Exact Uncertainty Principle and Quantization: Implications for the Gravitational Field

Total Page:16

File Type:pdf, Size:1020Kb

Exact Uncertainty Principle and Quantization: Implications for the Gravitational Field 476 Brazilian Journal of Physics, vol. 35, no. 2B, June, 2005 Exact Uncertainty Principle and Quantization: Implications for the Gravitational Field M. Reginatto Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany Received on 23 December, 2004 The quantization of the gravitational field is discussed within the exact uncertainty approach. The method may be described as a Hamilton-Jacobi quantization of gravity. It differs from previous approaches that take the classical Hamilton-Jacobi equation as their starting point in that it incorporates some new elements, in particular the use of a formalism of ensembles in configuration space and the postulate of an exact uncertainty relation. These provide the fundamental elements needed for the transition from the classical theory to the quantum theory. 1 Introduction imalist in nature: unlike canonical quantization, no a priori assumptions regarding the existence of a Hilbert space struc- ture, linear operators, wavefunctions, etc. is required. The Perhaps one of the most fundamental distinctions between sole “nonclassical” element needed is the addition of fluctu- classical and quantum systems is that a quantum system must ations to the momentum variable. The exact uncertainty ap- obey the uncertainty principle, while a classical system is not proach is thus rather economical, in that it appears to make subject to such a limitation. The degree to which a quantum use of the minimum that is required for the description of a system is subject to this limitation is given by Heisenberg’s quantum system. uncertainty relation, which provides a bound on the minimum uncertainty of two conjugate variables such as the position x The paper is organized as follows. In the next two sec- and the momentum p of a particle: it states that the product of tions, I briefly review the case of a non-relativistic particle: in their uncertainties must be equal to or exceed a fundamental section 2, I discuss classical ensembles and derive the equa- limit proportional to Planck’s constant, ¢x¢p ¸ ~=2. This tions of motion from an ensemble Hamiltonian; in section inequality, however, is not sufficiently restrictive to provide 3, I present the derivation of the Schrodinger¨ equation using a means of going from classical mechanics to quantum me- the exact uncertainty approach. In the remaining sections, I chanics. Indeed, in most approaches to quantization, no di- discuss the application of the exact uncertainty approach to rect reference is made to the need for an uncertainty principle. gravity. A recent paper [4] provides an overview of the ex- For example, in the standard approach to canonical quantiza- act uncertainty approach in quantum mechanics and quantum tion, one introduces a Hilbert space, operators to represent gravity that emphasizes conceptual foundations. Therefore, observables, and a representation of the Poisson brackets of in the last sections I focus instead on some technical issues the fundamental conjugate variables in terms of commuta- and on some issues of interpretation. In section 4, I introduce tors of their corresponding operators. Once this structure is the Hamilton-Jacobi formulation of general relativity and for- in place, one can show that the Heisenberg uncertainty rela- mulate a theory of classical ensembles of gravitational fields; tions are indeed satisfied – but the uncertainty relations are in section 5, I apply the exact uncertainty principle to the derived, and the uncertainty principle, instead of motivating gravitational field, which leads to a Wheeler-DeWitt equa- the method of quantization, seems to be little more than a tion. In section 6, I consider some implications of the exact consequence of the mathematical formalism. uncertainty approach for the description of space-time in the quantized theory. Finally, some further remarks concerning One can, however, introduce an exact form of the uncer- the application of the exact uncertainty approach to gravity tainty principle which is strong enough to provide a means of are given in section 7. going from classical to quantum mechanics – indeed, this ex- act uncertainty principle provides the key element needed for such a transition. In particular, the assumption that a classical 2 Classical ensembles of non- ensemble of particles is subject to nonclassical momentum fluctuations, of a strength inversely proportional to uncer- relativistic particles tainty in position, leads directly from the classical equations of motion to the Schrodinger¨ equation [1, 2]. This approach To motivate the introduction of classical ensembles in con- can also be generalized and used to derive bosonic field equa- figuration space, consider the possibility that, due to either tions [3]. The exact uncertainty approach is extremely min- practical or theoretical reasons, the position of a particle is M. Reginatto 477 not known exactly. To describe this uncertainty in