Biochemical Characterization of Recombinant Avihepatovirus 3C
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Structure-Based Design of Specific Peptidomimetic Inhibitors of SARS
RSC Advances View Article Online PAPER View Journal | View Issue Antiviral agents against COVID-19: structure-based design of specific peptidomimetic inhibitors of Cite this: RSC Adv., 2020, 10,40244 SARS-CoV-2 main protease Vladimir Frecer *ab and Stanislav Miertusbc Despite the intense development of vaccines and antiviral therapeutics, no specific treatment of coronavirus disease 2019 (COVID-19), caused by the new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is currently available. Recently, X-ray crystallographic structures of a validated pharmacological target of SARS-CoV-2, the main protease (Mpro also called 3CLpro) in complex with peptide-like irreversible inhibitors have been published. We have carried out computer-aided structure- based design and optimization of peptidomimetic irreversible a-ketoamide Mpro inhibitors and their analogues using MM, MD and QM/MM methodology, with the goal to propose lead compounds with improved binding affinity to SARS-CoV-2 Mpro, enhanced specificity for pathogenic coronaviruses, Creative Commons Attribution 3.0 Unported Licence. decreased peptidic character, and favourable drug-like properties. The best inhibitor candidates Received 28th September 2020 designed in this work show largely improved interaction energies towards the Mpro and enhanced Accepted 30th October 2020 specificity due to 6 additional hydrogen bonds to the active site residues. The presented results on new DOI: 10.1039/d0ra08304f SARS-CoV-2 Mpro inhibitors are expected to stimulate further research towards the development of rsc.li/rsc-advances specific anti-COVID-19 drugs. Introduction chymotrypsin-like protease (called main protease Mpro or also 3CLpro), and papain-like protease (PLpro). The 33.8 kDa cysteine pro This article is licensed under a The outbreak of the new severe acute respiratory syndrome protease M (EC 3.4.22.69) encoded in the nsp5 is a key viral coronavirus 2 (SARS-CoV-2) belonging to the b-lineage of the enzyme essential for the viral life cycle of coronaviruses. -
The Viruses of Wild Pigeon Droppings
The Viruses of Wild Pigeon Droppings Tung Gia Phan1,2, Nguyen Phung Vo1,3,A´ kos Boros4,Pe´ter Pankovics4,Ga´bor Reuter4, Olive T. W. Li6, Chunling Wang5, Xutao Deng1, Leo L. M. Poon6, Eric Delwart1,2* 1 Blood Systems Research Institute, San Francisco, California, United States of America, 2 Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, United States of America, 3 Pharmacology Department, School of Pharmacy, Ho Chi Minh City University of Medicine and Pharmacy, Ho Chi Minh, Vietnam, 4 Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, A´ NTSZ Regional Institute of State Public Health Service, Pe´cs, Hungary, 5 Stanford Genome Technology Center, Stanford, California, United States of America, 6 Centre of Influenza Research and School of Public Health, University of Hong Kong, Hong Kong SAR Abstract Birds are frequent sources of emerging human infectious diseases. Viral particles were enriched from the feces of 51 wild urban pigeons (Columba livia) from Hong Kong and Hungary, their nucleic acids randomly amplified and then sequenced. We identified sequences from known and novel species from the viral families Circoviridae, Parvoviridae, Picornaviridae, Reoviridae, Adenovirus, Astroviridae, and Caliciviridae (listed in decreasing number of reads), as well as plant and insect viruses likely originating from consumed food. The near full genome of a new species of a proposed parvovirus genus provisionally called Aviparvovirus contained an unusually long middle ORF showing weak similarity to an ORF of unknown function from a fowl adenovirus. Picornaviruses found in both Asia and Europe that are distantly related to the turkey megrivirus and contained a highly divergent 2A1 region were named mesiviruses. -
COVID-19: Living Through Another Pandemic Essam Eldin A
