A Significant Acceleration of Ice Volume Discharge Preceded a Major Retreat of a West Antarctic Paleo–Ice Stream

Total Page:16

File Type:pdf, Size:1020Kb

A Significant Acceleration of Ice Volume Discharge Preceded a Major Retreat of a West Antarctic Paleo–Ice Stream https://doi.org/10.1130/G46916.1 Manuscript received 26 August 2019 Revised manuscript received 23 November 2019 Manuscript accepted 26 November 2019 © 2019 Geological Society of America. For permission to copy, contact [email protected]. A signifcant acceleration of ice volume discharge preceded a major retreat of a West Antarctic paleo–ice stream Philip J. Bart1 and Slawek Tulaczyk2 1 Department of Geology and Geophysics, Louisiana State University, Baton Rouge, Louisiana 70803, USA 2 Department of Earth and Planetary Sciences, University of California Santa Cruz, Santa Cruz, California 95064, USA ABSTRACT SEDIMENT AND ICE DISCHARGE For the period between 14.7 and 11.5 cal. (calibrated) kyr B.P, the sediment fux of Bind- FROM THE PALEO–BINDSCHADLER schadler Ice Stream (BIS; West Antarctica) averaged 1.7 × 108 m3 a−1. This implies that BIS ICE STREAM velocity averaged 500 ± 120 m a−1. At a fner resolution, the data suggest two stages of ice Radiocarbon ages from benthic foramin- stream fow. During the frst 2400 ± 400 years of a grounding-zone stillstand, ice stream fow ifera (Bart et al., 2018) (Table 1) indicate that averaged 200 ± 90 m a−1. Following ice-shelf breakup at 12.3 ± 0.2 cal. kyr B.P., fow acceler- the paleo-BIS grounding line had retreated ated to 1350 ± 580 m a−1. The estimated ice volume discharge after breakup exceeds the bal- 70 km from its maximum (LGM) position by ance velocity by a factor of two and implies ice mass imbalance of −40 Gt a−1 just before the 14.7 ± 0.4 cal. (calibrated) kyr B.P. and stabi- grounding zone retreated >200 km. We interpret that the paleo-BIS maintained sustainable lized at the Whales Deep Basin GZW with a discharge throughout the grounding-zone stillstand frst due to the buttressing effect of its fringing ice shelf in front of it. Shortly after fringing ice shelf and then later (i.e., after ice-shelf breakup) due to the stabilizing effects of 12.3 ± 0.6 cal. kyr B.P., this ice shelf collapsed, grounding-zone wedge aggradation. Major paleo–ice stream retreat, shortly after the ice-shelf but the grounding line maintained its position breakup that triggered the inferred ice fow acceleration, substantiates the current concerns until 11.5 ± 0.3 cal. kyr B.P. Hence, grounding- about rapid, near-future retreat of major glaciers in the Amundsen Sea sector where Pine line stillstand at the Whales Deep Basin GZW Island and Thwaites Glaciers are already experiencing ice-shelf instability and grounding- lasted for 3.2 ± 0.7 k.y., with the ice-shelf break- zone retreat that have triggered upstream-propagating thinning and ice acceleration. up dividing it into two distinct phases. The constraints on the GZW sediment vol- INTRODUCTION 2014; Prothro et al., 2018). Detailed analyses of ume and its depositional time frame (Bart et al., Analyses of modern ice stream systems have the now ice-free areas, where grounding-zone 2017a, 2017b, 2018; McGlannan et al., 2017) provided much information about their behavior wedges (GZWs) are exposed on the seafoor, provide an opportunity to reconstruct ice dis- (Alley et al., 1986; Rignot et al., 2004; Vieli provide records of the dynamic retreat history of charge history from the paleo-BIS at the time et al., 2007; Scambos et al., 2009). These stud- marine-based ice streams. These retreat records of GZW deposition (Table 1). We defne