position, where the fluctuation field f vanishes everywhere on average. one has to introduce a probability density P (x; t) on config- Denoting the average over fluctuations by an overline, and us- uration space. The description of the physical system is then ing the relations f = 0 and p = rS, the classical ensemble one that is given in terms of a statistical ensemble of parti- energy is replaced in this case by cles. The dynamics of such an ensemble may be described Z Ã ! jrS + fj2 using a Hamiltonian formalism, in the following way. For hEi = dxP + V an ensemble of classical, non-relativistic particles of mass m 2m moving in a potential V , the correct equations of motion can Z f ¢ f be derived from the ensemble Hamiltonian = H~ + dxP c 2m Z Ã ! jrSj2 H~ [P; S] = dxP + V : (1) Thus the momentum fluctuations contribute to the average ki- c 2m netic energy of this modified classical ensemble. What conditions on the fluctuation field f lead to the The equations of motion that follow from eq. (1), quantum equations of motion? It is sufficient to consider four principles [1, 2, 3] (i) Action principle: The equations @P ±H~ @S ±H~ of motion can be derived from an action principle based on = c ; = ¡ c ; @t ±S @t ±P an ensemble Hamiltonian. Then, the strength of the fluc- tuations is determined by some function of P and S and take the form their derivatives, i.e. f ¢ f = ® (x; P; S; rP; rS; :::). It µ ¶ will also be assumed that the equations of motion that re- @P rS + r ¢ P = 0; (2) sult are partial differential equations of at most second order. @t m (ii) Independence: if the system consists of two independent non-interacting sub-systems, the ensemble Hamiltonian, and @S jrSj2 + + V = 0: (3) therefore ®, decomposes into additive subsystem contribu- @t 2m tions. (iii) Invariance: the fluctuations transform correctly T Eq. (2) is a continuity equation for an ensemble of particles under linear canonical transformations (i.e., f ! L f for described by the velocity field v = m¡1rS, and eq. (3) is any invertible linear coordinate transformation x ! Lx.A the Hamilton-Jacobi equation for a classical particle with mo- sightly different principle was used in [1, 2]). (iv) Exact mentum p = rS. Note also that H~C is the average energy of uncertainty principle: the strength of the momentum fluc- the classical ensemble. The formalism of ensemble Hamil- tuations is determined solely by the uncertainty in position. tonians that I have used here, while very simple, turns out to Since P contains all the information on the position uncer- be quite general (see [5, 4] for more details on this formalism tainty, ® can only depend on P and its derivatives. and various applications). In particular, it can be shown that The first three principles are natural on physical grounds, both classical and quantum equations of motion can be de- and therefore relatively unconstraining. The fourth principle, rived using this formalism. The difference between classical however, by establishing a precise relationship between the and quantum ensembles can be characterized by a simple dif- position uncertainty (as described by P ) and the strength of ference in the functional form of the corresponding ensemble the momentum fluctuations, introduces a strongly nonclassi- Hamiltonians, as shown in the next section. cal element. It is therefore appropriate to refer to the fluc- tuations due to the field f as nonclassical momentum fluctu- ations. It can be shown that these four principles define the 3 Quantum equations for non- functional form of ® uniquely and lead to a quantum ensem- ble Hamiltonian of the form relativistic particles Z 1 jrP j2 H~q = H~c + C dx (4) To derive quantum equations of motion, one needs to add P 2m fluctuations to the momentum variable which satisfy an ex- where C is a positive universal constant. Furthermore, since act uncertainty principle, and modify the classical ensemble the term ® is proportional to the classical Fisher informa- Hamiltonian to take into consideration the effect of these fluc- tion, one can use the Cramer-Rao´ inequality of statistical es- tuations. There are, of course, further assumptions that need timation theory to derive an exact uncertainty relation that is to be made, and these are explained in this section – however, stronger than (and implies) the Heisenberg uncertainty rela- the main conceptual ingredients are the nonclassical momen- tion (see [1, 2, 3] for derivations of these results). tum fluctuations and the exact uncertainty principle. It is straightforward to show that the Hamiltonian equa- Consider then another type of ensemble, one for which tions of motion for P and S derived from eq. (4), the assumption of a deterministic relation between position ~ ~ and momentum (implicit in the classical relation p = rS) is @P ±Hq @S ±Hq = ; = ¡ ; no longer valid. Assume instead that the momentum is sub- @t ±S @t ±P ject to stochastic perturbations, and that the relation between are identical to the Schrodinger¨ equation for a wavefunction p and rS takes the form Ã, provided one defines p p p = rS + f ~ := 2 C;Ã := P eiS=~: 478 Brazilian Journal of Physics, vol.