pubs.acs.org/journal/aidcbc Viewpoint COVID-19: Living through Another Pandemic Essam Eldin A. Osman, Peter L. Toogood, and Nouri Neamati* Cite This: https://dx.doi.org/10.1021/acsinfecdis.0c00224 Read Online ACCESS Metrics & More Article Recommendations *sı Supporting Information ABSTRACT: Novel beta-coronavirus SARS-CoV-2 is the pathogenic agent responsible for coronavirus disease-2019 (COVID-19), a globally pandemic infectious disease. Due to its high virulence and the absence of immunity among the general population, SARS- CoV-2 has quickly spread to all countries. This pandemic highlights the urgent unmet need to expand and focus our research tools on what are considered “neglected infectious diseases” and to prepare for future inevitable pandemics. This global emergency has generated unprecedented momentum and scientificefforts around the globe unifying scientists from academia, government and the pharmaceutical industry to accelerate the discovery of vaccines and treatments. Herein, we shed light on the virus structure and life cycle and the potential therapeutic targets in SARS-CoV-2 and briefly refer to both active and passive immunization modalities, drug repurposing focused on speed to market, and novel agents against specific viral targets as therapeutic interventions for COVID-19. s first reported in December 2019, a novel coronavirus, rate of seasonal influenza (flu), which is fatal in only ∼0.1% of A severe acute respiratory syndrome coronavirus 2 (SARS- infected patients.6 In contrast to previous coronavirus CoV-2), caused an outbreak of atypical pneumonia in Wuhan, epidemics (Table S1), COVID-19 is indiscriminately wreaking 1 China, that has since spread globally. The disease caused by havoc globally with no apparent end in sight due to its high this new virus has been named coronavirus disease-2019 virulence and the absence of resistance among the general (COVID-19) and on March 11, 2020 was declared a global population. -
Investigation Into the Link Between Water Quality and Microbiological Safety of Selected Fruit and Vegetables from Farming to Processing Stages (Volume 1)
INVESTIGATION INTO THE LINK BETWEEN WATER QUALITY AND MICROBIOLOGICAL SAFETY OF SELECTED FRUIT AND VEGETABLES FROM FARMING TO PROCESSING STAGES (VOLUME 1) Report to the WATER RESEARCH COMMISSION and DEPARTMENT OF AGRICULTURE, FORESTRY AND FISHERIES Edited by EM du Plessis1 and L Korsten1 Research team L Korsten1, EM Buys2, B Pillay3, M Taylor4 1Department of Microbiology and Plant Pathology, University of Pretoria 2Department of Food Science, University of Pretoria 3Department of Microbiology, University of KwaZulu-Natal 4Department of Medical Virology, University of Pretoria/National Health Laboratory Service WRC Report No. 1875/1/15 ISBN 978-1-4312-0693-3 August 2015 Obtainable from Water Research Commission Private Bag X03 GEZINA, 0031 [email protected] or download from www.wrc.org.za DISCLAIMER This report has been reviewed by the Water Research Commission (WRC) and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the WRC nor does mention of trade names or commercial products constitute endorsement or recommendation for use. © Water Research Commission ii EXECUTIVE SUMMARY Background and motivation An increase in the consumption of fresh and minimally processed fruits and vegetables globally (Ayers and Westcot, 1 985; Beuchat, 2002) has resulted in one of the most important health challenges in terms of foodborne diseases. In the United States of America (USA) these dietary changes resulted in doubling of produce-associated disease outbreaks per year from 1973-1992 (USA Food and Drug Administration, 1998). However, over the past 10-15 years the number of foodborne disease outbreaks has declined. The number of CDC outbreak reports varied between 1243 to 1417 during 2000-2002 in comparison to only 800 to 850 outbreaks reported from 2009-2013 (http://www.foodsafetynews.com/2015/06/the-prevalence-of-foodborne-illness; accessed 12 July 2015). -
Validation and Invalidation of SARS-Cov-2 Main Protease Inhibitors Using the 2 Flip-GFP and Protease-Glo Luciferase Assays