the av- ies have shown that ice streams accelerate when are important because they provide insight into erage sediment fux rate, q, as the ratio of the buttressing is reduced by either ice shelf thin- the processes and rates needed to predict future total volume of deposited sediments, V, and ning and/or collapse. The fow acceleration is of ice retreat in West Antarctica (e.g., Bingham the duration of deposition, ΔT. We express the concern because models suggest that it may trig- et al., 2017). sediment fux rate across the grounding line as ger a tipping-point response in which the extent Here we use published data from the Whales a product of the ice stream width, W, the effec- of grounded ice abruptly contracts (Alley et al., Deep Basin (eastern Ross Sea) to quantify tive sediment thickness, h, as well as the aver- 2015; Pattyn, 2018). On the other hand, sedi- the evolution of ice and sediment fuxes that age sediment transport velocity, us, which itself ment transport by ice streams may also result preceded a >200 km retreat of the paleo– is expressed as a fraction, f, of the ice stream in rapid sedimentation at the grounding zone. Bindschadler Ice Stream (paleo-BIS; West fow velocity, U: Subglacial and grounding-zone sedimentation Antarctica) from the outer continental shelf. V aggradation may act as a negative feedback that The Whales Deep Basin contains a large-volume q ≡=uWs hf= UWh. (1) counters dynamic thinning of the ice stream and overlapping stack of GZWs, which have been ∆T stabilizes the ice-stream grounding zones (e.g., mapped with seismic and subbottom profles and Here we assume that till-bedded ice streams Alley et al., 2007). multibeam bathymetric data (Bart et al., 2017a, have constant velocity throughout ice thickness The understanding of modern ice-stream 2017b) and individually cored (McGlannan and width (e.g., Tulaczyk et al., 2000). For basal sediment fux (e.g., Alley et al., 1986) has been et al., 2017) (Figs. 1A–1C). This stratigraphic debris transport in ice, f is equal to 1 because highly instrumental in interpreting the glacial framework is constrained by radiocarbon ages sediments travel with the same velocity as ice landforms and deposits on the outer continen- (Bart et al., 2018) and provides evidence indi- itself, and we take h to be the equivalent thick- tal shelves that formed after the Last Glacial cating that rapid GZW construction delayed the ness of a till layer that would form if sediments Maximum (LGM) (Anderson, 1999; Ó Cofaigh retreat of grounded ice for hundreds of years in the debris-laden basal ice would form a till et al., 2002; Jakobsson et al., 2012; Klages et al. after the breakup of its fringing ice shelf. layer with porosity of 40% (e.g., 3.5 ± 0.6 m CITATION: Bart, P.J., and Tulaczyk, S., 2020, A signifcant acceleration of ice volume discharge preceded a major retreat of a West Antarctic paleo–ice stream: Geology, v. 48, p. XXX–XXX, https://doi.org/10.1130/G46916.1 Geological Society of America | GEOLOGY | Volume XX | Number XX | www.gsapubs.org 1 Downloaded from https://pubs.geoscienceworld.org/gsa/geology/article-pdf/doi/10.1130/G46916.1/4913426/g46916.pdf by University of California Santa Cruz user on 11 February 2020 600 1500 A 180° B 1000 150°E 150°W Whales Deep Basin shelf edge LEGEND embayed paleo– grounding line 2000 Whales Deep Basin 2500 3000 600 600 140 500 + bathymetry 120 continental shelf edge Ross Sea 100 76°S B ess (m) contour CF 76°S kn 80 + 120°E D West Antarctica 300 seismic 60 + + 400 40 ++ 400 400 core NBP9902 + + H + Ross Sea drainage 20 500 GZW thic 500 350 RIS E divides 200 core NBP1502B + 