Recommended publications
  • Lecture 9, P 1 Lecture 9: Introduction to QM: Review and Examples
    Lecture 9, p 1 Lecture 9: Introduction to QM: Review and Examples S1 S2 Lecture 9, p 2 Photoelectric Effect Binding KE=⋅ eV = hf −Φ energy max stop Φ The work function: 3.5 Φ is the minimum energy needed to strip 3 an electron from the metal. 2.5 2 (v) Φ is defined as positive . 1.5 stop 1 Not all electrons will leave with the maximum V f0 kinetic energy (due to losses). 0.5 0 0 5 10 15 Conclusions: f (x10 14 Hz) • Light arrives in “packets” of energy (photons ). • Ephoton = hf • Increasing the intensity increases # photons, not the photon energy. Each photon ejects (at most) one electron from the metal. Recall: For EM waves, frequency and wavelength are related by f = c/ λ. Therefore: Ephoton = hc/ λ = 1240 eV-nm/ λ Lecture 9, p 3 Photoelectric Effect Example 1. When light of wavelength λ = 400 nm shines on lithium, the stopping voltage of the electrons is Vstop = 0.21 V . What is the work function of lithium? Lecture 9, p 4 Photoelectric Effect: Solution 1. When light of wavelength λ = 400 nm shines on lithium, the stopping voltage of the electrons is Vstop = 0.21 V . What is the work function of lithium? Φ = hf - eV stop Instead of hf, use hc/ λ: 1240/400 = 3.1 eV = 3.1eV - 0.21eV For Vstop = 0.21 V, eV stop = 0.21 eV = 2.89 eV Lecture 9, p 5 Act 1 3 1. If the workfunction of the material increased, (v) 2 how would the graph change? stop a.
    [Show full text]
  • The Emergence of a Classical World in Bohmian Mechanics
    The Emergence of a Classical World in Bohmian Mechanics Davide Romano Lausanne, 02 May 2014 Structure of QM • Physical state of a quantum system: - (normalized) vector in Hilbert space: state-vector - Wavefunction: the state-vector expressed in the coordinate representation Structure of QM • Physical state of a quantum system: - (normalized) vector in Hilbert space: state-vector; - Wavefunction: the state-vector expressed in the coordinate representation; • Physical properties of the system (Observables): - Observable ↔ hermitian operator acting on the state-vector or the wavefunction; - Given a certain operator A, the quantum system has a definite physical property respect to A iff it is an eigenstate of A; - The only possible measurement’s results of the physical property corresponding to the operator A are the eigenvalues of A; - Why hermitian operators? They have a real spectrum of eigenvalues → the result of a measurement can be interpreted as a physical value. Structure of QM • In the general case, the state-vector of a system is expressed as a linear combination of the eigenstates of a generic operator that acts upon it: 퐴 Ψ = 푎 Ψ1 + 푏|Ψ2 • When we perform a measure of A on the system |Ψ , the latter randomly collapses or 2 2 in the state |Ψ1 with probability |푎| or in the state |Ψ2 with probability |푏| . Structure of QM • In the general case, the state-vector of a system is expressed as a linear combination of the eigenstates of a generic operator that acts upon it: 퐴 Ψ = 푎 Ψ1 + 푏|Ψ2 • When we perform a measure of A on the system |Ψ , the latter randomly collapses or 2 2 in the state |Ψ1 with probability |푎| or in the state |Ψ2 with probability |푏| .
