A Molecular Analysis of the Subtribe Arctiina (Lepidoptera)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Kastamonu Orman İşletme Müdürlüğü Lepidoptera Faunası
Kastamonu Üni., Orman Fakültesi Dergisi, 2015, 15 (2) 308-318 http://dx.doi.org/10.17475/kuofd.33631 Kastamonu Univ., Journal of Forestry Faculty Kastamonu Orman İşletme Müdürlüğü Lepidoptera Faunası *Erol AKKUZU1, Serkan EROL2, Eda DINGILOĞLU3, Gizem ÖZDİKMENLİ3, Hamit AYBERK4 1Kastamonu Üniversitesi, Orman Fakültesi, Orman Mühendisliği Bölümü, Kastamonu 2T.C. Orman ve Su İşleri Bakanlığı, 2. Bölge Müdürlüğü, Yalova Şube Müdürlüğü, Yalova 3Kastamonu Üniversitesi, Fen Bilimleri Enstitüsü, Kastamonu 4İstanbul Üniversitesi, Orman Fakültesi, Orman Mühendisliği Bölümü, İstanbul *Sorumlu yazar: [email protected] Geliş tarihi: 23.06.2015 Özet “Kastamonu Orman İşletme Müdürlüğü Lepidoptera Faunası” adlı bu çalışma, Kastamonu Orman İşletme Müdürlüğü sınırlarında yaşayan Lepidoptera faunasının belirlenmesi amacıyla 2010-2013 yılları arasında yapılmıştır. Alandaki örnekleri toplamak amacıyla ışık tuzakları ve atraplardan yararlanılmıştır. Çalışma sonucunda, alanda yayılış gösteren 15 familyaya ait 70 türün varlığı belirlenmiştir. Yakalanan türlerden, Nymphalidae familyasının 13 tür ile en zengin tür sayısına sahip olduğu bunu sırasıyla Noctuidae (12), Pieridae (10), Geometridae (8), Lycaenidae (6), Satyridae (6), Arctiidae (4), Sphingidae (3), Hesperiidae (2), Papillionidae (1), Zygaenidae (1), Pyralidae (1), Lasiocampidae (1), Saturniidae (1) ve Drepanidae (1) familyalarının takip ettiği tespit edilmiştir. Yakalanan türlerin 34’ünün Türkiye IUCN Kırmızı Listesi’nde LC-düşük riskli statüde yer aldığı görülmüştür. Lycaenidae familyasından Polyommatus cornelia (Gerhard, 1851) endemik, Satyridae familyasından Maniola megala (Oberthür, 1909)’nun ise “endemiğe yakın” tür grubundan olduğu tespit edilmiştir. Anahtar Kelimeler: Lepidoptera, Kastamonu, Fauna, Yayılış Lepidoptera Fauna of the Forest Enterprise Directorate of Kastamonu Abstract This study named as “Lepidoptera Fauna of the Forest Enterprise Directorate of Kastamonu” was made for determining distribution and presence of Lepidoptera fauna in Kastamonu Forest Enterprise region between 2010- 2013 years. -
Lepidoptera of North America 5
Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera by Valerio Albu, 1411 E. Sweetbriar Drive Fresno, CA 93720 and Eric Metzler, 1241 Kildale Square North Columbus, OH 43229 April 30, 2004 Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Cover illustration: Blueberry Sphinx (Paonias astylus (Drury)], an eastern endemic. Photo by Valeriu Albu. ISBN 1084-8819 This publication and others in the series may be ordered from the C.P. Gillette Museum of Arthropod Diversity, Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, CO 80523 Abstract A list of 1531 species ofLepidoptera is presented, collected over 15 years (1988 to 2002), in eleven southern West Virginia counties. A variety of collecting methods was used, including netting, light attracting, light trapping and pheromone trapping. The specimens were identified by the currently available pictorial sources and determination keys. Many were also sent to specialists for confirmation or identification. The majority of the data was from Kanawha County, reflecting the area of more intensive sampling effort by the senior author. This imbalance of data between Kanawha County and other counties should even out with further sampling of the area. Key Words: Appalachian Mountains, -
Insects of Western North America 4. Survey of Selected Insect Taxa of Fort Sill, Comanche County, Oklahoma 2
