}@greyc.ensicaen.fr, {maroua.borsali,harold.leboulanger}@ecole.ensicaen.fr Abstract. With the outbreak of applications for smartphones, attempts to collect personal data without their user’s consent are multiplying and the protection of users privacy has become a major issue. In this paper, an approach based on semantic web languages (OWL and SWRL) and tools (DL reasoners and ontology APIs) is described. -
Spatial Data Infrastructures and Linked Data
Spatial Data Infrastructures and Linked Data Carlos Granell Centre for Interactive Visualization Universitat Jaume I, Castellón, Spain Sven Schade European Commission - Joint Research Centre Institute for Environment and Sustainability, Ispra, Italy Gobe Hobona Centre for Geospatial Science University of Nottingham, Nottingham, United Kingdom ABSTRACT A Spatial Data Infrastructure (SDI) is a type of information infrastructure for enhancing geospatial data sharing and access. At the moment, we face the transition from the service-oriented second generation of SDI to a third generation, characterized by user-centric approaches. This new movement closes the gap between classical SDI and Volunteered Geographic Information (VGI). Public use and acquisition of information provides additional challenges within and beyond the geospatial domain. Linked data has been suggested recently as a possible overall solution. This notion refers to a best practice for exposing, sharing, and connecting resources in the (semantic) web. In this paper, we project the linked data approach to SDI and suggest it as a possibility to combine SDI with VGI. We advocate a Spatial Linked Data Infrastructure, which applies solutions for linked data to classical SDI standards. We detail different implementing strategies, give examples, and argue for benefits, while at the same time trying to outline possible fallbacks. We hope that this contribution will enlighten a way towards a single shared information space. 2 INTRODUCTION A Spatial Data Infrastructure (SDI) is a type of information infrastructure for enhancing geospatial data sharing and access. An SDI embraces a set of rules, standards, procedures, guidelines, policies, institutions, data, networks, technology and human resources for enabling and coordinating the management and exchange of geospatial data between stakeholders in the spatial data community (Nebert, 2004; Rajabifard et al., 2006; Masser, 2007). -
Rdfa in XHTML: Syntax and Processing Rdfa in XHTML: Syntax and Processing
RDFa in XHTML: Syntax and Processing RDFa in XHTML: Syntax and Processing RDFa in XHTML: Syntax and Processing A collection of attributes and processing rules for extending XHTML to support RDF W3C Recommendation 14 October 2008 This version: http://www.w3.org/TR/2008/REC-rdfa-syntax-20081014 Latest version: http://www.w3.org/TR/rdfa-syntax Previous version: http://www.w3.org/TR/2008/PR-rdfa-syntax-20080904 Diff from previous version: rdfa-syntax-diff.html Editors: Ben Adida, Creative Commons [email protected] Mark Birbeck, webBackplane [email protected] Shane McCarron, Applied Testing and Technology, Inc. [email protected] Steven Pemberton, CWI Please refer to the errata for this document, which may include some normative corrections. This document is also available in these non-normative formats: PostScript version, PDF version, ZIP archive, and Gzip’d TAR archive. The English version of this specification is the only normative version. Non-normative translations may also be available. Copyright © 2007-2008 W3C® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability, trademark and document use rules apply. Abstract The current Web is primarily made up of an enormous number of documents that have been created using HTML. These documents contain significant amounts of structured data, which is largely unavailable to tools and applications. When publishers can express this data more completely, and when tools can read it, a new world of user functionality becomes available, letting users transfer structured data between applications and web sites, and allowing browsing applications to improve the user experience: an event on a web page can be directly imported - 1 - How to Read this Document RDFa in XHTML: Syntax and Processing into a user’s desktop calendar; a license on a document can be detected so that users can be informed of their rights automatically; a photo’s creator, camera setting information, resolution, location and topic can be published as easily as the original photo itself, enabling structured search and sharing. -
Linked Data Overview and Usage in Social Networks
