Unveiling the Millihertz Gravitational Wave Sky

Total Page:16

File Type:pdf, Size:1020Kb

Unveiling the Millihertz Gravitational Wave Sky The Laser Interferometer Space Antenna: Unveiling the Millihertz Gravitational Wave Sky An Astro2020 White Paper lisa.nasa.gov John Baker NASA Goddard Space Flight Center Jeff Livas NASA Goddard Space Flight Center Jillian Bellovary CUNY-Queensborogh Community College Sridhar Manthripragada NASA Goddard Space Flight Center Peter L. Bender University of Colorado Kirk McKenzie NASA Jet Propulsion Laboratory Emanuele Berti Johns Hopkins University Sean T. McWilliams West Virginia University Robert Caldwell Dartmouth College Guido Mueller University of Florida Jordan Camp NASA Goddard Space Flight Center Priyamvada Natarajan Yale University John W. Conklin University of Florida Kenji Numata NASA Goddard Space Flight Center Neil Cornish Montana State University Norman Rioux NASA Goddard Space Flight Center Curt Cutler NASA Goddard Space Flight Center Shannon R. Sankar University of Maryland, College Park Ryan DeRosa NASA Jet Propulsaion Laboratory Jeremy Schnittman NASA Goddard Space Flight Center Michael Eracleous The Pennsylvania State University David Shoemaker Massachusetts Institute of Technology Elizabeth C. Ferrara University of Maryland, College Park Deirdre Shoemaker Georgia Institute of Technology Samuel Francis NASA Jet Propulsion Laboratory Jacob Slutsky NASA Goddard Space Flight Center Martin Hewitson Albert Einstein Institute Hannover Robert Spero NASA Jet Propulsion Laboratory Kelly Holley-Bockelmann Vanderbilt University Robin Stebbins JILA / University of Colorado Ann Hornschemeier NASA Goddard Space Flight Center Ira Thorpe NASA Goddard Space Flight Center Craig Hogan University of Chicago / Fermilab Michele Vallisneri NASA Jet Propulsion Laboratory Brittany Kamai CalTech, Vanderbilt University Brent Ware NASA Jet Propulsion Laboratory Bernard J. Kelly University of Maryland Baltimore County Peter Wass University of Florida Joey Shapiro Key University of Washington Bothell Anthony Yu NASA Goddard Space Flight Center Shane L. Larson Northwestern University John Ziemer NASA Jet Propulsion Laboratory The LISA concept is a product of decades of work by an interna9onal team of scien9sts and engineers. This document was prepared by representa9ves of the US LISA community on behalf of the global community and in support of the ESA-led LISA mission. The Laser Interferometer Space Antenna An Astro2020 APC Whitepaper 1 Executive Summary Box 1 - LISA Mission Overview The first terrestrial Gravitational Wave Science Objective: All-sky survey of (GW) interferometers [1, 2] have dramat- millihertz gravitational waves ically underscored the scientific value of observing the Universe through an en- Measurement Concept: Long- tirely different window – and of folding baseline optical interferometry this new channel of information with tradi- between drag-free test masses tional astronomical data for a multimessen- Orbit: Heliocentric 2.5 Mkm triangu- ger view [3, 4, 5, 6]. The Laser Interferom- lar constellation, 20◦ Earth-trailing eter Space Antenna (LISA) will broaden Launch: Early/mid 2030s, Ariane 6.4 the reach of GW astronomy by conducting the first survey of the millihertz GW sky, Lifetime: 1.5 yr transfer, 1 yr com- detecting tens of thousands of individual missioning, 4 yrs science, ≤ 6 yrs astrophysical sources ranging from white- extension dwarf binaries in our own galaxy to merg- Cost: > ers of massive black holes (MBHs) at red- Total mission: Large ( $1.5B); shifts extending beyond the epoch of reion- US share: Medium ($500M - $1.5B) ization. These observations will inform Partners: European Space Agency – and transform – our understanding of (lead), ESA Member States, NASA the end state of stellar evolution, MBH birth, and the co-evolution of galaxies and black holes through cosmic time. LISA also has the potential to detect GW emission Laser Ranging Instrument on board the from elusive