bioRxiv preprint doi: https://doi.org/10.1101/2021.08.28.458041; this version posted August 30, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Validation and invalidation of SARS-CoV-2 main protease inhibitors using the 2 Flip-GFP and Protease-Glo luciferase assays 3 Chunlong Ma,a Haozhou Tan,a Juliana Choza,a Yuying Wang,a and Jun Wang,a,* 4 5 6 7 aDepartment of Pharmacology and Toxicology, College of Pharmacy, The University of 8 Arizona, Tucson, USA, 85721. 9 10 *Address correspondence to Jun Wang, [email protected] 11 12 Running title: Validation/invalidation of SARS-CoV-2 Mpro inhibitors 13 14 15 16 17 18 19 20 21 22 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.08.28.458041; this version posted August 30, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 23 24 25 Graphical abstract 26 27 Flip-GFP and Protease-Glo luciferase assays, coupled with the FRET and thermal shift 28 binding assays, were applied to validate the reported SARS-CoV-2 Mpro inhibitors. 29 30 31 32 33 34 35 36 37 38 39 2 bioRxiv preprint doi: https://doi.org/10.1101/2021.08.28.458041; this version posted August 30, 2021. -
Desenvolvimento E Avaliação De Uma Plataforma De Diagnóstico Para Meningoencefalites Virais Por Pcr Em Tempo Real
DANILO BRETAS DE OLIVEIRA DESENVOLVIMENTO E AVALIAÇÃO DE UMA PLATAFORMA DE DIAGNÓSTICO PARA MENINGOENCEFALITES VIRAIS POR PCR EM TEMPO REAL Orientadora: Profa. Dra. Erna Geessien Kroon Co-orientador: Dr. Gabriel Magno de Freitas Almeida Co-orientador: Prof. Dr. Jônatas Santos Abrahão Belo Horizonte Janeiro de 2015 DANILO BRETAS DE OLIVEIRA DESENVOLVIMENTO E AVALIAÇÃO DE UMA PLATAFORMA DE DIAGNÓSTICO PARA MENINGOENCEFALITES VIRAIS POR PCR EM TEMPO REAL Tese de doutorado apresentada ao Programa de Pós-Graduação em Microbiologia do Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, como requisito à obtenção do título de doutor em Microbiologia. Orientadora: Profa. Dra. Erna Geessien Kroon Co-orientador: Dr. Gabriel Magno de Freitas Almeida Co-orientador: Prof. Dr. Jônatas Santos Abrahão Belo Horizonte Janeiro de 2015 SUMÁRIO LISTA DE FIGURAS .......................................................................................... 7 LISTA DE TABELAS ........................................................................................ 10 LISTA DE ABREVIATURAS ............................................................................. 11 I. INTRODUÇÃO .............................................................................................. 17 1.1. INFECÇÕES VIRAIS NO SISTEMA NERVOSO CENTRAL (SNC) ....... 18 1.2. AGENTES VIRAIS CAUSADORES DE MENINGOENCEFALITES .......... 22 1.2.1. VÍRUS DA FAMÍLIA Picornaviridae ........................................................ 22 1.2.1.1.VÍRUS DO GÊNERO Enterovirus ....................................................... -
Virtual Screening of Anti-HIV1 Compounds Against SARS-Cov-2
www.nature.com/scientificreports OPEN Virtual screening of anti‑HIV1 compounds against SARS‑CoV‑2: machine learning modeling, chemoinformatics and molecular dynamics simulation based analysis Mahesha Nand1,6, Priyanka Maiti 2,6*, Tushar Joshi3, Subhash Chandra4*, Veena Pande3, Jagdish Chandra Kuniyal2 & Muthannan Andavar Ramakrishnan5* COVID‑19 caused by the SARS‑CoV‑2 is a current global challenge and urgent discovery of potential drugs to combat this pandemic is a need of the hour. 3‑chymotrypsin‑like cysteine protease (3CLpro) enzyme is the vital molecular target against the SARS‑CoV‑2. Therefore, in the present study, 1528 anti‑HIV1compounds were screened by sequence alignment between 3CLpro of SARS‑CoV‑2 and avian infectious bronchitis virus (avian coronavirus) followed by machine learning predictive model, drug‑likeness screening and molecular docking, which resulted in 41 screened compounds. These 41 compounds were re‑screened by deep learning model constructed considering the IC50 values of known inhibitors which resulted in 22 hit compounds. Further, screening was done by structural activity relationship mapping which resulted in two structural clefts. Thereafter, functional group analysis was also done, where cluster 2 showed the presence of several essential functional groups having pharmacological importance. In the fnal stage, Cluster 2 compounds were re‑docked with four diferent PDB structures of 3CLpro, and their depth interaction profle was analyzed followed by molecular dynamics simulation at 100 ns. Conclusively, 2 out of 1528 compounds were screened as potential hits against 3CLpro which could be further treated as an excellent drug against SARS‑CoV‑2. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the causative agent of the COVID-19. -