Linked Data Overview and Usage in Social Networks Gustavo G. Valdez Technische Universitat Berlin Email: project [email protected] Abstract—This paper intends to introduce the principles of Webpages, also possibly reference any Object or Concept (or Linked Data, show some possible uses in Social Networks, even relationships of concepts/objects). advantages and disadvantages of using it, aswell as presenting The second one combines the unique identification of the an example application of Linked Data to the field of social networks. first with a well known retrieval mechanism (HTTP), enabling this URIs to be looked up via the HTTP protocol. I. INTRODUCTION The third principle tackles the problem of using the same The web is a very good source of human-readable informa- document standards, in order to have scalability and interop- tion that has improved our daily life in several areas. By using erability. This is done by having a standard, the Resource De- rich text and hyperlinks, it made our access to information scription Framewok (RDF), which will be explained in section something more active rather than passive. But the web was III-A. This standards are very useful to provide resources that made for humans and not for machines, even though today are machine-readable and are identified by a URI. a lot of the acesses to the web are made by machines. This The fourth principle basically advocates that hyperlinks has lead to the search for adding structure, so that data is should be used not only to link webpages, but also to link more machine-readable. -
A Visual Notation for the Integrated Representation of OWL Ontologies
A Visual Notation for the Integrated Representation of OWL Ontologies Stefan Negru1 and Steffen Lohmann2 1Faculty of Computer Science, Alexandru Ioan Cuza University, General Berthelot 16, 700483 Iasi, Romania 2Institute for Visualization and Interactive Systems (VIS), Universit¨atsstraße 38, 70569 Stuttgart, Germany [email protected], [email protected] Keywords: Ontology Visualization, Visual Notation, OWL, Semantic Web, Knowledge Visualization, Ontologies. Abstract: The paper presents a visual notation for the Web Ontology Language (OWL) providing an integrated view on the classes and individuals of ontologies. The classes are displayed as circles, with the size of each circle representing its connectivity in the ontology. The individuals are represented as sections in the circles so that it is immediately clear from the visualization how many individuals the classes contain. The notation can be used to visualize the property relations of either the classes (conceptual layer) or of selected individuals (integrated layer), while certain elements are always shown for a better understanding. It requires only a small number of graphical elements and the resulting visualizations are comparatively compact. Yet, the notation is comprehensive, as it defines graphical representations for all OWL elements that can be reasonably visualized. The applicability of the notation is illustrated by the example of the Friend of a Friend (FOAF) ontology. 1 INTRODUCTION reasoning. Even though it provides great means to de- scribe and integrate information on the Web, its text- The Web of Data has attracted large interest for both based representation is difficult to understand for av- data publishers and consumers in the last years. -
Mapping Between Digital Identity Ontologies Through SISM
Mapping between Digital Identity Ontologies through SISM Matthew Rowe The OAK Group, Department of Computer Science, University of Sheffield, Regent Court, 211 Portobello Street, Sheffield S1 4DP, UK [email protected] Abstract. Various ontologies are available defining the semantics of dig- ital identity information. Due to the rise in use of lowercase semantics, such ontologies are now used to add metadata to digital identity informa- tion within web pages. However concepts exist in these ontologies which are related and must be mapped together in order to enhance machine- readability of identity information on the web. This paper presents the Social identity Schema Mapping (SISM) vocabulary which contains a set of mappings between related concepts in distinct digital identity ontolo- gies using OWL and SKOS mapping constructs. Key words: Semantic Web, Social Web, SKOS, OWL, FOAF, SIOC, PIMO, NCO, Microformats 1 Introduction The semantic web provides a web of machine-readable data. Ontologies form a vital component of the semantic web by providing conceptualisations of domains of knowledge which can then be used to provide a common understanding of some domain. A basic ontology contains a vocabulary of concepts and definitions of the relationships between those concepts. An agent reading a concept from an ontology can look up the concept and discover its properties and characteristics, therefore interpreting how it fits into that particular domain. Due to the great number of ontologies it is common for related concepts to be defined in separate ontologies, these concepts must be identified and mapped together. Web technologies such as Microformats, eRDF and RDFa have allowed web developers to encode lowercase semantics within XHTML pages. -
Wiki Semantics Via Wiki Templating
