Palaeoenvironmental Changes and Vegetation History During the Triassic-Jurassic Transition Nina R

Total Page:16

File Type:pdf, Size:1020Kb

Palaeoenvironmental Changes and Vegetation History During the Triassic-Jurassic Transition Nina R Palaeoenvironmental changes and vegetation history during the Triassic-Jurassic transition Nina R. Bonis Palaeoecology Institute of Environmental Biology Department of Biology Faculty of Science Utrecht University Laboratory of Palaeobotany and Palynology Budapestlaan 4 3584 CD Utrecht The Netherlands [email protected] [email protected] ISBN 978-90-393-5269-4 NSG publication No. 20100129 LPP Contribution Series No. 29 Graphic design by Nick Liefhebber www.liefhebber.biz [email protected] Printed by GVO drukkers & vormgevers B.V. | Ponsen & Looijen, Ede Palaeoenvironmental changes and vegetation history during the Triassic-Jurassic transition Palaeomilieu veranderingen en vegetatiegeschiedenis gedurende de Trias-Jura overgang (met een samenvatting in het Nederlands) Proefschrift ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de rector magnificus, prof.dr. J.C. Stoof, ingevolge het besluit van het college voor promoties in het openbaar te verdedigen op vrijdag 29 januari 2010 des ochtends te 10.30 uur door Nina Rosa Bonis geboren op 13 februari 1983 te Oosterhout Promotor: Prof. dr. A.F. Lotter Co-promotor: Dr. W.M. Kürschner The research reported in this thesis was funded by the ‘High Potential’ stimulation program of Utrecht University and financially supported by the LPP foundation. voor Joeri Contents General introduction and synopsis 10 Chapter 1 A detailed palynological study of the Triassic 16 - Jurassic transition in key sections of the Eiberg Basin (Northern Calcareous Alps, Austria) with W. M. Kürschner and L. Krystyn Published in Review of Palaeobotany and Palynology 156, 376-400 (2009) Chapter 2 Climate change driven black shale deposition 48 during the end-Triassic in the western Tethys with M. Ruhl and W. M. Kürschner Published in Palaeogeography, Palaeoclimatology, Palaeoecology. Special Issue: Triassic climate (in press) Chapter 3 Abrupt climate change during the 64 end-Triassic mass-extinction with W. M. Kürschner To be submitted Chapter 4 Atmospheric methane injection caused 78 end-Triassic mass extinction with M. Ruhl, G.J. Reichart, J.S. Sinninghe Damsté and W. M. Kürschner To be submitted Chapter 5 Milankovitch-scale palynological turnover 90 across the Triassic - Jurassic transition at St. Audrie’s Bay, SW UK with M. Ruhl and W. M. Kürschner Submitted to Journal of the Geological Society Chapter 6 Changing CO2 conditions during the end-Triassic 116 inferred from stomatal frequency analysis on Lepidopteris ottonis (Goeppert) Schimper and Ginkgoites taeniatus (Braun) Harris with W. M. Kürschner and J. H. A. Van Konijnenburg-Van Cittert Submitted to Palaeogeography, Palaeoclimatology, Palaeoecology Chapter 7 Vegetation history, diversity patterns, and climate 140 change across the Triassic-Jurassic boundary with W. M. Kürschner Submitted to Paleobiology References 166 Algemene inleiding en samenvatting 188 Dankwoord/Acknowledgements 194 Curriculum Vitae 196 Publications 197 Color Figures 199 SYNOPSIS General introduction and synopsis The Triassic-Jurassic (T-J) boundary, ~201.58 Ma (Schaltegger et al., 2008), is generally known as one of the ‘big five’ mass extinction events in Earth’s history (e.g., Newell, 1963; Raup and Sepkoski, 1982; Benton, 1995; Taylor, 2004). It is one of the least studied because complete and well-dated sections are scarce. To study this end-Triassic mass extinction event, a multidisciplinary project was initiated: ‘Earth’s and life’s history: from core to biosphere (CoBi)’. With a combined use of palaeomagnetism, cyclostratigraphy, geochemistry, and biogeology, questions about the timing, cause and patterns of the extinction were addressed. This thesis will focus on the biogeological aspect by using two techniques: palynology, and stomatal frequency analysis on fossil leaves. Explanations for the biotic turnover during the late Triassic have included both gradualistic and catastrophic mechanisms (e.g., Hallam and Wignall, 1997; Tanner et al., 2004; Hesselbo et al., 2007). Marine extinction could be related to shelf habitat loss during severe regression in the end Triassic (Hallam and Wignall, 1999), but this does not account for the extinctions in the terrestrial realm (e.g., tetrapods). A frequently proposed mechanism is massive volca- nism of the Central Atlantic Magmatic Province (CAMP), one of the largest known Phanero- zoic flood basalt provinces, related to the breakup of Pangaea (Wignall, 2001; Hesselbo et al., 2002; Knight et al., 2004; Marzoli et al., 1999, 2004; Schaltegger et al., 2008). This CAMP basalt volcanism can be associated with the following effects: rapid global warming, ocean anoxia or increased oceanic fertilization (or both), calcification crises, and a sharp decrease in carbon isotope values (Wignall, 2005). The T-J transition interval is characterized by two major perturbations in carbon isotope records described from many sections within and outside the Tethys realm. An end-Triassic relatively short lived ‘initial’ negative carbon isotope excursion (CIE) precedes a more gradual excursion (‘main’ CIE) at the base of the Jurassic (e.g., Pálfy et al., 2001; Hesselbo et al., 2002; Guex et al., 2004; Kürschner et al., 2007; Ward et al., 2007; Ruhl et al., 2009). The release of large amounts of carbon dioxide (CO2) in the atmosphere by CAMP volcanism induced climate change and could have caused biotic disturbance (McElwain et al., 1999; Hesselbo et al., 2002; Tanner et al., 2004). Methane release from gas hydrates represents another important event that has been suggested to be associated with the end-Triassic volcanism (e.g., Pálfy et al., 2001; Beerling and Berner, 2002; Wignall, 2005). An alternative catastrophic mechanism causing the extinction is an extra- terrestrial impact (Olsen et al., 2002a, b) but to date, no convincing evidence has been found for an impact-caused mass extinction. Examples of end-Triassic biotic disturbances are: an extinction among tetrapods (e.g., Olsen et al., 2002b; Lucas and Tanner, 2007a), abrupt and substantial changes in the composition of brachiopod and bivalve communities (Hallam, 1981; Kiessling et al., 2007; Tomašových and 10 SYNOPSIS Siblík, 2007; Mander et al., 2008), the final extinction of conodonts with sporadic survivors persisting into the Hettangian (Pálfy et al., 2007), a global radiolarian faunal change (Long- ridge et al., 2007; Pálfy et al., 2007), the final disappearance of the already low-diversity ammonite assemblages (Simms and Ruffell, 1990; Hallam, 2002) and a collapse of reef ecosystems (e.g., Kiessling et al., 2007). However, the severity and patterns (i.e., abrupt, stepwise or gradual) of the end-Triassic extinctions are disputed (e.g., Hallam, 2002; Bambach et al., 2004; Tanner et al., 2004; Lucas and Tanner, 2008). Although the T-J transition is characterized by extinctions in the marine realm, evidence for a floral turnover is ambiguous. A recent study from the Germanic Basin showed a severe vegetation shift across the T-J boundary, linked to CAMP volcanism (Van de Schootbrugge et al., 2009). A major extinction of 60% of sporomorph taxa followed by a sharp spore spike at the T-J boundary is claimed in the Newark Basin, USA (Fowell and Olsen, 1993; Fowell et al., 1994; Olsen et al., 2002a, b). This spore spike is followed by a conifer (Cheirolepidiaceae) pollen dominated palynoflora which is used by Cornet (1977) and Fowell et al. (1994) to mark the base of the Jurassic in the Newark Basin. By contrast, most palynological studies from Europe show gradual changes in assemblages at the T-J transition (e.g., Warrington, 1974; Morbey, 1975; Lund, 1977; Schuurman, 1979; Achilles, 1981; Kürschner et al., 2007). Also the T-J