Use of Structure-And Ligand-Based Drug Design Tools for The
University of Mississippi eGrove Electronic Theses and Dissertations Graduate School 2011 Use of Structure-And Ligand-Based Drug Design Tools for the Discovery of Small Molecule Inhibitors of Cysteine Proteases for the Treatment of Malaria and Sars Infection Falgun Shah Follow this and additional works at: https://egrove.olemiss.edu/etd Part of the Pharmacy and Pharmaceutical Sciences Commons Recommended Citation Shah, Falgun, "Use of Structure-And Ligand-Based Drug Design Tools for the Discovery of Small Molecule Inhibitors of Cysteine Proteases for the Treatment of Malaria and Sars Infection" (2011). Electronic Theses and Dissertations. 260. https://egrove.olemiss.edu/etd/260 This Dissertation is brought to you for free and open access by the Graduate School at eGrove. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of eGrove. For more information, please contact [email protected]. USE OF STRUCTURE-AND LIGAND-BASED DRUG DESIGN TOOLS FOR THE DISCOVERY OF SMALL MOLECULE INHIBITORS OF CYSTEINE PROTEASES FOR THE TREATMENT OF MALARIA AND SARS INFECTION A Dissertation Presented for the Doctor of Philosophy In Pharmaceutical Sciences The University of Mississippi Falgun Shah November 2011 Copyright © 2011 by Falgun Shah All rights reserved ABSTRACT A wide array of molecular modeling tools were utilized to design and develop inhibitors against cysteine protease of P. Falciparum Malaria and Severe Acute Respiratory Syndrome (SARS). A number of potent inhibitors were developed against cysteine protease and hemoglobinase of P. falciparum, referred as Falcipains (FPs), by the structure-based virtual screening of the focused libraries enriched in soft-electrophiles containing compounds. -
Evidence to Support Safe Return to Clinical Practice by Oral Health Professionals in Canada During the COVID-19 Pandemic: a Repo
Evidence to support safe return to clinical practice by oral health professionals in Canada during the COVID-19 pandemic: A report prepared for the Office of the Chief Dental Officer of Canada. November 2020 update This evidence synthesis was prepared for the Office of the Chief Dental Officer, based on a comprehensive review under contract by the following: Paul Allison, Faculty of Dentistry, McGill University Raphael Freitas de Souza, Faculty of Dentistry, McGill University Lilian Aboud, Faculty of Dentistry, McGill University Martin Morris, Library, McGill University November 30th, 2020 1 Contents Page Introduction 3 Project goal and specific objectives 3 Methods used to identify and include relevant literature 4 Report structure 5 Summary of update report 5 Report results a) Which patients are at greater risk of the consequences of COVID-19 and so 7 consideration should be given to delaying elective in-person oral health care? b) What are the signs and symptoms of COVID-19 that oral health professionals 9 should screen for prior to providing in-person health care? c) What evidence exists to support patient scheduling, waiting and other non- treatment management measures for in-person oral health care? 10 d) What evidence exists to support the use of various forms of personal protective equipment (PPE) while providing in-person oral health care? 13 e) What evidence exists to support the decontamination and re-use of PPE? 15 f) What evidence exists concerning the provision of aerosol-generating 16 procedures (AGP) as part of in-person -
Virus Kit Description List
VIRUS –Complete list and description CONTENTS – italics names are the common names you might be more familiar with. ADENOVIRUS 46. Cytomegalovirus 98. Parapoxvirus 1. Atadenovirus 47. Muromegalovirus 99. Suipoxvirus 2. Aviadenovirus 48. Proboscivirus 100. Yatapoxvirus 3. Ichtadenovirus 49. Roseolovirus 101. Alphaentomopoxvirus 4. Mastadenovirus 50. Lymphocryptovirus 102. Betaentomopoxvirus 5. Siadenovirus 51. Rhadinovirus 103. Gammaentomopoxvirus ANELLOVIRUS 52. Misc. herpes REOVIRUS 6. Alphatorquevirus IFLAVIRUS 104. Cardoreovirus 7. Betatorquevirus 53. Iflavirus 105. Mimoreovirus 8. Gammatorquevirus ORTHOMYXOVIRUS 106. Orbivirus 9. Deltatorquevirus 54. Influenzavirus A 107. Phytoreovirus 10. Epsilontorquevirus 55. Influenzavirus B 108. Rotavirus 11. Etatorquevirus 56. Influenzavirus C 