Insects of Western North America 4. Survey of Selected Insect Taxa of Fort Sill, Comanche County, Oklahoma 2. Dragonflies (Odonata), Stoneflies (Plecoptera) and selected Moths (Lepidoptera) Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Survey of Selected Insect Taxa of Fort Sill, Comanche County, Oklahoma 2. Dragonflies (Odonata), Stoneflies (Plecoptera) and selected Moths (Lepidoptera) by Boris C. Kondratieff, Paul A. Opler, Matthew C. Garhart, and Jason P. Schmidt C.P. Gillette Museum of Arthropod Diversity Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, Colorado 80523 March 15, 2004 Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Cover illustration (top to bottom): Widow Skimmer (Libellula luctuosa) [photo ©Robert Behrstock], Stonefly (Perlesta species) [photo © David H. Funk, White- lined Sphinx (Hyles lineata) [photo © Matthew C. Garhart] ISBN 1084-8819 This publication and others in the series may be ordered from the C.P. Gillette Museum of Arthropod Diversity, Department of Bioagricultural Sciences, Colorado State University, Fort Collins, Colorado 80523 Copyrighted 2004 Table of Contents EXECUTIVE SUMMARY……………………………………………………………………………….…1 INTRODUCTION…………………………………………..…………………………………………….…3 OBJECTIVE………………………………………………………………………………………….………5 Site Descriptions………………………………………….. METHODS AND MATERIALS…………………………………………………………………………….5 RESULTS AND DISCUSSION………………………………………………………………………..…...11 Dragonflies………………………………………………………………………………….……..11 -
Insect Survey of Four Longleaf Pine Preserves
A SURVEY OF THE MOTHS, BUTTERFLIES, AND GRASSHOPPERS OF FOUR NATURE CONSERVANCY PRESERVES IN SOUTHEASTERN NORTH CAROLINA Stephen P. Hall and Dale F. Schweitzer November 15, 1993 ABSTRACT Moths, butterflies, and grasshoppers were surveyed within four longleaf pine preserves owned by the North Carolina Nature Conservancy during the growing season of 1991 and 1992. Over 7,000 specimens (either collected or seen in the field) were identified, representing 512 different species and 28 families. Forty-one of these we consider to be distinctive of the two fire- maintained communities principally under investigation, the longleaf pine savannas and flatwoods. An additional 14 species we consider distinctive of the pocosins that occur in close association with the savannas and flatwoods. Twenty nine species appear to be rare enough to be included on the list of elements monitored by the North Carolina Natural Heritage Program (eight others in this category have been reported from one of these sites, the Green Swamp, but were not observed in this study). Two of the moths collected, Spartiniphaga carterae and Agrotis buchholzi, are currently candidates for federal listing as Threatened or Endangered species. Another species, Hemipachnobia s. subporphyrea, appears to be endemic to North Carolina and should also be considered for federal candidate status. With few exceptions, even the species that seem to be most closely associated with savannas and flatwoods show few direct defenses against fire, the primary force responsible for maintaining these communities. Instead, the majority of these insects probably survive within this region due to their ability to rapidly re-colonize recently burned areas from small, well-dispersed refugia. -
Luonnontilan Selvitys
