Net Retreat of Antarctic Glacier Grounding Lines
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Heterogenous Thinning and Subglacial Lake Activity on Thwaites Glacier, West Antarctica Andrew O
https://doi.org/10.5194/tc-2020-80 Preprint. Discussion started: 9 April 2020 c Author(s) 2020. CC BY 4.0 License. Brief Communication: Heterogenous thinning and subglacial lake activity on Thwaites Glacier, West Antarctica Andrew O. Hoffman1, Knut Christianson1, Daniel Shapero2, Benjamin E. Smith2, Ian Joughin2 1Department of Earth and Space Sciences, University of Washington, Seattle, 98115, United States of America 5 2Applied Physics Laboratory, University of Washington, 98115, United States of America Correspondence to: Andrew O. Hoffman ([email protected]) Abstract. A system of subglacial laKes drained on Thwaites Glacier from 2012-2014. To improve coverage for subsequent drainage events, we extended the elevation and ice velocity time series on Thwaites Glacier through austral winter 2019. These new observations document a second drainage cycle and identified two new laKe systems located in the western tributaries of 10 Thwaites and Haynes Glaciers. In situ and satellite velocity observations show temporary < 3% speed fluctuations associated with laKe drainages. In agreement with previous studies, these observations suggest that active subglacial hydrology has little influence on Thwaites Glacier thinning and retreat on decadal to centennial timescales. 1 Introduction Although subglacial laKes beneath the Antarctic Ice Sheet were first discovered more than 50 years ago (Robin et al., 1969; 15 Oswald and Robin, 1973), they remain one of the most enigmatic components of the subglacial hydrology system. Initially identified in ice-penetrating radar data as flat, bright specular reflectors (Oswald and Robin, 1973; Carter et al., 2007) subglacial laKes were thought to be relatively steady-state features of the basal hydrology system with little impact on the dynamics of the overlying ice on multi-year timescales. -
A Significant Acceleration of Ice Volume Discharge Preceded a Major Retreat of a West Antarctic Paleo–Ice Stream
https://doi.org/10.1130/G46916.1 Manuscript received 26 August 2019 Revised manuscript received 23 November 2019 Manuscript accepted 26 November 2019 © 2019 Geological Society of America. For permission to copy, contact [email protected]. A signifcant acceleration of ice volume discharge preceded a major retreat of a West Antarctic paleo–ice stream Philip J. Bart1 and Slawek Tulaczyk2 1 Department of Geology and Geophysics, Louisiana State University, Baton Rouge, Louisiana 70803, USA 2 Department of Earth and Planetary Sciences, University of California Santa Cruz, Santa Cruz, California 95064, USA ABSTRACT SEDIMENT AND ICE DISCHARGE For the period between 14.7 and 11.5 cal. (calibrated) kyr B.P, the sediment fux of Bind- FROM THE PALEO–BINDSCHADLER schadler Ice Stream (BIS; West Antarctica) averaged 1.7 × 108 m3 a−1. This implies that BIS ICE STREAM velocity averaged 500 ± 120 m a−1. At a fner resolution, the data suggest two stages of ice Radiocarbon ages from benthic foramin- stream fow. During the frst 2400 ± 400 years of a grounding-zone stillstand, ice stream fow ifera (Bart et al., 2018) (Table 1) indicate that averaged 200 ± 90 m a−1. Following ice-shelf breakup at 12.3 ± 0.2 cal. kyr B.P., fow acceler- the paleo-BIS grounding line had retreated ated to 1350 ± 580 m a−1. The estimated ice volume discharge after breakup exceeds the bal- 70 km from its maximum (LGM) position by ance velocity by a factor of two and implies ice mass imbalance of −40 Gt a−1 just before the 14.7 ± 0.4 cal. -
The U-Pb Detrital Zircon Signature of West Antarctic Ice Stream Tills in The
Antarctic Science 26(6), 687–697 (2014) © Antarctic Science Ltd 2014. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. doi:10.1017/S0954102014000315 The U-Pb detrital zircon signature of West Antarctic ice stream tills in the Ross embayment, with implications for Last Glacial Maximum ice flow reconstructions KATHY J. LICHT, ANDREA J. HENNESSY and BETHANY M. WELKE Indiana University-Purdue University Indianapolis, Department of Earth Sciences, 723 West Michigan Street, Indianapolis, IN 46202, USA [email protected] Abstract: Glacial till samples collected from beneath the Bindschadler and Kamb ice streams have a distinct U-Pb detrital zircon signature that allows them to be identified in Ross Sea tills. These two sites contain a population of Cretaceous grains 100–110 Ma that have not been found in East Antarctic