    [Show full text]
  • Aspects of Loop Quantum Gravity
    Aspects of loop quantum gravity Alexander Nagen 23 September 2020 Submitted in partial fulfilment of the requirements for the degree of Master of Science of Imperial College London 1 Contents 1 Introduction 4 2 Classical theory 12 2.1 The ADM / initial-value formulation of GR . 12 2.2 Hamiltonian GR . 14 2.3 Ashtekar variables . 18 2.4 Reality conditions . 22 3 Quantisation 23 3.1 Holonomies . 23 3.2 The connection representation . 25 3.3 The loop representation . 25 3.4 Constraints and Hilbert spaces in canonical quantisation . 27 3.4.1 The kinematical Hilbert space . 27 3.4.2 Imposing the Gauss constraint . 29 3.4.3 Imposing the diffeomorphism constraint . 29 3.4.4 Imposing the Hamiltonian constraint . 31 3.4.5 The master constraint . 32 4 Aspects of canonical loop quantum gravity 35 4.1 Properties of spin networks . 35 4.2 The area operator . 36 4.3 The volume operator . 43 2 4.4 Geometry in loop quantum gravity . 46 5 Spin foams 48 5.1 The nature and origin of spin foams . 48 5.2 Spin foam models . 49 5.3 The BF model . 50 5.4 The Barrett-Crane model . 53 5.5 The EPRL model . 57 5.6 The spin foam - GFT correspondence . 59 6 Applications to black holes 61 6.1 Black hole entropy . 61 6.2 Hawking radiation . 65 7 Current topics 69 7.1 Fractal horizons . 69 7.2 Quantum-corrected black hole . 70 7.3 A model for Hawking radiation . 73 7.4 Effective spin-foam models .
    [Show full text]
  • Quantum Mechanics As a Limiting Case of Classical Mechanics
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE Quantum Mechanics As A Limiting Case provided by CERN Document Server of Classical Mechanics Partha Ghose S. N. Bose National Centre for Basic Sciences Block JD, Sector III, Salt Lake, Calcutta 700 091, India In spite of its popularity, it has not been possible to vindicate the conven- tional wisdom that classical mechanics is a limiting case of quantum mechan- ics. The purpose of the present paper is to offer an alternative point of view in which quantum mechanics emerges as a limiting case of classical mechanics in which the classical system is decoupled from its environment. PACS no. 03.65.Bz 1 I. INTRODUCTION One of the most puzzling aspects of quantum mechanics is the quantum measurement problem which lies at the heart of all its interpretations. With- out a measuring device that functions classically, there are no ‘events’ in quantum mechanics which postulates that the wave function contains com- plete information of the system concerned and evolves linearly and unitarily in accordance with the Schr¨odinger equation. The system cannot be said to ‘possess’ physical properties like position and momentum irrespective of the context in which such properties are measured. The language of quantum mechanics is not that of realism. According to Bohr the classicality of a measuring device is fundamental and cannot be derived from quantum theory. In other words, the process of measurement cannot be analyzed within quantum theory itself. A simi- lar conclusion also follows from von Neumann’s approach [1].
    [Show full text]
  • The Uncertainty Principle (Stanford Encyclopedia of Philosophy) Page 1 of 14
    The Uncertainty Principle (Stanford Encyclopedia of Philosophy) Page 1 of 14 Open access to the SEP is made possible by a world-wide funding initiative. Please Read How You Can Help Keep the Encyclopedia Free The Uncertainty Principle First published Mon Oct 8, 2001; substantive revision Mon Jul 3, 2006 Quantum mechanics is generally regarded as the physical theory that is our best candidate for a fundamental and universal description of the physical world. The conceptual framework employed by this theory differs drastically from that of classical physics. Indeed, the transition from classical to quantum physics marks a genuine revolution in our understanding of the physical world. One striking aspect of the difference between classical and quantum physics is that whereas classical mechanics presupposes that exact simultaneous values can be assigned to all physical quantities, quantum mechanics denies this possibility, the prime example being the position and momentum of a particle. According to quantum mechanics, the more precisely the position (momentum) of a particle is given, the less precisely can one say what its momentum (position) is. This is (a simplistic and preliminary formulation of) the quantum mechanical uncertainty principle for position and momentum. The uncertainty principle played an important role in many discussions on the philosophical implications of quantum mechanics, in particular in discussions on the consistency of the so-called Copenhagen interpretation, the interpretation endorsed by the founding fathers Heisenberg and Bohr. This should not suggest that the uncertainty principle is the only aspect of the conceptual difference between classical and quantum physics: the implications of quantum mechanics for notions as (non)-locality, entanglement and identity play no less havoc with classical intuitions.