ENONTEKIÖN KUNTA KILPISJÄRVI 2020 ͳHANKE LUONNONTILAN SELVITYS 15.12.2010 Pohjakartat © Maamittauslaitos 2010 Valokuvat © FCG Finnish Consulting Group / Minna Tuomala ja Jari Kärkkäinen ENONTEKIÖN KUNTA KILPISJÄRVI 2020 ͳHANKE LUONNONTILAN SELVITYS 15.12.2010 Kilpisjärvi 2020 -hanke Sisällys Luonnontilan selvitys SISÄLLYS 1 JOHDANTO ...................................................................................6 2 SELVITYSALUE .............................................................................7 2.1 Kaavatilanne .......................................................................... 8 2.2 Suojelualueet ja suojeluohjelmien alueet ....................................8 3 TUTKIMUSMENETELMÄT JA AINEISTO ..........................................9 3.1 Maastotyöt ............................................................................. 9 3.2 Muu aineisto ........................................................................... 9 4 LUONNONOLOSUHTEET ..............................................................10 4.1 Ilmasto .................................................................................10 4.2 Kallioperä ..............................................................................10 4.3 Maaperä ...............................................................................12 4.4 Vesiolot ................................................................................12 4.4.1 Pohjavedet ....................................................................12 4.4.2 Pintavedet ....................................................................13 -
Contributions Toward a Lepidoptera (Psychidae, Yponomeutidae, Sesiidae, Cossidae, Zygaenoidea, Thyrididae, Drepanoidea, Geometro
Contributions Toward a Lepidoptera (Psychidae, Yponomeutidae, Sesiidae, Cossidae, Zygaenoidea, Thyrididae, Drepanoidea, Geometroidea, Mimalonoidea, Bombycoidea, Sphingoidea, & Noctuoidea) Biodiversity Inventory of the University of Florida Natural Area Teaching Lab Hugo L. Kons Jr. Last Update: June 2001 Abstract A systematic check list of 489 species of Lepidoptera collected in the University of Florida Natural Area Teaching Lab is presented, including 464 species in the superfamilies Drepanoidea, Geometroidea, Mimalonoidea, Bombycoidea, Sphingoidea, and Noctuoidea. Taxa recorded in Psychidae, Yponomeutidae, Sesiidae, Cossidae, Zygaenoidea, and Thyrididae are also included. Moth taxa were collected at ultraviolet lights, bait, introduced Bahiagrass (Paspalum notatum), and by netting specimens. A list of taxa recorded feeding on P. notatum is presented. Introduction The University of Florida Natural Area Teaching Laboratory (NATL) contains 40 acres of natural habitats maintained for scientific research, conservation, and teaching purposes. Habitat types present include hammock, upland pine, disturbed open field, cat tail marsh, and shallow pond. An active management plan has been developed for this area, including prescribed burning to restore the upland pine community and establishment of plots to study succession (http://csssrvr.entnem.ufl.edu/~walker/natl.htm). The site is a popular collecting locality for student and scientific collections. The author has done extensive collecting and field work at NATL, and two previous reports have resulted from this work, including: a biodiversity inventory of the butterflies (Lepidoptera: Hesperioidea & Papilionoidea) of NATL (Kons 1999), and an ecological study of Hermeuptychia hermes (F.) and Megisto cymela (Cram.) in NATL habitats (Kons 1998). Other workers have posted NATL check lists for Ichneumonidae, Sphecidae, Tettigoniidae, and Gryllidae (http://csssrvr.entnem.ufl.edu/~walker/insect.htm). -
Check List of Noctuid Moths (Lepidoptera: Noctuidae And