plant macrofossil record is equivocal. Quantitative macrobotanical data from East Greenland showed that Triassic forests with high-diversity communities were replaced by lower diversity forests and that there was a gradual extinction prior to the T-J boundary (McElwain and Punyasena, 2007; McElwain et al., 2007). On the contrary, the palynological record from Greenland shows no major diversity or assemblage changes, or conclusive evidence for an extinction event (Raunsgaard Pedersen and Lund, 1980; Koppelhus, 1997). Palynological records across the T-J boundary are controversially discussed because of the paucity of sections with a sufficient time resolution and/or well established stratigraphic framework. Furthermore, many records are qualitative (i.e. absence/presence data). There- fore, it is important to carry out detailed quantitative studies. The presence of both well- preserved ammonites and palynomorphs in key T-J boundary sections from the Northern Calcareous Alps (Austria) and southern UK allow for an integration of terrestrial microfloral events in a marine biostratigraphic framework. The palynological records presented in this thesis are used to 1) obtain a firm palynostratigraphic framework for the T-J boundary interval, 2) make a reconstruction of past changes in vegetation and climate, and 3) understand the magnitude and nature of the floral turnover as evidenced by palynology. The Kuhjoch section in the Karwendel syncline (Northern Calcareous Alps, Austria) has recently been approved as the Global boundary Stratotype Section and Point (GSSP) for the base of the Jurassic period. The first occurrence (FO) ofPsiloceras spelae tirolicum has been chosen as the primary boundary marker (Von Hillebrandt et al., 2007; Von Hillebrandt and 11 SYNOPSIS Krystyn, 2009). Chapter 1 presents a detailed quantitative palynological and carbon isotope
Recommended publications
  • A New Genus Navipelta (Peltaspermales, Pteridospermae) from the Permian/Triassic Boundary Deposits of the Moscow Syneclise E
    ISSN 0031-0301, Paleontological Journal, 2009, Vol. 43, No. 10, pp. 1262–1271. © Pleiades Publishing, Ltd., 2009. A New Genus Navipelta (Peltaspermales, Pteridospermae) from the Permian/Triassic Boundary Deposits of the Moscow Syneclise E. V. Karasev Borissiak Paleontological Institute of the Russian Academy of Sciences, 117997, Profsoyuznaya, 123, Moscow e-mail: [email protected] Received January 25, 2009 Abstract—A new genus of peltaspermalean ovuliferous organs Navipelta gen. nov. is described from the ter- restrial deposits of the Nedubrovo locality (village of Nedubrovo, Vologda Region, Russia), belonging to the base of Vetlugian Group (Upper Permian–Lower Triassic). Data on the anatomy of the peltate bilateral ovulif- erous organs are obtained for the first time. Vascular strands in the peltoid depart from that of a stalk and branch up to three times distally. Transfusion tissue around the vascular strands is well developed. The new genus had a system of radially arranged resin canals, broaden into large secretory cavities. Key words: Peltaspermaceae, ovuliferous organs, Peltaspermum, Autunia, Permian/Triassic boundary, Vetlu- gian Group, systematics. DOI: 10.1134/S0031030109100086 INTRODUCTION angium Zhao ex Gomankov et Meyen and Autuniopsis Poort et Kerp) or on the basis of their association with The family Peltaspermaceae attracts attention of different foliage (Peltaspermopsis buevichiae Goman- many researchers, because its members were the main kov et. Meyen and Meyenopteris, Poort et Kerp) component of the Late Permian Angaraland floras. (Gomankov and Meyen, 1986; Poort and Kerp, 1990). They escaped the global crisis on the Permian/Triassic boundary and transited in the Mesozoic, where domi- The morphology and epidermal structure of seed- nated during the Middle and Late Triassic of the North- bearing organs in the Peltaspermaceae were studied rel- ern as well as Southern hemispheres.