astrophysical sources such as US/German Gravity Recovery And Cli- intermediate-mass black holes as well as ex- mate Explorer Follow-On mission (2018-). otic cosmological sources such as inflation- The Midterm Assessment of the 2010 ary fields and cosmic string cusps1. Decadal Survey recommended that the US LISA is now in Phase A as a European participate as a “strong technical and sci- Space Agency (ESA) led mission with sig- entific partner” in an ESA-led LISA mis- nificant contributions anticipated from sev- sion [8]. NASA is currently supporting pre- eral ESA member states and NASA. The project activities to support a range of po- mission concept retains all essential fea- tential contributions to LISA including in- tures of the NASA/ESA LISA mission that struments, spacecraft elements, and science was ranked as the 3rd priority for Large- analysis. The currently envisioned scale class missions in the 2010 Decadal Sur- of these contributions is at the lower end vey [7], including the full three-arm trian- of the medium-scale cost range identified gular configuration that measures GW po- by Astro2020 ($500M - $1.5B). A recom- larization and improves robustness. Since mendation for an upscope in US partic- that ranking, LISA’s technical readiness ipation in LISA would provide opportu- has been greatly advanced through two nities to more fully exploit heritage from flight demonstrations: the ESA-led LISA prior US investments, balance technical Pathfinder mission (2015-2017) and the and programmatic risks across the partner- ship, and expand opportunities for future 1LISA Astro2020 Science whitepapers available US leadership in this new field of astron- at: lisa.nasa.gov/documentsCWP.html omy. 1 The Laser Interferometer Space Antenna An Astro2020 APC Whitepaper 2 Key Science Goals and Objectives Box 2 - LISA Science Objectives The scientific case for GW observations in the millihertz band is well-summarized in SO 1: Study the formation & evo- The Gravitational Universe [9], the document lution of compact binary stars in the which formed the basis for ESA’s selection Milky Way of GW astronomy as the science theme for SO 2: Trace the origin, growth & the 3rd Large-class mission of the Cosmic merger history of MBHs Vision Programme in 2013. While some SO 3: Probe the dynamics of dense elements of the LISA science case overlap nuclear clusters using EMRIs with those for GW observations in other bands [10], notably higher-frequency obser- SO 4: Understand the astrophysics of vations with terrestrial interferometers and stellar origin black holes lower-frequency observations with Pulsar SO 5: Explore the fundamental na- Timing Arrays, a space-based facility such ture of gravity & black holes as LISA is uniquely capable of answering a number of pressing and fundamental ques- SO 6: Probe the rate of expansion of tions in astrophysics. the Universe The LISA Science Objectives are formally SO 7: Understand stochastic GW documented in the Science Requirements backgrounds & their implications for Document (SciRD) [11]. The SciRD iden- the early Universe and TeV-scale par- tifies eight LISA Science Objectives (SOs, ticle physics see Box 2) – broad questions in astrophysics which can be addressed through GW as- SO 8: Search for GW bursts and un- tronomy. The SOs are used to derive mis- foreseen sources sion and instrument requirements includ- ing requirements on the sensitivity of LISA trace), which will be discussed in more de- to GW strain as well as other factors includ- tail in Section 3. The representative sources ing total observing time and data latency in Figure 1 are, in order of typical distance (for certain classes of EM counterpart inves- from nearest to most distant. tigations). The broad range of scientific targets is Compact Binaries in the Milky Way made possible by the abundance and diver- LISA will be sensitive to millions of binary sity of astrophysical sources expected for systems of compact objects (white dwarfs, LISA. Figure 1 shows a