Бiологiчний вiсник МДПУ імені Богдана Хмельницького 6 (2), стор. 87–97, 2016 Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University, 6 (2), pp. 87–97, 2016 ARTICLE UDC 595.786 CHECK LIST OF NOCTUID MOTHS (LEPIDOPTERA: NOCTUIDAE AND EREBIDAE EXCLUDING LYMANTRIINAE AND ARCTIINAE) FROM THE SAUR MOUNTAINS (EAST KAZAKHSTAN AND NORTH-EAST CHINA) A.V. Volynkin1, 2, S.V. Titov3, M. Černila4 1 Altai State University, South Siberian Botanical Garden, Lenina pr. 61, Barnaul, 656049, Russia. E-mail: [email protected] 2 Tomsk State University, Laboratory of Biodiversity and Ecology, Lenina pr. 36, 634050, Tomsk, Russia 3 The Research Centre for Environmental ‘Monitoring’, S. Toraighyrov Pavlodar State University, Lomova str. 64, KZ-140008, Pavlodar, Kazakhstan. E-mail: [email protected] 4 The Slovenian Museum of Natural History, Prešernova 20, SI-1001, Ljubljana, Slovenia. E-mail: [email protected] The paper contains data on the fauna of the Lepidoptera families Erebidae (excluding subfamilies Lymantriinae and Arctiinae) and Noctuidae of the Saur Mountains (East Kazakhstan). The check list includes 216 species. The map of collecting localities is presented. Key words: Lepidoptera, Noctuidae, Erebidae, Asia, Kazakhstan, Saur, fauna. INTRODUCTION The fauna of noctuoid moths (the families Erebidae and Noctuidae) of Kazakhstan is still poorly studied. Only the fauna of West Kazakhstan has been studied satisfactorily (Gorbunov 2011). On the faunas of other parts of the country, only fragmentary data are published (Lederer, 1853; 1855; Aibasov & Zhdanko 1982; Hacker & Peks 1990; Lehmann et al. 1998; Benedek & Bálint 2009; 2013; Korb 2013). In contrast to the West Kazakhstan, the fauna of noctuid moths of East Kazakhstan was studied inadequately. -
Arctiidae: Arctiinae
GENERAL NOTES joumai of the Lepidopterists' Society .58(3) , 2004,173-177 DEFENSIVE FLOCCULENT EMISSIONS IN A TIGER MOTH, HOMOEOCERA STICTOSOMA (ARCTIIDAE:ARCTIINAE) Additional key words: anti predator, Euchromiini, Panama, subabdominal pouch, moth, chemical defense. Tiger moths (Arctiidae) exhibit a wide range of an subabdominal flo cculcnt throughout the Euchromiini tipredator adaptations, including ultrasound reception (R. Simmons, pers. com.), little is known of its func and production, refl ex immobilization, wasp mimicry, tion. Conner et al. (2000) provided experimental evi and chemical secretions in the form of foams and liq dence for its role in courtship in one species, Cosmo uids (see Beebe & Kenedy 19.57, Blest 1964, Roth soma myrodora Dyar, whereby males increase their schild et al. 1979, Fullard 1990, Conner 1999, Weller probability of mating by enveloping the female with et a1. 1999). While performing field studies in Panama flocculent. Females covered with this material, in over the course of several years, we observed what ap turn, are thought to be chemically protected against pears to be a novel mode of defense for the Lepi spiders, due to the high pyrrolizidine alkaloid content doptera- the expulsion of abdominal 'flocculent' mate of the flocculent filaments. Flocculent has also been rial in a neotropical tigcr moth, Homoeoeera documented to playa role in courtship in two other stietosoma Druce (Arctiidae, Arctiinae, Euchromiini) species, Syntomeicia melanthus, which actively re (Jacobson & Weller 2002). In this note we summarize leases flocculent (Sanderford 1992), and S. ipomoeae, our observations on the behavior associated with floc which flashes its flocculent briefly, but does not release culent release, and describe some structural and it during courtship (Johnson 2002). -
Check List Lists of Species Check List 12(6): 1988, 12 November 2016 Doi: ISSN 1809-127X © 2016 Check List and Authors