tills. Additionally, Bindschadler and Kamb ice streams have an abundance of Ordovician grains (450–475 Ma) and a cluster of ages 330–370 Ma, which are much less common in the remainder of the sample set. These tracers of a West Antarctic provenance are also found east of 180° longitude in eastern Ross Sea tills deposited during the last glacial maximum (LGM). Whillans Ice Stream (WIS), considered part of the West Antarctic Ice Sheet but partially originating in East Antarctica, lacks these distinctive signatures. Its U-Pb zircon age population is dominated by grains 500–550 Ma indicating derivation from Granite Harbour Intrusive rocks common along the Transantarctic Mountains, making it indistinguishable from East Antarctic tills. -
The Eastern Margin of the Ross Sea Rift in Western Marie Byrd Land
Characterization Geochemistry 3 Volume 4, Number 10 Geophysics 29 October 2003 1090, doi:10.1029/2002GC000462 GeosystemsG G ISSN: 1525-2027 AN ELECTRONIC JOURNAL OF THE EARTH SCIENCES Published by AGU and the Geochemical Society Eastern margin of the Ross Sea Rift in western Marie Byrd Land, Antarctica: Crustal structure and tectonic development Bruce P. Luyendyk Department of Geological Sciences and Institute for Crustal Studies, University of California, Santa Barbara, California 93106, USA ([email protected]) Douglas S. Wilson Department of Geological Sciences, Marine Science Institute, Institute for Crustal Studies, University of California, Santa Barbara, California 93106, USA Also at Marine Science Institute, University of California, Santa Barbara, California 93106, USA Christine S. Siddoway Department of Geology, Colorado College, Colorado Springs, Colorado 80903, USA [1] The basement rock and structures of the Ross Sea rift are exposed in coastal western Marie Byrd Land (wMBL), West Antarctica. Thinned, extended continental crust forms wMBL and the eastern Ross Sea continental shelf, where faults control the regional basin-and range-type topography at 20 km spacing. Onshore in the Ford Ranges and Rockefeller Mountains of wMBL, basement rocks consist of Early Paleozoic metagreywacke and migmatized equivalents, intruded by Devonian-Carboniferous and Cretaceous granitoids. Marine geophysical profiles suggest that these geological formations continue offshore to the west beneath the eastern Ross Sea, and are covered by glacial and glacial marine sediments. Airborne gravity and radar soundings over wMBL indicate a thicker crust and smoother basement inland to the north and east of the northern Ford Ranges. A migmatite complex near this transition, exhumed from mid crustal depths between 100–94 Ma, suggests a profound crustal discontinuity near the inboard limit of extended crust, 300 km northeast of the eastern Ross Sea margin. -
Evidence for Extending Anomalous Miocene Volcanism at the Edge of The
1 Evidence for Extending Anomalous Miocene Volcanism at the Edge of the 2 East Antarctic Craton 3 4 K. J. Licht1, T. Groth1, J. P. Townsend2, A. J. Hennessy1, S. R. Hemming3, T. P. Flood4, and M. 5 Studinger5 6 1Department of Earth Sciences, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 7 USA, 2HEDP Theory Department, Sandia National Laboratories, Albuquerque, NM, USA, 3Department of 8 Earth and Environmental Sciences, Columbia University, Lamont-Doherty Earth Observatory, Palisades, 9 NY, USA, 4Geology Department, St. Norbert College, DePere, WI, USA, 5NASA Goddard Space Flight 10 Center, Greenbelt, MD, USA 11 12 Corresponding author: Kathy Licht ([email protected]) 13 14 Key Points: 15 x Olivine basalt, hyaloclastite erratics and detrital zircon at Earth’s southernmost moraine 16 (Mt. Howe) indicate magmatic activity 17- 25 Ma. 17 x The source, indicated by a magnetic anomaly (-740 nT) ~400 km inland from the West 18 Antarctic Rift margin, expands extent of Miocene lavas. 19 x Data corroborate lithospheric foundering beneath southern Transantarctic Mountains based 20 on location of volcanism (duration < 5 my). 21 22 Abstract 23 Using field observations followed by petrological, geochemical, geochronological, and 24 geophysical data we infer the presence of a previously unknown Miocene subglacial volcanic 25 center ~230 km from the South Pole. Evidence of volcanism is from boulders of olivine-bearing 26 amygdaloidal/vesicular basalt and hyaloclastite deposited in a moraine in the southern 27 Transantarctic Mountains. 40Ar/39Ar ages from five specimens plus U-Pb ages of detrital zircon 28 from glacial till indicate igneous activity 25-17 Ma. -
Did Holocene Climate Changes Drive West Antarctic Grounding Line Retreat and Re-Advance?