0 a 500 y 400 GL Ma e 300 400 s 600 paleo-BIS 600 5005000 H Byd drainage + + B o Glomar Challenger B B B area B + u K t K a 500 Basin z 400 W n M ice streams 700 k 600 90°E B and shelves 600 0 a 55055 n 8 5° C k + Little America c a l v i r o n t Basin n g f Antarctic 500 78°S Peninsula 78°S East Antarctica 700 550 7 700 5° RFIS 700 LIS 500 Roosevelt 60°E 60°W 600 Ross Ice Shelf Island 200 6 5° Atlantic Ocean 800 600600 0 100 km 0 750750 30°E 30°W 0100 km 0 5 5505 180°8 170°W 160°W6 C S N 600 450 Bathymetric saddle 488 7 525 700 LGM unconformity 6 Shelf LGM 562 7 4 5 3 edge 7 5 unconformity 800 600 2 1 avel time (ms) 637 tr Water depth (m) 900 675 o-way Tw 0510203040 50 km 712 VE=150 1000 750 D E supraglacial melt water lakes 0 0 GZW4 ice shelf 500 GZW7 500 U = 1350 m a ter depth (m) Ub = 200 m a ter depth (m) b basal crevasses 600 600 Wa Wa 0510 20 30 40 50 km Figure 1. (A) Map of Antarctica showing ice streams and buttressing ice shelves. Dashed lines in continental interiors demarcate drainage areas of the East and West Antarctic Ice Sheets that converge into the Ross Sea. Gray shading shows the paleo–Bindschadler Ice Stream (paleo- BIS) drainage area during the Last Glacial Maximum (LGM). B—Bindschadler Ice Stream; D—David Glacier; Byd—Byrd Glacier; M—Mercer Ice Stream; W—Whillans Ice Stream; K—Kamb Ice Stream; Ma—MacAyeal Ice Stream; E—Echelmeyer Ice Stream; CF—calving front; RIS—Ross Ice Shelf; GL—grounding line; RFIS—Ronne-Filchner Ice Shelf; LIS—Larsen Ice Shelf. Modern-day shelf edge position is shown as short-dash line. (B) Bathymetry of the eastern Ross Sea continental shelf, from Davey and Nitsche (2005). Paleo-BIS was confned to Whales Deep Basin between the Hayes and Houtz Banks. Light-gray rectilinear lines are locations of seismic data. Gray squares are cores acquired by Mosola and Anderson (2006), and crosses are those described by McGlannan et al. (2017). NBP9902 and NBP1502B refer to R/V Nathaniel B.
Recommended publications
  • The U-Pb Detrital Zircon Signature of West Antarctic Ice Stream Tills in The
    Antarctic Science 26(6), 687–697 (2014) © Antarctic Science Ltd 2014. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. doi:10.1017/S0954102014000315 The U-Pb detrital zircon signature of West Antarctic ice stream tills in the Ross embayment, with implications for Last Glacial Maximum ice flow reconstructions KATHY J. LICHT, ANDREA J. HENNESSY and BETHANY M. WELKE Indiana University-Purdue University Indianapolis, Department of Earth Sciences, 723 West Michigan Street, Indianapolis, IN 46202, USA [email protected] Abstract: Glacial till samples collected from beneath the Bindschadler and Kamb ice streams have a distinct U-Pb detrital zircon signature that allows them to be identified in Ross Sea tills. These two sites contain a population of Cretaceous grains 100–110 Ma that have not been found in East Antarctic tills. Additionally, Bindschadler and Kamb ice streams have an abundance of Ordovician grains (450–475 Ma) and a cluster of ages 330–370 Ma, which are much less common in the remainder of the sample set. These tracers of a West Antarctic provenance are also found east of 180° longitude in eastern Ross Sea tills deposited during the last glacial maximum (LGM). Whillans Ice Stream (WIS), considered part of the West Antarctic Ice Sheet but partially originating in East Antarctica, lacks these distinctive signatures. Its U-Pb zircon age population is dominated by grains 500–550 Ma indicating derivation from Granite Harbour Intrusive rocks common along the Transantarctic Mountains, making it indistinguishable from East Antarctic tills.