12 6 1988 the journal of biodiversity data 12 November 2016 Check List LISTS OF SPECIES Check List 12(6): 1988, 12 November 2016 doi: http://dx.doi.org/10.15560/12.6.1988 ISSN 1809-127X © 2016 Check List and Authors Arctiini Leach, [1815] (Lepidoptera, Erebidae, Arctiinae) of the Brazilian Amazon. II — Subtribe Pericopina Walker, [1865] José A. Teston1* and Viviane G. Ferro2 1 Universidade Federal do Oeste do Pará, Programa de Pós-Graduação em Recursos Naturais da Amazônia and Instituto de Ciências da Educação, Laboratório de Estudos de Lepidópteros Neotropicais. Rua Vera Paz s/n, CEP 68040-255, Santarém, PA, Brazil 2 Universidade Federal de Goiás, Instituto de Ciências Biológicas, Departamento de Ecologia. Caixa Postal 131, CEP 74001-970, Goiânia, GO, Brazil * Corresponding author. E-mail: [email protected] Abstract: This study aims to identify and record collections and also use data from literature. This specimens of the lepidopteran tribe Arctiini from the work, a continuation of Teston and Ferro (2016), aims Brazilian Amazon, as well as update the previous lists to increase knowledge of the diversity of Arctiinae of this tribe, based on specimens from collections and subfamily in the Amazon region. a literature review. Sixty-two species of Pericopina were recorded, of which six are newly recorded from the MATERIALS AND METHODS Brazilian Amazon. We made intensive literature searches and exami- ned the entomological collections of the Instituto Key words: Amazon; day-flying moths; inventory; Nacional de Pesquisas na Amazônia (INPA; Manaus), Noctuoidea; tiger moths Museu Paraense Emilio Goeldi (MPEG; Belém), Coleção Becker (VOB; Camacan), Coleção Entomológica Padre Jesus Santiago Moure of the Universidade Federal do INTRODUCTION Paraná (DZUP; Curitiba), Fundação Instituto Oswaldo There are approximately 6,000 species of Arctiinae Cruz (FIOC; Rio de Janeiro), Museu de Zoologia of the moths in the Neotropical Region (Heppner 1991). -
Pericallia Matronula Extinct Species Arctia Festiva
Atlas of Czech Republic Large Moths: Analysing Distribution Changes Martin Konvička, Jiří Beneš, Pavel Kepka Institute of Entomology, Czech Academy of Sciences Faculty of Sciences, University South Bohemia České Budějovice Czech Republic [email protected] Butterfly distribution changes (2002 book and beyond) Butterfly distribution changes 1951-2001 vs. 2002-2012; 161 species; 430,101 records Extinct (19) Critically endangered (23) Endangered (22) Vulnerable (43) No change (32) Expanding (13) Newcomers & migrants(9) increase >15% grid cells loss > 75%, or < 3 cells remaining loss 50-75% cells Chasara brisesis in 2002 Atlas loss 25-50% cells Elsewhere, or in other groups, not better Tabanidae Czech Republic Stratiomyzidae Asilidae Syrphidae Macrolepidoptera BUTTERFLIES Vespoidea Apoidea Scarabeoidea Common moths, UK Cerambycidae Extinct (Conrad et al. Biol. Conser.2006) Carabidae Endangered Neuroptera Safe Orthoptera Auchenorhyncha Heteroptera 0% 20% 40% 60% 80% 100% Farkač et al., Czech Invertebrates Red List (2005) Čížek L. et al. Vesmír 88: 386-391 (2009) Common butterflies, Netherlands (Van Dyck et al. Conserv. Biol. 2009) Why moths and which moths? Butterflies 161 species (incl. extinct, migrants) • identification, tradition, collections … • pre-atlas 1994 (O. Kudrna) 55 000 records • first atlas 2002 (Beneš & Konvicka) 150 000 records • recording goes on (2113?) 440 000 (plus) records „Macro-Macros“ • 176 species identification, tradition… • no atlas so far (vs. othercuntries, e.g., for Denmark) • recorders asked for it! Arctiidae, -
CHECKLIST of WISCONSIN MOTHS (Superfamilies Mimallonoidea, Drepanoidea, Lasiocampoidea, Bombycoidea, Geometroidea, and Noctuoidea)