    [Show full text]
  • Path Integral for the Hydrogen Atom
    Path Integral for the Hydrogen Atom Solutions in two and three dimensions Vägintegral för Väteatomen Lösningar i två och tre dimensioner Anders Svensson Faculty of Health, Science and Technology Physics, Bachelor Degree Project 15 ECTS Credits Supervisor: Jürgen Fuchs Examiner: Marcus Berg June 2016 Abstract The path integral formulation of quantum mechanics generalizes the action principle of classical mechanics. The Feynman path integral is, roughly speaking, a sum over all possible paths that a particle can take between fixed endpoints, where each path contributes to the sum by a phase factor involving the action for the path. The resulting sum gives the probability amplitude of propagation between the two endpoints, a quantity called the propagator. Solutions of the Feynman path integral formula exist, however, only for a small number of simple systems, and modifications need to be made when dealing with more complicated systems involving singular potentials, including the Coulomb potential. We derive a generalized path integral formula, that can be used in these cases, for a quantity called the pseudo-propagator from which we obtain the fixed-energy amplitude, related to the propagator by a Fourier transform. The new path integral formula is then successfully solved for the Hydrogen atom in two and three dimensions, and we obtain integral representations for the fixed-energy amplitude. Sammanfattning V¨agintegral-formuleringen av kvantmekanik generaliserar minsta-verkanprincipen fr˚anklassisk meka- nik. Feynmans v¨agintegral kan ses som en summa ¨over alla m¨ojligav¨agaren partikel kan ta mellan tv˚a givna ¨andpunkterA och B, d¨arvarje v¨agbidrar till summan med en fasfaktor inneh˚allandeden klas- siska verkan f¨orv¨agen.Den resulterande summan ger propagatorn, sannolikhetsamplituden att partikeln g˚arfr˚anA till B.
    [Show full text]
  • Coherent States and the Classical Limit in Quantum Mechanics
    Coherent States And The Classical Limit In Quantum Mechanics 0 ħ ¡! Bram Merten Radboud University Nijmegen Bachelor’s Thesis Mathematics/Physics 2018 Department Of Mathematical Physics Under Supervision of: Michael Mueger Abstract A thorough analysis is given of the academical paper titled "The Classical Limit for Quantum Mechanical Correlation Functions", written by the German physicist Klaus Hepp. This paper was published in 1974 in the journal of Communications in Mathematical Physics [1]. The part of the paper that is analyzed summarizes to the following: "Suppose expectation values of products of Weyl operators are translated in time by a quantum mechanical Hamiltonian and are in coherent states 1/2 1/2 centered in phase space around the coordinates ( ¡ ¼, ¡ »), where (¼,») is ħ ħ an element of classical phase space, then, after one takes the classical limit 0, the expectation values of products of Weyl operators become ħ ¡! exponentials of coordinate functions of the classical orbit in phase space." As will become clear in this thesis, authors tend to omit many non-trivial intermediate steps which I will precisely include. This could be of help to any undergraduate student who is willing to familiarize oneself with the reading of academical papers, but could also target any older student or professor who is doing research and interested in Klaus Hepp’s work. Preliminary chapters which will explain all the prerequisites to this paper are given as well. Table of Contents 0 Preface 1 1 Introduction 2 1.1 About Quantum Mechanics . .2 1.2 About The Wave function . .2 1.3 About The Correspondence of Classical and Quantum mechanics .