Chapter XXXIV Wiki Semantics via Wiki Templating Angelo Di Iorio Department of Computer Science, University of Bologna, Italy Fabio Vitali Department of Computer Science, University of Bologna, Italy Stefano Zacchiroli Universitè Paris Diderot, PPS, UMR 7126, Paris, France ABSTRACT A foreseeable incarnation of Web 3.0 could inherit machine understandability from the Semantic Web, and collaborative editing from Web 2.0 applications. We review the research and development trends which are getting today Web nearer to such an incarnation. We present semantic wikis, microformats, and the so-called “lowercase semantic web”: they are the main approaches at closing the technological gap between content authors and Semantic Web technologies. We discuss a too often neglected aspect of the associated technologies, namely how much they adhere to the wiki philosophy of open editing: is there an intrinsic incompatibility between semantic rich content and unconstrained editing? We argue that the answer to this question can be “no”, provided that a few yet relevant shortcomings of current Web technologies will be fixed soon. INTRODUCTION Web 3.0 can turn out to be many things, it is hard to state what will be the most relevant while still debating on what Web 2.0 [O’Reilly (2007)] has been. We postulate that a large slice of Web 3.0 will be about the synergies between Web 2.0 and the Semantic Web [Berners-Lee et al. (2001)], synergies that only very recently have begun to be discovered and exploited. We base our foresight on the observation that Web 2.0 and the Semantic Web are converging to a common point in their initially split evolution lines. -
Hidden Meaning
FEATURES Microdata and Microformats Kit Sen Chin, 123RF.com Chin, Sen Kit Working with microformats and microdata Hidden Meaning Programs aren’t as smart as humans when it comes to interpreting the meaning of web information. If you want to maximize your search rank, you might want to dress up your HTML documents with microformats and microdata. By Andreas Möller TML lets you mark up sections formats and microdata into your own source code for the website shown in of text as headings, body text, programs. Figure 1 – an HTML5 document with a hyperlinks, and other web page business card. The Heading text block is H elements. However, these defi- Microformats marked up with the element h1. The text nitions have nothing to do with the HTML was originally designed for hu- for the business card is surrounded by meaning of the data: Does the text refer mans to read, but with the explosive the div container element, and <br/> in- to a person, an organization, a product, growth of the web, programs such as troduces a line break. or an event? Microformats [1] and their search engines also process HTML data. It is easy for a human reader to see successor, microdata [2] make the mean- What do programs that read HTML data that the data shown in Figure 1 repre- ing a bit more clear by pointing to busi- typically find? Listing 1 shows the HTML sents a business card – even if the text is ness cards, product descriptions, offers, and event data in a machine-readable LISTING 1: HTML5 Document with Business Card way. -
The Girlboss Guide to Killing It Online & Making an Impact in the Digital Space
AN INTRODUCTORY GUIDE TO MAKING YOUR MARK IN THE DIGITAL SPACE FOR GIRBOSSES, BLOGGERS AND CREATIVES. By Dani Watson A N I N T R O T O M A K I N G Y O U R M A R K O N L I N E B Y D A N I W A T S O N WITH THE AMOUNT OF COMPETITION IN THE ONLINE WORLD, IT CAN BE AN OVERWHELMING TASK TO THINK ABOUT HOW YOU ARE EVER GOING TO MAKE YOU AND YOUR BRAND STAND OUT FROM THE NOISE. WHETHER YOU'RE A BUSINESS LOOKING TO LAUNCH ONLINE, A BLOGGER WHO WANTS TO TURN THEIR BLOG INTO A FULL TIME INCOME OR A BRAND THAT IS LOOKING TO ELEVATE ITS PRESENCE IN THE DIGITAL SPACE, ITS ALL ABOUT FINDING AND CONNECTING WITH YOUR CLIQUE AND ONCE YOU DO, LOVING THEM HARD. I AM A FIRM BELIEVER THAT WHENEVER YOU ARE LOOKING TO CREATE AN INCOME ONLINE, THE COMMUNITY COMES BEFORE THE SELL. PEOPLE HAVE TO KNOW, LIKE AND TRUST YOU BEFORE THEY ARE WILLING TO INVEST. THIS IS WHY IT IS SO IMPORTANT TO BE THINKING ABOUT CREATING NOT ONLY YOUR PRODUCTS/ SERVICES/BLOG, BUT FIGURING OUT WAYS TO MAKE PEOPLE FALL IN LOVE WITH YOU AND YOUR BRAND SO THEY BUY WHATEVER IT IS YOU SELL. I AM SOMEONE WHO THOROUGHLY UNDERSTANDS THE IMPORTANCE OF FINDING YOUR TRIBE ONLINE AND BECOMING KNOWN FOR WHAT YOU DO AS THIS IS EXACTLY WHAT I HAVE BEEN ABLE TO DO WITH MY OWN BUSINESS AND BRAND. WHAT STARTED OFF AS A SMALL BLOG AND SOCIAL MEDIA CONSULTANCY HAS QUICKLY DEVELOPED INTO AN ONLINE EMPIRE THAT SHOWS NO SIGNS OF SLOWING DOWN. -
Le Microformat Hproduct C'est Quoi ? Pourquoi Utiliser Le Microformat