    [Show full text]
  • 75 the Upper Triassic Events Recorded in Platform and Basin of the Austrian Alps. the Triassic/Jurassic GSSP and Norian/Rhaetian
    ©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at und www.zobodat.at Berichte der Geologischen Bundesanstalt (ISSN 1017-8880), Band 111, Wien 2015 STRATI 2015 The Upper Triassic events recorded in platform and basin of the Austrian Alps. The Triassic/Jurassic GSSP and Norian/Rhaetian GSSP candidate Sylvain Richoz & Leopold Krystyn 47 figures Sylvain Richoz - Institute of Earth Sciences, Graz University, Heinrichstraße 26, 8010 Graz, Austria, [email protected] Leopold Krystyn - Department for Palaeontology, Vienna University, Geozentrum, Althansstr. 9, A-1090 Vienna, Austria; [email protected] Contents Abstract 1. Topics and area of the Field Trip 2. Introduction 2.1. The Northern Calcareous Alps 2.2. Principles of the structural evolution 2.3. Triassic depositional realms 2.3.1. General features 2.3.2. The Dachstein Mountains 2.3.3. The Zlambach facies – the deep shelf environment 2.3.4. The Hallstatt facies – the condensed deep shelf environment 2.3.5. The Eiberg Basin 3. The Field Trip 3.1. Shelf margin (Day 1) 3.1.1. Route 3.1.2. Locality 1 – Pötschenhöhe Quarry 3.1.3. Locality 2 – Großer Zlambach 3.1.4. Locality 3 – Steinbergkogel: Proposed Norian/Rhaetian GSSP section 3.1.5. Locality 4 – Gosausee: The Dachstein margin at Gosaukamm 3.2 Lagoon, fringing reef and Eiberg Basin (Day 2) 3.2.1. Route 3.2.2. Locality 5 – Pass Lueg: The classical Lofer cycle 3.2.3. Locality 6 – Adnet 3.2.4. Locality 7 – Steinplatte 3.2.5. Locality 8 – Eiberg 3.3. The Triassic/Jurassic GSSP (Day 3) 3.3.1.
    [Show full text]
  • The Global Stratotype Sections and Point (GSSP) for the Base of the Jurassic System at Kuhjoch (Karwendel Mountains, Northern Calcareous Alps, Tyrol, Austria)
    162 162 Articles by Hillebrandt, A.v.1, Krystyn, L.2, Kürschner, W.M.3, Bonis, N.R.4, Ruhl, M.5, Richoz, S.6, Schobben, M. A. N.12, Urlichs, M.7, Bown, P.R.8, Kment, K.9, McRoberts, C.A.10, Simms, M.11, and Tomãsových, A13 The Global Stratotype Sections and Point (GSSP) for the base of the Jurassic System at Kuhjoch (Karwendel Mountains, Northern Calcareous Alps, Tyrol, Austria) 1 Institut für Angewandte Geowissenschaften, Technische Universität, Ernst-Reuter-Platz 1, 10587 Berlin, Germany. E-mail: [email protected] 2 Department for Palaeontology, Vienna University, Geozentrum, Althansstr. 9, A-1090 Vienna, Austria. E-mail: [email protected] 3 Department of Geosciences and Centre of Earth Evolution and Dynamics (CEED), University of Oslo, PO box 1047, Blindern, 0316 Oslo, Norway. E-mail: [email protected] 4 Shell Global Solutions International B.V., Kessler Park 1, 2288 GS, Rijswijk, the Netherlands. E-mail: [email protected] 5 Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK. E-mail: [email protected] 6 Commission for the Palaeontological and Stratigraphical Research of Austria, Austrian Academy of Sciences c/o Institut of Earth Sciences, Graz University, Heinrichstraße 26, 8010 Graz, Austria. E-mail: [email protected] 7 Staatliches Museum für Naturkunde, Rosenstein 1, 70191 Stuttgart, Germany. E-mail: [email protected] 8 Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK. E-mail: [email protected] 9 Lenggrieser Str.