    [Show full text]
  • Funaional Integration for Solving the Schroedinger Equation
    Comitato Nazionale Energia Nucleare Funaional Integration for Solving the Schroedinger Equation A. BOVE. G. FANO. A.G. TEOLIS RT/FIMÀ(7$ Comitato Nazionale Energia Nucleare Funaional Integration for Solving the Schroedinger Equation A. BOVE, G.FANO, A.G.TEOLIS 3 1. INTRODUCTION Vesto pervenuto il 2 agosto 197) It ia well-known (aee e.g. tei. [lj - |3| ) that the infinite-diaeneional r«nctional integration ia a powerful tool in all the evolution processes toth of the type of the heat -tanefer or Scbroediager equation. Since the 'ieid of applications of functional integration ia rapidly increasing, it *«*ae dcairahle to study the «stood from the nuaerical point of view, at leaat in siaple caaea. Such a orograa baa been already carried out by Cria* and Scorer (ace ref. |«| - |7| ), via Monte-Carlo techniques. We use extensively an iteration aethod which coneiecs in successively squa£ ing < denaicy matrix (aee Eq.(9)), since in principle ic allows a great accuracy. This aetbod was used only tarely before (aee ref. |4| ). Fur- chersjore we give an catiaate of che error (e«e Eqs. (U),(26)) boch in Che caaa of Wiener and unleabeck-Ometein integral. Contrary to the cur­ rent opinion (aae ref. |13| ), we find that the last integral ia too sen­ sitive to the choice of the parameter appearing in the haraonic oscilla­ tor can, in order to be useful except in particular caaea. In this paper we study the one-particle spherically sysssetric case; an application to the three nucleon probUa is in progress (sea ref. |U| ). St»wp«wirìf^m<'oUN)p^woMG>miutoN«i»OMtop«fl'Ht>p>i«Wi*faif»,Piijl(Mi^fcri \ptt,mt><r\A, i uwh P.ei#*mià, Uffcio Eanfeai SaMfiM», " ~ Hot*, Vi.1.
    [Show full text]
  • Quantum Theory and the Structure of Space-Time
    Quantum theory and the structure of space-time Tejinder Singh Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India ABSTRACT We argue that space and space-time emerge as a consequence of dynamical collapse of the wave function of macroscopic objects. Locality and separability are properties of our approximate, emergent universe. At the fundamental level, space-time is non-commutative, and dynamics is non-local and non-separable. I. SPACE-TIME IS NOT THE PERFECT ARENA FOR QUANTUM THEORY Space-time is absolute, in conventional classical physics. Its geometry is determined dy- namically by the distribution of classical objects in the universe. However, the underlying space-time manifold is an absolute given, providing the arena in which material bodies and fields exist. The same classical space-time arena is carried over to quantum mechanics and to quantum field theory, and it works beautifully there too. Well, almost! But not quite. In this essay we propose the thesis that the troubles of quantum theory arise because of the illegal carry-over of this classical arena. By troubles we mean the quantum measurement problem, the spooky action at a distance and the peculiar nature of quantum non-locality, the so-called problem of time in quantum theory, the extreme dependence of the theory on its classical limit, and the physical meaning of the wave function [1]. We elaborate on these in the next section. Then, in Section III, we propose that the correct arena for quantum theory is a non-commutative space-time: here there are no troubles. Classical space-time emerges as an approximation, as a consequence of dynamical collapse of the wave function.