https://doi.org/10.5194/tc-2020-308 Preprint. Discussion started: 19 November 2020 c Author(s) 2020. CC BY 4.0 License. Did Holocene climate changes drive West Antarctic grounding line retreat and re-advance? Sarah U. Neuhaus1, Slawek M. Tulaczyk1, Nathan D. Stansell2, Jason J. Coenen2, Reed P. Scherer2, Jill 5 A. Mikucki3, Ross D. Powell2 1Earth and Planetary Sciences, University oF CaliFornia Santa Cruz, Santa Cruz, CA, 95064, USA 2Department oF Geology and Environmental Geosciences, Northern Illinois University, DeKalb, IL, 60115, USA 3Department oF Microbiology, University oF Tennessee Knoxville, Knoxville, TN, 37996, USA 10 Correspondence to: Sarah U. Neuhaus ([email protected]) Abstract. Knowledge oF past ice sheet conFigurations is useFul For informing projections of Future ice sheet dynamics and For calibrating ice sheet models. The topology oF grounding line retreat in the Ross Sea Sector oF Antarctica has been much debated, but it has generally been assumed that the modern ice sheet is as small as it has been for more than 100,000 years 15 (Conway et al., 1999; Lee et al., 2017; Lowry et al., 2019; McKay et al., 2016; Scherer et al., 1998). Recent findings suggest that the West Antarctic Ice Sheet (WAIS) grounding line retreated beyond its current location earlier in the Holocene and subsequently re-advanced to reach its modern position (Bradley et al., 2015; Kingslake et al., 2018). Here, we further constrain the post-LGM grounding line retreat and re-advance in the Ross Sea Sector using a two-phase model of radiocarbon input and decay in subglacial sediments From six sub-ice sampling locations. -
100 Million Years of Antarctic Climate Evolution: Evidence from Fossil Plants 19 J
Antarctica: A Keystone in a Changing World Proceedings of the 10th International Symposium on Antarctic Earth Sciences, Santa Barbara, California, August 26 to September 1, 2007, Alan K. Cooper, Peter Barrett, Howard Stagg, Bryan Storey, Edmund Stump, Woody Wise, and the 10th ISAES editorial team, Polar Research Board, National Research Council, U.S. Geological Survey ISBN: 0-309-11855-7, 164 pages, 8 1/2 x 11, (2008) This free PDF was downloaded from: http://www.nap.edu/catalog/12168.html Visit the National Academies Press online, the authoritative source for all books from the National Academy of Sciences, the National Academy of Engineering, the Institute of Medicine, and the National Research Council: • Download hundreds of free books in PDF • Read thousands of books online, free • Sign up to be notified when new books are published • Purchase printed books • Purchase PDFs • Explore with our innovative research tools Thank you for downloading this free PDF. If you have comments, questions or just want more information about the books published by the National Academies Press, you may contact our customer service department toll-free at 888-624-8373, visit us online, or send an email to [email protected]. This free book plus thousands more books are available at http://www.nap.edu. Copyright © National Academy of Sciences. Permission is granted for this material to be shared for noncommercial, educational purposes, provided that this notice appears on the reproduced materials, the Web address of the online, full authoritative version is retained, and copies are not altered. To disseminate otherwise or to republish requires written permission from the National Academies Press. -
The Sleeping Giant: Measuring Ocean-Ice Interactions in Antarctica