    [Show full text]
  • Structural Complexity at and Around the Triassic–Jurassic GSSP at Kuhjoch, Northern Calcareous Alps, Austria
    Int J Earth Sci (Geol Rundsch) (2017) 106:2475–2487 DOI 10.1007/s00531-017-1450-4 ORIGINAL PAPER Structural complexity at and around the Triassic–Jurassic GSSP at Kuhjoch, Northern Calcareous Alps, Austria M. Palotai1,2 · J. Pálfy1,3 · Á. Sasvári4 Received: 16 February 2016 / Accepted: 24 January 2017 / Published online: 27 February 2017 © The Author(s) 2017. This article is published with open access at Springerlink.com Abstract One of the key requirements for a Global Stra- Keywords GSSP · Jurassic · Triassic · Kuhjoch · totype Section and Point (GSSP) is the absence of tectonic Faulting · Folding disturbance. The GSSP for the Triassic–Jurassic system boundary was recently defined at Kuhjoch, Northern Cal- careous Alps, Austria. New field observations in the area Introduction of the Triassic–Jurassic boundary GSSP site demonstrate that the overturned, tight, and almost upright Karwendel Modern chronostratigraphy is underpinned by the Global syncline was formed at semibrittle deformation conditions, Stratotype Section and Point (GSSP) concept, whereby confirmed by axial planar foliation. Tight to isoclinal folds the lower boundary of each chronostratigraphic unit is at various scales were related to a tectonic transport to the defined at a certain level in the best available stratigraphic north. Brittle faulting occurred before and after folding as section for the investigated interval, as agreed by the confirmed by tilt tests (the rotation of structural data by the regulating bodies of the international stratigraphic com- average bedding). Foliation is ubiquitous in the incompe- munity (Remane 2003). The base of the Jurassic System tent units, including the Kendlbach Formation at the GSSP. was recently defined at Kuhjoch in the Northern Calcare- A reverse fault (inferred to be formed as a normal fault ous Alps of Austria (Hillebrandt et al.
    [Show full text]
  • Ecological Sorting of Vascular Plant Classes During the Paleozoic Evolutionary Radiation
    i1 Ecological Sorting of Vascular Plant Classes During the Paleozoic Evolutionary Radiation William A. DiMichele, William E. Stein, and Richard M. Bateman DiMichele, W.A., Stein, W.E., and Bateman, R.M. 2001. Ecological sorting of vascular plant classes during the Paleozoic evolutionary radiation. In: W.D. Allmon and D.J. Bottjer, eds. Evolutionary Paleoecology: The Ecological Context of Macroevolutionary Change. Columbia University Press, New York. pp. 285-335 THE DISTINCTIVE BODY PLANS of vascular plants (lycopsids, ferns, sphenopsids, seed plants), corresponding roughly to traditional Linnean classes, originated in a radiation that began in the late Middle Devonian and ended in the Early Carboniferous. This relatively brief radiation followed a long period in the Silurian and Early Devonian during wrhich morphological complexity accrued slowly and preceded evolutionary diversifications con- fined within major body-plan themes during the Carboniferous. During the Middle Devonian-Early Carboniferous morphological radiation, the major class-level clades also became differentiated ecologically: Lycopsids were cen- tered in wetlands, seed plants in terra firma environments, sphenopsids in aggradational habitats, and ferns in disturbed environments. The strong con- gruence of phylogenetic pattern, morphological differentiation, and clade- level ecological distributions characterizes plant ecological and evolutionary dynamics throughout much of the late Paleozoic. In this study, we explore the phylogenetic relationships and realized ecomorphospace of reconstructed whole plants (or composite whole plants), representing each of the major body-plan clades, and examine the degree of overlap of these patterns with each other and with patterns of environmental distribution. We conclude that 285 286 EVOLUTIONARY PALEOECOLOGY ecological incumbency was a major factor circumscribing and channeling the course of early diversification events: events that profoundly affected the structure and composition of modern plant communities.