comparison of sev- neutron stars, or black holes). Tens of thou- eral representative LISA sources with the sands will be individually resolved with sensitivity limit of the instrument. Data are measured masses, orbital parameters, and plotted as spectral amplitudes of GW strain 3D locations [14, 15] (blue dots in Figure – a dimensionless number characterizing 1). The remaining systems contribute to the amplitude of the spacetime stretching an unresolved foreground (grey shaded re- caused by GWs passing through the detec- gion) which limits sensitivity to other GW tor. The ‘characteristic strain’ is used to ac- sources (black dashed line). Several “verifi- count for variations in observation time be- cation binaries” are already known through tween transient and persistent signals [12]. EM observations [16], providing guaran- Sensitivity to astrophysical sources is pri- teed multimessenger sources (large blue as- marily limited by instrument noise (green terisks). LISA observations will provide in- 2 The Laser Interferometer Space Antenna An Astro2020 APC Whitepaper Extreme Mass-Ratio Inspirals (EMRIs) A unique class of signal in the millihertz band is the capture of black holes or neutron stars by MBHs in the local Uni- verse (z ≤ 2). The large difference in mass between the two objects results in a highly complex orbit with multiple fre- quency components simultaneously evolv- ing (five reddish traces representing a sin- gle EMRI at z=1.2). LISA will observe tens to hundreds of these EMRI events, yield- ing one of the most precise possible tests Figure 1: Representative examples of LISA of General Relativity in the strong-field sources compared with the instrument sen- regime and also providing unique insight
Recommended publications
  • October 2020 Deirdre Shoemaker, Ph.D. Center for Gravitational Physics Department of Physics University of Texas at Austin Google Scholar
    October 2020 Deirdre Shoemaker, Ph.D. Center for Gravitational Physics Department of Physics University of Texas at Austin Google scholar: http://bit.ly/1FIoCFf I. Earned Degrees B.S. Astronomy & Astrophysics 1990-1994 Pennsylvania State University with Honors and Physics Ph.D. Physics 1995-1999 University of Texas at Austin (advisor: R. Matzner) II. Employment History 1999-2002 Postdoctoral Fellow, Center for Gravitational Wave Physics, Penn State (advisor: S. Finn and J. Pullin) 2002-2004 Research Associate, Center for Radiophysics and Space Research, Cornell (advisor: S. Teukolsky) 2004-2008 Assistant Professor, Physics, Penn State 2008-2011 Assistant Professor, Physics, Georgia Institute of Technology 2009-2011 Adjunct Assistant Professor, School of Computational Science and Engineering, Georgia Institute of Technology 2011-2016 Associate Professor, Physics, Georgia Institute of Technology 2011-2016 Adjunct Associate Professor, School of Computational Science and Engineering, Georgia Institute of Technology 2013-2020 Director, Center for Relativistic Astrophysics 2016-2020 Professor, Physics, Georgia Institute of Technology 2016-2020 Adjunct Professor, School of Computational Science and Engineering, Georgia Institute of Technology 2017-2020 Associate Director of Research and Strategic Initiatives, Institute of Data, Engineering and Science, Georgia Institute of Technology 2020-Present Professor, Physics, University of Texas at Austin 2020-Present Director, Center for Gravitational Physics, University of Texas at Austin III. Honors
    [Show full text]
  • LISA, the Gravitational Wave Observatory