Study Report prepared for the Keck Institute for Space Studies (KISS) Opening Workshop: Sept 9–12, 2013 Closing Workshop: Dec 16–18, 2014 Study Co-Leads: Andrew Thompson (California Institute of Technology), Josh Willis (Jet Propulsion Laboratory/California Institute of Technology), Anthony Payne (University of Bristol) http://kiss.caltech.edu/study/ocean-ice/index.html Acknowledgements: The study authors and participants would like to express their thanks to Michele Judd and the KISS staff that made this study both feasible and productive. In addition, we thank the KISS Director, Tom Prince, and the KISS Steering Committee for funding this study. Editing and Formatting: Meg Rosenburg Cover Image: Chuck Carter / Keck Institute for Space Studies (KISS) Header Images: Andrew Thompson © December 2015 Contents 1 Executive Summary .............................................9 2 Study Overview ................................................ 13 3 Major Technical Advances ...................................... 17 3.1 Cavity instrumentation........................................... 17 3.2 Monitoring Cavity-Shelf Exchange.................................. 18 4 Scientific Justification: A Dynamic Antarctic Coastline ........... 21 4.1 Variability at the Ice Shelf Edge.................................... 21 4.2 Cavity Properties, Circulation and Modeling.......................... 23 4.3 Grounding Zone Dynamics........................................ 25 5 Feasibility of Implementation & Future Technology Directions .... 29 5.1 Exploration and Persistent -
Evidence of Rapid Subglacial Water Piracy Under Whillans Ice Stream, West Antarctica
Journal of Glaciology, Vol. 59, No. 218, 2013 doi: 10.3189/2013JoG13J085 1147 Evidence of rapid subglacial water piracy under Whillans Ice Stream, West Antarctica S.P. CARTER, H.A. FRICKER, M.R. SIEGFRIED Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA E-mail: [email protected] ABSTRACT. The subglacial water system of lower Whillans Ice Stream on the Siple Coast, West Antarctica, contains numerous connected subglacial lakes in three hydrological basins (northern, central and southern). We use Ice, Cloud and land Elevation Satellite (ICESat) data to derive estimates of lake volume change and regional thickness changes. By combining these results with a water budget model, we show that a uniform, localized thickness increase perturbed the hydropotential, resulting in a change in course of a major flow path within the system in 2005. Water originating from upper Whillans and Kamb Ice Streams that previously supplied the southern basin became diverted toward Subglacial Lake Whillans (SLW). This diversion led to a tenfold filling rate increase of SLW. Our observation suggests that water piracy may be common in the Siple Coast region, where the gentle basal relief makes the basal hydropotential particularly sensitive to small changes in ice thickness. Given the previously inferred connections between water piracy and ice-stream slowdown elsewhere in the region, the subtle and complex nature of this system presents new challenges for numerical models. 1. INTRODUCTION (Fig. 1). WIP is the site of a substantial number of ob- There are 379 known subglacial lakes under the Antarctic servations over the last 50 years (Bindschadler and others, ice sheet, which have been inferred through a variety of 2005) and likely has undergone much larger-scale flow remote-sensing techniques (Wright and Siegert, 2012). -
Subglacial Lake Whillans Microbial Biogeochemistry: a Synthesis Of
Subglacial Lake Whillans microbial biogeochemistry: a rsta.royalsocietypublishing.org synthesis of current knowledge J. A. Mikucki1,2,P.A.Lee3,D.Ghosh1,A.M.Purcell1, Discussion A. C. Mitchell4,K.D.Mankoff5,A.T.Fisher6, 6 7 7 7 Cite this article: Mikucki JA et al.2016 S. Tulaczyk ,S.Carter, M. R. Siegfried ,H.A.Fricker, Subglacial Lake Whillans microbial T. Hodson8, J. Coenen8,R.Powell8,R.Scherer8, biogeochemistry: a synthesis of current 9 10 10 knowledge. Phil.Trans.R.Soc.A374: 20140290. T. Vick-Majors ,A.A.Achberger ,B.C.Christner , http://dx.doi.org/10.1098/rsta.2014.0290 M. Tranter11 and the WISSARD Science Team Accepted: 2 October 2015 1Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA One contribution of 17 to a Theo Murphy 2Department of Biology, Middlebury College, Middlebury, meeting issue ‘Antarctic subglacial lake VT 05753, USA exploration: first results and future plans’. 