    [Show full text]
  • Diversity and Homologies of Corystosperm Seed-Bearing Structures from the Early Cretaceous of Mongolia Aã B,C D E F Gongle Shi , Peter R
    Journal of Systematic Palaeontology ISSN: 1477-2019 (Print) 1478-0941 (Online) Journal homepage: https://www.tandfonline.com/loi/tjsp20 Diversity and homologies of corystosperm seed- bearing structures from the Early Cretaceous of Mongolia Gongle Shi, Peter R. Crane, Patrick S. Herendeen, Niiden Ichinnorov, Masamichi Takahashi & Fabiany Herrera To cite this article: Gongle Shi, Peter R. Crane, Patrick S. Herendeen, Niiden Ichinnorov, Masamichi Takahashi & Fabiany Herrera (2019) Diversity and homologies of corystosperm seed- bearing structures from the Early Cretaceous of Mongolia, Journal of Systematic Palaeontology, 17:12, 997-1029, DOI: 10.1080/14772019.2018.1493547 To link to this article: https://doi.org/10.1080/14772019.2018.1493547 Published online: 14 Jan 2019. Submit your article to this journal Article views: 142 View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=tjsp20 Journal of Systematic Palaeontology, 2019 Vol. 17, No. 12, 997–1029, http://dx.doi.org/10.1080/14772019.2018.1493547 Diversity and homologies of corystosperm seed-bearing structures from the Early Cretaceous of Mongolia aà b,c d e f Gongle Shi , Peter R. Crane , Patrick S. Herendeen , Niiden Ichinnorov , Masamichi Takahashi and Fabiany Herrerad aState Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China; bOak Spring Garden
    [Show full text]
  • Transformative Paleobotany
    Chapter 6 Lower Permian Flora of the Sanzenbacher Ranch, Clay County, Texas William A. DiMichele1, Robert W. Hook2, Hans Kerp3, Carol L. Hotton1,4, Cindy V. Looy5 and Dan S. Chaney1 1NMNH Smithsonian Institution, Washington, DC, United States; 2The University of Texas at Austin, Austin, TX, United States; 3Westfälische Wilhelms-Universität Münster, Münster, Germany; 4National Institutes of Health, Bethesda, MD, United States; 5University of California Berkeley, Berkeley, CA, United States 1. INTRODUCTION 1985; Broutin, 1986; Popa, 1999; Steyer et al., 2000; Wagner and Mayoral, 2007; Bercovici and Broutin, 2008; Since 1989, field parties supported by the U.S. National Barthel, 2009; Wagner and Álvarez-Vázquez, 2010; Museum of Natural History have obtained large collections Barthel and Brauner, 2015). Furthermore, because this of mainly Permian plant fossils from north central Texas. locality was collected on three occasions over a time period This work was undertaken to study known localities and to of 50 years and by different parties, comparative analysis of find new fossiliferous deposits that would contribute to a the Sanzenbacher collections provides a basis for assessing better understanding of floral and paleoenvironmental sites that have comparable histories. changes within the region during the early Permian. From the outset, the effort was interdisciplinary and grew, through the contributions of nearly 20 paleobotanists, 2. GEOLOGY palynologists, invertebrate and vertebrate paleontologists, Clay County is the only county in the Permo-Carboniferous and sedimentary geologists of several subdisciplines, to be outcrop belt of north central Texas that lacks marine rocks. quite comprehensive. Our reporting of results, however, has These alluvial sediments accumulated east of a broad been influenced by unexpected developments, including the coastal plain that bordered the Eastern Shelf of the Midland discovery of new plant-fossil assemblages in areas once Basin.
    [Show full text]
  • Habit and Ecology of the Petriellales, an Unusual Group of Seed Plants from the Triassic of Gondwana Author(S): Benjamin Bomfleur, Anne-Laure Decombeix, Andrew B
    Habit and Ecology of the Petriellales, an Unusual Group of Seed Plants from the Triassic of Gondwana Author(s): Benjamin Bomfleur, Anne-Laure Decombeix, Andrew B. Schwendemann, Ignacio H. Escapa, Edith L. Taylor, Thomas N. Taylor, Stephen McLoughlin Source: International Journal of Plant Sciences, Vol. 175, No. 9 (November/December 2014), pp. 1062-1075 Published by: The University of Chicago Press Stable URL: http://www.jstor.org/stable/10.1086/678087 . Accessed: 08/12/2014 09:32 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The University of Chicago Press is collaborating with JSTOR to digitize, preserve and extend access to International Journal of Plant Sciences. http://www.jstor.org This content downloaded from 130.242.24.193 on Mon, 8 Dec 2014 09:32:01 AM All use subject to JSTOR Terms and Conditions Int. J. Plant Sci. 175(9):1062–1075. 2014. q 2014 by The University of Chicago. All rights reserved. 1058-5893/2014/17509-0008$15.00 DOI:10.1086/678087 HABIT AND ECOLOGY OF THE PETRIELLALES, AN UNUSUAL GROUP OF SEED PLANTS FROM THE TRIASSIC OF GONDWANA Benjamin Bomfleur,1,*,† Anne-Laure Decombeix,‡ Andrew B.