    [Show full text]
  • Education Personal Research Interests Employment
    Douglas Reed MacAyeal Department of the Geophysical Sciences The University of Chicago 5734 S. Ellis Ave. HGS 424 Chicago, IL Phone: (773) 702-8027 (o) (773) 752-6078 (h) (773) 702-9505 (f) (224) 500-7775 (c) [email protected] [email protected] last updated: March, 2020 Education 1983 Ph.D. Princeton University, Princeton, NJ Geophysical Fluid Dynamics advisor: Kirk Bryan 1979 M.S. University of Maine, Orono, ME Physics/Glaciology advisor: Robert Thomas 1976 Sc.B. Brown University, Providence, RI Physics Magna cum laude, honors in physics Personal Birth Date: 8 December, 1954; Age: 65 Birth Place: Boston, MA, USA Marital Status: Married, Linda A. MacAyeal (Sparks) Children: Leigh C. (MacAyeal) Kasten (Brown U., Sc.B.; Cornell U., DVM), Hannah R. MacAyeal (U. Penn, B.S., U. Penn Veterinary Medicine, DVM), Evan C. MacAyeal (Carleton College, B.A., Columbia University, Financial Engineering, M.S.) Research Interests The physical processes that determine the evolution of ice and climate on Earth over the past, present and future. Employment Department of the Geophysical Sciences, University of Chicago 1983-Present Professor (Asst. until 1987, Assoc. until 1992 and Full until present) Prior to 1983: I was a graduate student at Princeton University and University of Maine. Awards and Honors • 2019 Seligman Crystal, International Glaciological Society (IGS) • 2013 Nye Lecture, American Geophysical Union (AGU), Fall Meeting • 2010 Goldthwait Award (Polar Medal) of the Byrd Polar Research Center, Ohio State University • 2005 Provost’s Teaching Award of the University of Chicago • 2002 Quantrell Teaching Award of the University of Chicago • 1997 Richardson Medal of the IGS • 1988 James Macelwane Medal of the AGU • 1988 Fellow of the AGU • Antarctic geographic names: MacAyeal Ice Stream, MacAyeal Peak Teaching Experience • GeoSci 242: Geophysical Fluid Dynamics, I.
    [Show full text]
  • Studies of Antarctic Ice Shelf Stability: Surface Melting, Basal Melting, and Ice Flow Dynamics
    Studies of Antarctic ice shelf stability: surface melting, basal melting, and ice flow dynamics by Karen E. Alley B.A., Colgate University, 2012 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirement for the degree of Doctor of Philosophy Department of Geological Sciences 2017 This thesis entitled: Studies of Antarctic ice shelf stability: Surface melting, basal melting, and ice flow dynamics written by Karen E. Alley has been approved for the Department of Geological Sciences James White Ted Scambos Date The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above-mentioned discipline. ii Alley, Karen Elizabeth (Ph.D., Department of Geological Sciences) Studies of Antarctic ice shelf stability: Surface melting, basal melting, and ice flow dynamics Thesis directed by Senior Research Scientist T.A. Scambos and Professor J.W.C. White Abstract: Floating extensions of ice sheets, known as ice shelves, play a vital role in regulating the rate of ice flow into the Southern Ocean from the Antarctic Ice Sheet. Shear stresses imparted by contact with islands, embayment walls, and other obstructions transmit “backstress” to grounded ice. Ice shelf collapse reduces or eliminates this backstress, increasing mass flux to the ocean and therefore rates of sea level rise. This dissertation presents studies that address three main factors that regulate ice shelf stability: surface melt, basal melt, and ice flow dynamics. The first factor, surface melt, is assessed using active microwave backscatter.
    [Show full text]
  • Did Holocene Climate Changes Drive West Antarctic Grounding Line Retreat and Re-Advance?
    https://doi.org/10.5194/tc-2020-308 Preprint. Discussion started: 19 November 2020 c Author(s) 2020. CC BY 4.0 License. Did Holocene climate changes drive West Antarctic grounding line retreat and re-advance? Sarah U. Neuhaus1, Slawek M. Tulaczyk1, Nathan D. Stansell2, Jason J. Coenen2, Reed P. Scherer2, Jill 5 A. Mikucki3, Ross D. Powell2 1Earth and Planetary Sciences, University oF CaliFornia Santa Cruz, Santa Cruz, CA, 95064, USA 2Department oF Geology and Environmental Geosciences, Northern Illinois University, DeKalb, IL, 60115, USA 3Department oF Microbiology, University oF Tennessee Knoxville, Knoxville, TN, 37996, USA 10 Correspondence to: Sarah U. Neuhaus ([email protected]) Abstract. Knowledge oF past ice sheet conFigurations is useFul For informing projections of Future ice sheet dynamics and For calibrating ice sheet models. The topology oF grounding line retreat in the Ross Sea Sector oF Antarctica has been much debated, but it has generally been assumed that the modern ice sheet is as small as it has been for more than 100,000 years 15 (Conway et al., 1999; Lee et al., 2017; Lowry et al., 2019; McKay et al., 2016; Scherer et al., 1998). Recent findings suggest that the West Antarctic Ice Sheet (WAIS) grounding line retreated beyond its current location earlier in the Holocene and subsequently re-advanced to reach its modern position (Bradley et al., 2015; Kingslake et al., 2018). Here, we further constrain the post-LGM grounding line retreat and re-advance in the Ross Sea Sector using a two-phase model of radiocarbon input and decay in subglacial sediments From six sub-ice sampling locations.