3Hollings Marine Lab, College of Charleston, Charleston, SC 29412, USA Subject Areas: 4 biogeochemistry, glaciology Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, UK Keywords: 5Department of Geosciences, The Pennsylvania State University, Antarctica, subglacial lakes, microbial University Park, PA 16802, USA diversity, geomicrobiology, Whillans Ice 6Earth and Planetary Sciences, University of California, Santa Cruz, Stream, WISSARD CA, USA 7Institute for Geophysics and Planetary Physics, Scripps Institution Author for correspondence: of Oceanography, University of California, San Diego, CA 92093, -
US Geological Survey Scientific Activities in the Exploration of Antarctica: 1946–2006 Record of Personnel in Antarctica and Their Postal Cachets: US Navy (1946–48, 1954–60), International
Prepared in cooperation with United States Antarctic Program, National Science Foundation U.S. Geological Survey Scientific Activities in the Exploration of Antarctica: 1946–2006 Record of Personnel in Antarctica and their Postal Cachets: U.S. Navy (1946–48, 1954–60), International Geophysical Year (1957–58), and USGS (1960–2006) By Tony K. Meunier Richard S. Williams, Jr., and Jane G. Ferrigno, Editors Open-File Report 2006–1116 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior DIRK KEMPTHORNE, Secretary U.S. Geological Survey Mark D. Myers, Director U.S. Geological Survey, Reston, Virginia 2007 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. Cover: 2006 postal cachet commemorating sixty years of USGS scientific innovation in Antarctica (designed by Kenneth W. Murphy and Tony K. Meunier, art work by Kenneth W. Murphy). ii Table of Contents Introduction......................................................................................................................................................................1 Selected.References.........................................................................................................................................................2 -
NSF Dedicates Martin A. Pomerantz Observatory at South Pole
This document has been archived. Volume XXX Numbers 1–4 Contents... 3 NSF dedicates Martin Pomerantz 21 A description of the snow cover on Editor, Winifred Reuning Observatory at South Pole the winter sea ice of the Antarctic Journal of the United States, 3 The Antarctic Journal, past and Amundsen and Ross Seas established in 1966, reports on U.S. activi- ties in Antarctica, related activities else- future 24 C-band radar backscatter from where, and trends in the U.S. Antarctic 4 Science news from The Ice: antarctic first-year sea ice: I. In situ Program. The Office of Polar Programs Highlights from the 1994–1995 scatterometer measurements (National Science Foundation, Room 755, 26 C-band radar backscatter from 4201 Wilson Boulevard, Arlington, Virginia austral summer 22230; telephone 703/306-1031) publishes 6 A note to recipients of the Antarctic antarctic first-year sea ice: the journal five times a year (March, June, Journal of the United States II. ERS-1 SAR measurements September, December, and an annual 7 Pegasus: A glacial-ice runway for 28 U.S. support and science review issue). personnel winter at three stations The Antarctic Journal is sold by the wheeled flight operations at copy or on subscription through the U.S. McMurdo Station 29 President’s Midwinter’s Day Government Printing Office. Requests for 10 The Arctic and Antarctic Research message 1995 prices of individual issues and subscrip- Center: Support for research 30 Sailor dies from fall at Castle Rock tions, address changes, and information about subscription matters should be sent during 1994–1995 31 A new committee for the oversight to the Superintendent of Documents, U.S.