    [Show full text]
  • Field Trip B2: Triassic to Early Cretaceous Geodynamic History of the Central Northern Calcareous Alps (Northwestern Tethyan Realm)
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Berichte der Geologischen Bundesanstalt Jahr/Year: 2013 Band/Volume: 99 Autor(en)/Author(s): Gawlick Hans-Jürgen, Missoni Sigrid Artikel/Article: Field Trip B2: Triassic to Early Cretaceous geodynamic history of the central Northern Calcareous Alps (Northwestern Tethyan realm). 216-270 ©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at Berichte Geol. B.-A., 99 11th Workshop on Alpine Geological Studies & 7th IFAA Field Trip B2: Triassic to Early Cretaceous geodynamic history of the central Northern Calcareous Alps (Northwestern Tethyan realm) Hans-Jürgen Gawlick & Sigrid Missoni University of Leoben, Department of Applied Geosciences and Geophysics, Petroleum Geology, Peter-Tunner-Strasse 5, 8700 Leoben, Austria Content Abstract 1 Introduction 2 Overall geodynamic and sedimentary evolution 3 Palaeogeography, sedimentary successions and stratigraphy 3.1 Hauptdolomit facies zone 3.2 Dachstein Limestone facies zone 3.3 Hallstatt facies zone (preserved in the reworked Jurassic Hallstatt Mélange) 4 The Field Trip 4.1 The Late Triassic Dachstein/Hauptdolomit Carbonate Platform 4.1.1 Hauptdolomit (Mörtlbach road) 4.1.2 Lagoonal Dachstein Limestone: The classical Lofer cycle (Pass Lueg) 4.1.3 The Kössen Basin (Pass Lueg and Mörtlbach road) 4.2 Jurassic evolution 4.2.1 Hettangian to Aalenian 4.2.2 Bajocian to Tithonian 4.3 Early Cretaceous References Abstract The topic of this field trip is to get to know and understand the sedimentation of Austria’s Northern Calcareous Alps and its tectonic circumstances from Triassic rifting/drifting to Jurassic collision/accretion, and the Early Cretaceous “post-tectonic” sedimentary history.
    [Show full text]
  • Iop Newsletter 113
    IOP NEWSLETTER 113 June 2017 CONTENTS Letter from the president IBC 2017 Shenzhen (China): latest news Young Scientist Representative Emese Bodor Obituary of Prof. Manju Banerjee Prof. David Dilcher receives award Report of the 34th Midcontinent Paleobotanical Colloquium Rhynie Chert Meeting 2017 Upcoming meetings 2017-2018 New publications 1 Letter from the president Dear Colleagues, I hope this season brings you some time to enjoy palaeobotanical research, whether field work, laboratory/museum investigations or participating in conferences. This is an active time for field work and conferences in many regions. I look forward to meeting with colleagues at the International Botanical Congress (IBC) in Shenzhen next month. Palaeobotanically themed symposia planned for IBC include: “Using fossil evidence to explore the plant evolution, diversity, and their response to global changes;” “New data on early Cretaceous seed plants;” “Ecological and biogeographic implications of Asian Oligocene and Neogene fossil floras;” “Plant conservation, learning from the past”, and “The Origin of Plants: rocks, genomes and geochemistry.” Details of presenters and scheduling of general symposia as well as invited keynote lectures are found at the conference website: http://www.ibc2017.cn/Program/. Please see the note below with details on the social gathering for paleobotanists at IBC. We welcome Kelly Matsunaga (photograph by courtesy of Kelly), Graduate Student at University of Michigan as IOP Student Representative for North America, recently confirmed by Christopher Liu. She joins Han Meng (China), Emese Bodor (Hungary; see p. 3 in the newsletter), and Maiten A. Lafuente Diaz (Argentina) as current student representtatives. The excel- lence of these and other young members of IOP foretells a bright future for our discipline.