Apprendre à utiliser les microformats : hProduct 2017-02-21 23:02:01 Nicolaseo Le microformat hProduct c’est quoi ? hProduct est un microformat approprié pour publier et embarquer les données de vos produits. C’est une sorte de méta tags qui permet de structurer vos données pour permettre aux robots des moteurs de recherche de mieux référencer votre contenu. Pourquoi utiliser le microformat hProduct Le microformat hProduct est basé sur un ensemble de champs très important pour communiquer avec les robots des moteurs de recherche comme Google. Utiliser les {meta- tags|richsnippets|microformats} (et tout ce qui peut permettre aux moteurs de recherche de mieux classer votre contenu) vous apportera plus de visibilité sur internet grâce à un meilleur référencement de votre site et de son contenu. Comment utiliser le microformat hProduct Le schéma hProduct se compose de ce qui suit : hproduct brand. optionnel. texte. peut aussi utiliser hCard pour les fabricants. category. optionnel. texte. peut aussi utiliser rel-tag. ré-utilisé à partir de hCard. price. optionnel. floating point number. peut utiliser un format de devise. description. optionnel. texte. peut aussi inclure un marquage HTML valide. réutilisé à partir de hReview. fn. requis. texte. nom du produit ou titre. réutilisé de hCard. photo. optionnel. élément image ou lien. réutilisé de hCard. url. optionnel. href. peut contenir rel-tag rel=’product’. ré-utilisé de hCard. review. optionnel. hReview, ou hReview-aggregate. listing. optionnel. hListing, ou hListing-aggregate. identifier. optionnel. type. requis. – exemples : model mpn upc isbn issn ean jan sn vin sku value. requis. – l’étiquette peut être implicite. Détails des champs du microformat hProduct Les noms de classe category, fn, photo, url sont réutilisés à partir de hCard. -
A Method to Analyze Multiple Social Identities in Twitter Bios
A Method to Analyze Multiple Social Identities in Twitter Bios ARJUNIL PATHAK, University at Buffalo, USA NAVID MADANI, University at Buffalo, USA KENNETH JOSEPH, University at Buffalo, USA Twitter users signal social identity in their profile descriptions, or bios, in a number of important but complex ways that are not well-captured by existing characterizations of how identity is expressed in language. Better ways of defining and measuring these expressions may therefore be useful both in understanding howsocial identity is expressed in text, and how the self is presented on Twitter. To this end, the present work makes three contributions. First, using qualitative methods, we identify and define the concept of a personal identifier, which is more representative of the ways in which identity is signaled in Twitter bios. Second, we propose a method to extract all personal identifiers expressed in a given bio. Finally, we present a series of validation analyses that explore the strengths and limitations of our proposed method. Our work opens up exciting new opportunities at the intersection between the social psychological study of social identity and the study of how we compose the self through markers of identity on Twitter and in social media more generally. CCS Concepts: • Applied computing Sociology; Additional Key Words and Phrases: Twitter, self-presentation, social identity, computational social science ACM Reference Format: Arjunil Pathak, Navid Madani, and Kenneth Joseph. 2018. A Method to Analyze Multiple Social Identities in Twitter Bios. J. ACM 37, 4, Article 111 (August 2018), 35 pages. https://doi.org/10.1145/1122445.1122456 1 INTRODUCTION A social identity is a word or phrase that refers to a particular social group (e.g. -
Where Is the Semantic Web? – an Overview of the Use of Embeddable Semantics in Austria
Where Is The Semantic Web? – An Overview of the Use of Embeddable Semantics in Austria Wilhelm Loibl Institute for Service Marketing and Tourism Vienna University of Economics and Business, Austria [email protected] Abstract Improving the results of search engines and enabling new online applications are two of the main aims of the Semantic Web. For a machine to be able to read and interpret semantic information, this content has to be offered online first. With several technologies available the question arises which one to use. Those who want to build the software necessary to interpret the offered data have to know what information is available and in which format. In order to answer these questions, the author analysed the business websites of different Austrian industry sectors as to what semantic information is embedded. Preliminary results show that, although overall usage numbers are still small, certain differences between individual sectors exist. Keywords: semantic web, RDFa, microformats, Austria, industry sectors 1 Introduction As tourism is a very information-intense industry (Werthner & Klein, 1999), especially novel users resort to well-known generic search engines like Google to find travel related information (Mitsche, 2005). Often, these machines do not provide satisfactory search results as their algorithms match a user’s query against the (weighted) terms found in online documents (Berry and Browne, 1999). One solution to this problem lies in “Semantic Searches” (Maedche & Staab, 2002). In order for them to work, web resources must first be annotated with additional metadata describing the content (Davies, Studer & Warren., 2006). Therefore, anyone who wants to provide data online must decide on which technology to use.