    [Show full text]
  • Variability in the Mass Flux of the Ross Sea Ice Streams, Antarctica, Over the Last Millennium
    Portland State University PDXScholar Geology Faculty Publications and Presentations Geology 1-1-2012 Variability in the Mass Flux of the Ross Sea Ice Streams, Antarctica, over the last Millennium Ginny Catania University of Texas at Austin Christina L. Hulbe Portland State University Howard Conway University of Washington - Seattle Campus Ted A. Scambos University of Colorado at Boulder C. F. Raymond University of Washington - Seattle Campus Follow this and additional works at: https://pdxscholar.library.pdx.edu/geology_fac Part of the Geology Commons Let us know how access to this document benefits ou.y Citation Details Catania. G. A., C.L. Hulbe, H.B. Conway, T.A. Scambos, C.F. Raymond, 2012, Variability in the mass flux of the Ross Sea ice streams, Antarctica, over the last millennium. Journal of Glaciology, 58 (210), 741-752. This Article is brought to you for free and open access. It has been accepted for inclusion in Geology Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Journal of Glaciology, Vol. 58, No. 210, 2012 doi: 10.3189/2012JoG11J219 741 Variability in the mass flux of the Ross ice streams, West Antarctica, over the last millennium Ginny CATANIA,1,2 Christina HULBE,3 Howard CONWAY,4 T.A. SCAMBOS,5 C.F. RAYMOND4 1Institute for Geophysics, University of Texas, Austin, TX, USA E-mail: [email protected] 2Department of Geology, University of Texas, Austin, TX, USA 3Department of Geology, Portland State University, Portland, OR, USA 4Department of Earth and Space Sciences, University of Washington, Seattle, WA, USA 5National Snow and Ice Data Center, University of Colorado, Boulder, CO, USA ABSTRACT.
    [Show full text]
  • The Sleeping Giant: Measuring Ocean-Ice Interactions in Antarctica
    Study Report prepared for the Keck Institute for Space Studies (KISS) Opening Workshop: Sept 9–12, 2013 Closing Workshop: Dec 16–18, 2014 Study Co-Leads: Andrew Thompson (California Institute of Technology), Josh Willis (Jet Propulsion Laboratory/California Institute of Technology), Anthony Payne (University of Bristol) http://kiss.caltech.edu/study/ocean-ice/index.html Acknowledgements: The study authors and participants would like to express their thanks to Michele Judd and the KISS staff that made this study both feasible and productive. In addition, we thank the KISS Director, Tom Prince, and the KISS Steering Committee for funding this study. Editing and Formatting: Meg Rosenburg Cover Image: Chuck Carter / Keck Institute for Space Studies (KISS) Header Images: Andrew Thompson © December 2015 Contents 1 Executive Summary .............................................9 2 Study Overview ................................................ 13 3 Major Technical Advances ...................................... 17 3.1 Cavity instrumentation........................................... 17 3.2 Monitoring Cavity-Shelf Exchange.................................. 18 4 Scientific Justification: A Dynamic Antarctic Coastline ........... 21 4.1 Variability at the Ice Shelf Edge.................................... 21 4.2 Cavity Properties, Circulation and Modeling.......................... 23 4.3 Grounding Zone Dynamics........................................ 25 5 Feasibility of Implementation & Future Technology Directions .... 29 5.1 Exploration and Persistent
    [Show full text]
  • Evidence of Rapid Subglacial Water Piracy Under Whillans Ice Stream, West Antarctica