109. Seadornavirus 12. Iotatorquevirus 57. Isavirus 110. Aquareovirus 13. Thetatorquevirus 58. Thogotovirus 111. Coltivirus 14. Zetatorquevirus PAPILLOMAVIRUS 112. Cypovirus ARTERIVIRUS 59. Papillomavirus 113. Dinovernavirus 15. Equine arteritis virus PARAMYXOVIRUS 114. Fijivirus ARENAVIRUS 60. Avulavirus 115. Idnoreovirus 16. Arena virus 61. Henipavirus 116. Mycoreovirus ASFIVIRUS 62. Morbillivirus 117. Orthoreovirus 17. African swine fever virus 63. Respirovirus 118. Oryzavirus ASTROVIRUS 64. Rubellavirus RETROVIRUS 18. Mamastrovirus 65. TPMV~virus 119. Alpharetrovirus 19. Avastrovirus 66. Pneumovirus 120. Betaretrovirus BORNAVIRUS 67. Metapneumovirus 121. Deltaretrovirus 20. Borna virus 68. Para. Unassigned 122. Epsilonretrovirus BUNYAVIRUS PARVOVIRUS -
Antiviral Drug Discovery: Norovirus Proteases and Development of Inhibitors
viruses Review Antiviral Drug Discovery: Norovirus Proteases and Development of Inhibitors Kyeong-Ok Chang 1,*, Yunjeong Kim 1 , Scott Lovell 2, Athri D. Rathnayake 3 and William C. Groutas 3 1 Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; [email protected] 2 Protein Structure Laboratory, The University of Kansas, Lawrence, KS 66047, USA; [email protected] 3 Department of Chemistry, Wichita State University, Wichita, KS 67260, USA; [email protected] (A.D.R.); [email protected] (W.C.G.) * Correspondence: [email protected]; Tel.: +1-785-532-3849; Fax: +1-785-532-4039 Received: 29 January 2019; Accepted: 22 February 2019; Published: 25 February 2019 Abstract: Proteases are a major enzyme group playing important roles in a wide variety of biological processes in life forms ranging from viruses to mammalians. The aberrant activity of proteases can lead to various diseases; consequently, host proteases have been the focus of intense investigation as potential therapeutic targets. A wide range of viruses encode proteases which play an essential role in viral replication and, therefore, constitute attractive targets for the development of antiviral therapeutics. There are numerous examples of successful drug development targeting cellular and viral proteases, including antivirals against human immunodeficiency virus and hepatitis C virus. Most FDA-approved antiviral agents are peptidomimetics and macrocyclic compounds that interact with the active site of a targeted protease. Norovirus proteases are cysteine proteases that contain a chymotrypsin-like fold in their 3D structures. This review focuses on our group’s efforts related to the development of norovirus protease inhibitors as potential anti-norovirus therapeutics. -
Virus Protease
Virus Protease Viral proteases are enzymes encoded by the genetic material (DNA or RNA) of viral pathogens. Viral proteases catalyze the cleavage of specific peptide bonds in viral polyprotein precursors or in cellular proteins. Viral proteases may use different catalytic mechanisms involving either serine, cysteine or aspartic acid residues to attack the scissile peptide bond. Selective recognition of these sequence patterns by a complementary substrate binding site of the enzyme ensures a high degree of specific recognition and cleavage. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is the cause of the respiratory illness coronavirus disease 2019 (COVID-19). Initial spike protein priming by transmembrane protease, serine 2 (TMPRSS2) is essential for entry of SARS-CoV-2. After a SARS-CoV-2 virion attaches to a target cell, the cell's protease TMPRSS2 cuts open the spike protein of the virus, exposing a fusion peptide. www.MedChemExpress.com 1 Virus Protease Inhibitors (-)-Epicatechin gallate (-)-α-Pinene (Epicatechin gallate; ECG; (-)-Epicatechin 3-O-gallate) Cat. No.: HY-N0002 Cat. No.: HY-N0549 (-)-Epicatechin gallate (Epicatechin gallate) (-)-α-Pinene is a monoterpene and shows sleep inhibits cyclooxygenase-1 (COX-1) with an IC50 of enhancing property through a direct binding to 7.5 μM. GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site. Purity: 98.57% Purity: 99.63% Clinical Data: No Development Reported Clinical Data: No Development Reported Size: 10 mM × 1 mL, 5 mg, 10 mg, 25 mg, 50 mg, 100 mg Size: 10 mM × 1 mL, 100 mg, 1 g, 5 g (E)-3,4-Dimethoxycinnamic acid 2-Hydroxy-4-methylbenzenesulphonic acid ammonium ((E)-O-Methylferulic acid) Cat.