    [Show full text]
  • Schrodinger's Uncertainty Principle? Lilies Can Be Painted
    Rajaram Nityananda Schrodinger's Uncertainty Principle? lilies can be Painted Rajaram Nityananda The famous equation of quantum theory, ~x~px ~ h/47r = 11,/2 is of course Heisenberg'S uncertainty principlel ! But SchrO­ dinger's subsequent refinement, described in this article, de­ serves to be better known in the classroom. Rajaram Nityananda Let us recall the basic algebraic steps in the text book works at the Raman proof. We consider the wave function (which has a free Research Institute,· real parameter a) (x + iap)1jJ == x1jJ(x) + ia( -in81jJ/8x) == mainly on applications of 4>( x), The hat sign over x and p reminds us that they are optical and statistical operators. We have dropped the suffix x on the momentum physics, for eJ:ample in p but from now on, we are only looking at its x-component. astronomy. Conveying 1jJ( x) is physics to students at Even though we know nothing about except that it different levels is an allowed wave function, we can be sure that J 4>* ¢dx ~ O. another activity. He In terms of 1jJ, this reads enjoys second class rail travel, hiking, ! 1jJ*(x - iap)(x + iap)1jJdx ~ O. (1) deciphering signboards in strange scripts and Note the all important minus sign in the first bracket, potatoes in any form. coming from complex conjugation. The product of operators can be expanded and the result reads2 < x2 > + < a2p2 > +ia < (xp - px) > ~ O. (2) I I1x is the uncertainty in the x The three terms are the averages of (i) the square of component of position and I1px the uncertainty in the x the coordinate, (ii) the square of the momentum, (iii) the component of the momentum "commutator" xp - px.
    [Show full text]
  • Path Integrals in Quantum Mechanics
    Path Integrals in Quantum Mechanics Emma Wikberg Project work, 4p Department of Physics Stockholm University 23rd March 2006 Abstract The method of Path Integrals (PI’s) was developed by Richard Feynman in the 1940’s. It offers an alternate way to look at quantum mechanics (QM), which is equivalent to the Schrödinger formulation. As will be seen in this project work, many "elementary" problems are much more difficult to solve using path integrals than ordinary quantum mechanics. The benefits of path integrals tend to appear more clearly while using quantum field theory (QFT) and perturbation theory. However, one big advantage of Feynman’s formulation is a more intuitive way to interpret the basic equations than in ordinary quantum mechanics. Here we give a basic introduction to the path integral formulation, start- ing from the well known quantum mechanics as formulated by Schrödinger. We show that the two formulations are equivalent and discuss the quantum mechanical interpretations of the theory, as well as the classical limit. We also perform some explicit calculations by solving the free particle and the harmonic oscillator problems using path integrals. The energy eigenvalues of the harmonic oscillator is found by exploiting the connection between path integrals, statistical mechanics and imaginary time. Contents 1 Introduction and Outline 2 1.1 Introduction . 2 1.2 Outline . 2 2 Path Integrals from ordinary Quantum Mechanics 4 2.1 The Schrödinger equation and time evolution . 4 2.2 The propagator . 6 3 Equivalence to the Schrödinger Equation 8 3.1 From the Schrödinger equation to PI’s . 8 3.2 From PI’s to the Schrödinger equation .
    [Show full text]
  • 2. Classical Gases
    2. Classical Gases Our goal in this section is to use the techniques of statistical mechanics to describe the dynamics of the simplest system: a gas. This means a bunch of particles, flying around in a box. Although much of the last section was formulated in the language of quantum mechanics, here we will revert back to classical mechanics. Nonetheless, a recurrent theme will be that the quantum world is never far behind: we’ll see several puzzles, both theoretical and experimental, which can only truly be resolved by turning on ~. 2.1 The Classical Partition Function For most of this section we will work in the canonical ensemble. We start by reformu- lating the idea of a partition function in classical mechanics. We’ll consider a simple system – a single particle of mass m moving in three dimensions in a potential V (~q ). The classical Hamiltonian of the system3 is the sum of kinetic and potential energy, p~ 2 H = + V (~q ) 2m We earlier defined the partition function (1.21) to be the sum over all quantum states of the system. Here we want to do something similar. In classical mechanics, the state of a system is determined by a point in phase space.Wemustspecifyboththeposition and momentum of each of the particles — only then do we have enough information to figure out what the system will do for all times in the future. This motivates the definition of the partition function for a single classical particle as the integration over phase space, 1 3 3 βH(p,q) Z = d qd pe− (2.1) 1 h3 Z The only slightly odd thing is the factor of 1/h3 that sits out front.
    [Show full text]