    Journal of Glaciology, Vol. 59, No. 218, 2013 doi: 10.3189/2013JoG13J085 1147 Evidence of rapid subglacial water piracy under Whillans Ice Stream, West Antarctica S.P. CARTER, H.A. FRICKER, M.R. SIEGFRIED Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA E-mail: [email protected] ABSTRACT. The subglacial water system of lower Whillans Ice Stream on the Siple Coast, West Antarctica, contains numerous connected subglacial lakes in three hydrological basins (northern, central and southern). We use Ice, Cloud and land Elevation Satellite (ICESat) data to derive estimates of lake volume change and regional thickness changes. By combining these results with a water budget model, we show that a uniform, localized thickness increase perturbed the hydropotential, resulting in a change in course of a major flow path within the system in 2005. Water originating from upper Whillans and Kamb Ice Streams that previously supplied the southern basin became diverted toward Subglacial Lake Whillans (SLW). This diversion led to a tenfold filling rate increase of SLW. Our observation suggests that water piracy may be common in the Siple Coast region, where the gentle basal relief makes the basal hydropotential particularly sensitive to small changes in ice thickness. Given the previously inferred connections between water piracy and ice-stream slowdown elsewhere in the region, the subtle and complex nature of this system presents new challenges for numerical models. 1. INTRODUCTION (Fig. 1). WIP is the site of a substantial number of ob- There are 379 known subglacial lakes under the Antarctic servations over the last 50 years (Bindschadler and others, ice sheet, which have been inferred through a variety of 2005) and likely has undergone much larger-scale flow remote-sensing techniques (Wright and Siegert, 2012).
    [Show full text]
  • Information to Users
    Variations In Ice Flow And Glaciers Over Time And Space Item Type Thesis Authors Elsberg, Daniel Harry Download date 24/09/2021 03:40:40 Link to Item http://hdl.handle.net/11122/8657 INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. ProQuest Information and Learning 300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA 800-521-0600 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. VARIATIONS IN ICE FLOW AND GLACIERS OVER TIME AND SPACE A THESIS Presented to the Faculty of the University of Alaska Fairbanks in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY By Daniel Harry Elsberg, B.S.
    [Show full text]
  • Spatiotemporal Variations in the Surface Velocities of Antarctic Peninsula Glaciers
    Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | The Cryosphere Discuss., 8, 5875–5910, 2014 www.the-cryosphere-discuss.net/8/5875/2014/ doi:10.5194/tcd-8-5875-2014 TCD © Author(s) 2014. CC Attribution 3.0 License. 8, 5875–5910, 2014 This discussion paper is/has been under review for the journal The Cryosphere (TC). Spatiotemporal Please refer to the corresponding final paper in TC if available. variations in the surface velocities of Spatiotemporal variations in the surface Antarctic Peninsula glaciers velocities of Antarctic Peninsula glaciers J. Chen et al. J. Chen1,2, C. Q. Ke1,2, and Z. D. Shao1,2 1Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Title Page Nanjing University, Nanjing, 210023, China Abstract Introduction 2Key Laboratory for Satellite Mapping Technology and Applications of State Administration of Surveying, Mapping and Geoinformation of China, Nanjing University, Nanjing, 210023, China Conclusions References Received: 25 October 2014 – Accepted: 2 November 2014 – Published: 25 November 2014 Tables Figures Correspondence to: C. Q. Ke ([email protected]) J I Published by Copernicus Publications on behalf of the European Geosciences Union. J I Back Close Full Screen / Esc Printer-friendly Version Interactive Discussion 5875 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract TCD Velocity is an important parameter for the estimation of glacier mass balance, which directly signals the response of glaciers to climate change. Antarctic ice sheet move- 8, 5875–5910, 2014 ment and the associated spatiotemporal velocity variations are of great significance to 5 global sea level rise. In this study, we estimate Antarctic Peninsula glacier velocities Spatiotemporal using the co-registration of optically sensed images and correlation (hereafter referred variations in the to as COSI-Corr) based on moderate-resolution imaging spectroradiometer Level 1B surface velocities of data (hereafter referred to as MODIS L1B).