    [Show full text]
  • New Glossopterid Polysperms from the Permian La Golondrina Formation (Santa Cruz Province, Argentina): Potential Affinities and Biostratigraphic Implications
    Rev. bras. paleontol. 18(3):379-390, Setembro/Dezembro 2015 © 2015 by the Sociedade Brasileira de Paleontologia doi: 10.4072/rbp.2015.3.04 NEW GLOSSOPTERID POLYSPERMS FROM THE PERMIAN LA GOLONDRINA FORMATION (SANTA CRUZ PROVINCE, ARGENTINA): POTENTIAL AFFINITIES AND BIOSTRATIGRAPHIC IMPLICATIONS BÁRBARA CARIGLINO Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, CONICET, Av. Ángel Gallardo 470, C1405DJR, Buenos Aires, Argentina. [email protected] ABSTRACT – Impression fossils of ovuliferous fructifi cations from the Permian La Golondrina Formation in Santa Cruz, Argentina, are described, their affi nities compared, and fi nally, assigned to the Arberiaceae (Glossopteridales). Based on morphological differences from the genera in Arberiaceae, a new taxon is established for some specimens, whereas others are allocated to Arberia madagascariensis (Appert) Anderson & Anderson. This is the fi rst record of Arberiaceae from the La Golondrina Basin. The biostratigraphic implications of the occurrence of this family in this unit are discussed, and suggest that more evidence other than that provided by the megafl oral elements is needed to resolve the age of the constituent members of the La Golondrina Formation. Key words: Arberiaceae, Argentina, biostratigraphy, fructifi cations, Glossopteridales, Gondwana. RESUMO – São descritos impressões fósseis de frutifi cações femininas provenientes da Formação La Golondrina, Permiano de Santa Cruz (Argentina), atribuídas a Arberiaceae (Glossopteridales), segundo a comparação de suas afi nidades.
    [Show full text]
  • 1 the Literature on Triassic, Jurassic and Earliest Cretaceous Dinoflagellate Cysts: 1 Supplement Five 2 3 James B. Riding 4
    1 The literature on Triassic, Jurassic and earliest Cretaceous dinoflagellate cysts: 2 supplement five 3 4 James B. Riding 5 6 British Geological Survey, Keyworth, Nottingham NG12 5GG, United Kingdom 7 8 CONTACT James B. Riding email [email protected] 9 10 ABSTRACT 11 Since the publication of five literature compilations issued between 2012 and 2020, 63 further 12 published contributions on Triassic, Jurassic and earliest Cretaceous (Berriasian) 13 dinoflagellate cysts have been discovered, or were issued in the last 14 months (i.e. between 14 February 2019 and March 2020). These studies are on North Africa, Southern Africa, East 15 Arctic, West Arctic, east and west sub-Arctic Canada, China and Japan, East Europe, West 16 Europe, the Middle East, and sub-Arctic Russia west of the Ural Mountains, plus multi- 17 region studies and items with no geographical focus. The single-region studies are mostly 18 focused on Africa, the Arctic, Europe and the Middle East. All the 63 publications are listed 19 herein with doi numbers where applicable, and a description of each item as a string of 20 keywords. 21 22 KEYWORDS dinoflagellate cysts; earliest Cretaceous (Berriasian); Jurassic; literature 23 compilation and analysis; Triassic; worldwide 24 25 26 1. Introduction 27 28 The literature on Triassic to earliest Cretaceous (Berriasian) dinoflagellate cysts is relatively 29 extensive, and it has been compiled and reviewed by Riding (2012, 2013, 2014, 2019a, 30 2020). These five items listed 1347, 94, 89, 266 and 93 publications respectively on this 31 topic, with each citation followed by a string of keywords detailing the scope of these 1889 32 studies.
    [Show full text]