WISCONSIN ENTOMOLOGICAL SOCIETY SPECIAL PUBLICATION No. 6 JUNE 2018 CHECKLIST OF WISCONSIN MOTHS (Superfamilies Mimallonoidea, Drepanoidea, Lasiocampoidea, Bombycoidea, Geometroidea, and Noctuoidea) Leslie A. Ferge,1 George J. Balogh2 and Kyle E. Johnson3 ABSTRACT A total of 1284 species representing the thirteen families comprising the present checklist have been documented in Wisconsin, including 293 species of Geometridae, 252 species of Erebidae and 584 species of Noctuidae. Distributions are summarized using the six major natural divisions of Wisconsin; adult flight periods and statuses within the state are also reported. Examples of Wisconsin’s diverse native habitat types in each of the natural divisions have been systematically inventoried, and species associated with specialized habitats such as peatland, prairie, barrens and dunes are listed. INTRODUCTION This list is an updated version of the Wisconsin moth checklist by Ferge & Balogh (2000). A considerable amount of new information from has been accumulated in the 18 years since that initial publication. Over sixty species have been added, bringing the total to 1284 in the thirteen families comprising this checklist. These families are estimated to comprise approximately one-half of the state’s total moth fauna. Historical records of Wisconsin moths are relatively meager. Checklists including Wisconsin moths were compiled by Hoy (1883), Rauterberg (1900), Fernekes (1906) and Muttkowski (1907). Hoy's list was restricted to Racine County, the others to Milwaukee County. Records from these publications are of historical interest, but unfortunately few verifiable voucher specimens exist. Unverifiable identifications and minimal label data associated with older museum specimens limit the usefulness of this information. Covell (1970) compiled records of 222 Geometridae species, based on his examination of specimens representing at least 30 counties. -
Biodiversity Response to Land Use Change Across Scales
Biodiversity response to land use change across scales Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) der Naturwissenschaftlichen Fakultät I - Biowissenschaften - der Martin-Luther-Universität Halle Wittenberg, vorgelegt von Herr Murilo Dantas de Miranda, M.Sc. geboren am 16.05.1986 in Ribeira do Pombal, Brasilien Namen der Gutacher: (1) Prof. Dr. Henrique Pereira - Martin-Luther-Universität Halle-Wittenberg, Deutschland (2) Prof. Dr. Ulrich Brose - Friedrich Schiller Universität Jena, Deutschland (3) Prof. Dr. Paulo Borges - Universidade dos Açores, Portugal Datum der Verteidigung: 04 Juli 2017 Dedico as minhas mainhas e a meu painho Contents List of Tables 5 List of Figures 7 Summary 9 Chapter 1: Introduction 11 Land use change and biodiversity . 11 Diversity components: alpha, beta and gamma diversity . 12 Species abundance distribution . 14 Chapter overview . 16 Chapter 2: Testing the habitat amount hypothesis 23 Chapter 3: Moth diversity patterns under farmland abandonment 60 Chapter 4: Species traits shape the relationship between local and regional SADs 84 Chapter 5: Synthesis 112 Habitat amount, not patch size and isolation . 112 Moth diversity patterns under farmland abandonment . 114 Species traits shape the relationship between local and regional SADs 115 Appendix 121 Curriculum Vitae . 121 List of publications and conference participations . 123 Authors’ contributions . 125 Eigenständigkeitserklärung . 126 List of Tables 1 Fit output of both classic and countryside species-area relationship (SAR) models. 32 2 Ranking and autocovariate model output following the Information-Theoretic approach of five statistical models explaining species richness for forest (A) and meadow (B) species as a function of forest habitat amount (Hab) at the 160 and 320 m radius scale, respectevily, patch size (Size), distance to nearest patch (Dist), and their interactions with habitat amount (Hab:Size and Hab:Dist), both with (A/B1) and without (A/B2) spatial autocorrelation (AS) .