    [Show full text]
  • Subglacial Lake Whillans Microbial Biogeochemistry: a Synthesis Of
    Subglacial Lake Whillans microbial biogeochemistry: a rsta.royalsocietypublishing.org synthesis of current knowledge J. A. Mikucki1,2,P.A.Lee3,D.Ghosh1,A.M.Purcell1, Discussion A. C. Mitchell4,K.D.Mankoff5,A.T.Fisher6, 6 7 7 7 Cite this article: Mikucki JA et al.2016 S. Tulaczyk ,S.Carter, M. R. Siegfried ,H.A.Fricker, Subglacial Lake Whillans microbial T. Hodson8, J. Coenen8,R.Powell8,R.Scherer8, biogeochemistry: a synthesis of current 9 10 10 knowledge. Phil.Trans.R.Soc.A374: 20140290. T. Vick-Majors ,A.A.Achberger ,B.C.Christner , http://dx.doi.org/10.1098/rsta.2014.0290 M. Tranter11 and the WISSARD Science Team Accepted: 2 October 2015 1Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA One contribution of 17 to a Theo Murphy 2Department of Biology, Middlebury College, Middlebury, meeting issue ‘Antarctic subglacial lake VT 05753, USA exploration: first results and future plans’. 3Hollings Marine Lab, College of Charleston, Charleston, SC 29412, USA Subject Areas: 4 biogeochemistry, glaciology Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, UK Keywords: 5Department of Geosciences, The Pennsylvania State University, Antarctica, subglacial lakes, microbial University Park, PA 16802, USA diversity, geomicrobiology, Whillans Ice 6Earth and Planetary Sciences, University of California, Santa Cruz, Stream, WISSARD CA, USA 7Institute for Geophysics and Planetary Physics, Scripps Institution Author for correspondence: of Oceanography, University of California, San Diego, CA 92093,
    [Show full text]
  • Fast-Flow Signature in the Stagnated Kamb Ice Stream, West Antarctica
    This is a repository copy of Fast-flow signature in the stagnated Kamb Ice Stream, West Antarctica. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/92154/ Version: Accepted Version Article: Ng, F. and Conway, H. (2004) Fast-flow signature in the stagnated Kamb Ice Stream, West Antarctica. Geology, 32 (6). 481 - 484. ISSN 0091-7613 https://doi.org/10.1130/G20317.1 Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Ng & Conway (G20317), p. 1 1 2 3 Fast-flow signature in the stagnated Kamb Ice 4 Stream, West Antarctica 5 Felix Ng 6 Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of 7 Technology, Cambridge, Massachusetts 02139, USA 8 Howard Conway 9 Department of Earth and Space Sciences, University of Washington, Seattle, Washington 98195, 10 USA 11 12 ABSTRACT 13 Among the major ice streams that drain West Antarctica, Kamb Ice Stream 14 (formerly called Ice Stream C) is unique in that it stagnated ~150 yr ago, but its former 15 fast-flow conditions are virtually unknown.
    [Show full text]
  • US Geological Survey Scientific Activities in the Exploration of Antarctica: 1946–2006 Record of Personnel in Antarctica and Their Postal Cachets: US Navy (1946–48, 1954–60), International
    Prepared in cooperation with United States Antarctic Program, National Science Foundation U.S. Geological Survey Scientific Activities in the Exploration of Antarctica: 1946–2006 Record of Personnel in Antarctica and their Postal Cachets: U.S. Navy (1946–48, 1954–60), International Geophysical Year (1957–58), and USGS (1960–2006) By Tony K. Meunier Richard S. Williams, Jr., and Jane G. Ferrigno, Editors Open-File Report 2006–1116 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior DIRK KEMPTHORNE, Secretary U.S. Geological Survey Mark D. Myers, Director U.S. Geological Survey, Reston, Virginia 2007 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. Cover: 2006 postal cachet commemorating sixty years of USGS scientific innovation in Antarctica (designed by Kenneth W. Murphy and Tony K. Meunier, art work by Kenneth W. Murphy). ii Table of Contents Introduction......................................................................................................................................................................1 Selected.References.........................................................................................................................................................2
    [Show full text]