    The ESA Science Programme Cosmic Vision 2015 – 25 Christian Erd Planetary Exploration Studies, Advanced Studies & Technology Preparations Division 04-10-2010 1 ESAESA spacespace sciencescience timelinetimeline JWSTJWST BepiColomboBepiColombo GaiaGaia LISALISA PathfinderPathfinder Proba-2Proba-2 PlanckPlanck HerschelHerschel CoRoTCoRoT HinodeHinode AkariAkari VenusVenus ExpressExpress SuzakuSuzaku RosettaRosetta DoubleDouble StarStar MarsMars ExpressExpress INTEGRALINTEGRAL ClusterCluster XMM-NewtonXMM-Newton CassiniCassini-H-Huygensuygens SOHOSOHO ImplementationImplementation HubbleHubble OperationalOperational 19901990 19941994 19981998 20022002 20062006 20102010 20142014 20182018 20222022 XMM-Newton • X-ray observatory, launched in Dec 1999 • Fully operational (lost 3 out of 44 X-ray CCD early in mission) • No significant loss of performances expected before 2018 • Ranked #1 at last extension review in 2008 (with HST & SOHO) • 320 refereed articles per year, with 38% in the top 10% most cited • Observing time over- subscribed by factor ~8 • 2,400 registered users • Largest X-ray catalogue (263,000 sources) • Best sensitivity in 0.2-12 keV range • Long uninterrupted obs. • Follow-up of SZ clusters 04-10-2010 3 INTEGRAL • γ-ray observatory, launched in Oct 2002 • Imager + Spectrograph (E/ΔE = 500) + X- ray monitor + Optical camera • Coded mask telescope → 12' resolution • 72 hours elliptical orbit → low background • P/L ~ nominal (lost 4 out 19 SPI detectors) • No serious degradation before 2016 • ~ 90 refereed articles per year • Obs
    [Show full text]
  • Astrophysics
    National Aeronautics and Space Administration Astrophysics Astronomy and Astrophysics Paul Hertz Advisory Committee Director, Astrophysics Division Washington, DC Science Mission Directorate January 26, 2017 @PHertzNASA www.nasa.gov Why Astrophysics? Astrophysics is humankind’s scientific endeavor to understand the universe and our place in it. 1. How did our universe 2. How did galaxies, stars, 3. Are We Alone? begin and evolve? and planets come to be? These national strategic drivers are enduring 1972 1982 1991 2001 2010 2 Astrophysics Driving Documents 2016 update includes: • Response to Midterm Assessment • Planning for 2020 Decadal Survey http://science.nasa.gov/astrophysics/documents 3 Astrophysics - Big Picture • The FY16 appropriation/FY17 continuing resolution and FY17 President’s budget request provide funding for NASA astrophysics to continue its planned programs, missions, projects, research, and technology. – The total funding (Astrophysics including Webb) remains at ~$1.35B. – Fully funds Webb for an October 2018 launch, WFIRST formulation (new start), Explorers mission development, increased funding for R&A, new suborbital capabilities. – No negative impact from FY17 continuing resolution (through April 28, 2017). – Awaiting FY18 budget guidance from new Administration. • The operating missions continue to generate important and compelling science results, and new missions are under development for the future. – Senior Review in Spring 2016 recommended continued operation of all missions. – SOFIA is adding new instruments: HAWC+ instrument being commissioned; HIRMES instrument in development; next gen instrument call in 2017. – NASA missions under development making progress toward launches: ISS-NICER (2017), ISS-CREAM (2017), TESS (2018), Webb (2018), IXPE (2020), WFIRST (mid-2020s). – Partnerships with ESA and JAXA on their future missions create additional science opportunities: Euclid (ESA), X-ray Astronomy Recovery Mission (JAXA), Athena (ESA), L3/LISA (ESA).
    [Show full text]
  • Epo in a Multinational Context
    →EPO IN A MULTINATIONAL CONTEXT Heidelberg, June 2013 ESA FACTS AND FIGURES • Over 40 years of experience • 20 Member States • Six establishments in Europe, about 2200 staff • 4 billion Euro budget (2013) • Over 70 satellites designed, tested and operated in flight • 17 scientific satellites in operation • Six types of launcher developed • Celebrated the 200th launch of Ariane in February 2011 2 ACTIVITIES ESA is one of the few space agencies in the world to combine responsibility in nearly all areas of space activity. • Space science • Navigation • Human spaceflight • Telecommunications • Exploration • Technology • Earth observation • Operations • Launchers 3 →SCIENCE & ROBOTIC EXPLORATION TODAY’S SCIENCE MISSIONS (1) • XMM-Newton (1999– ) X-ray telescope • Cluster (2000– ) four spacecraft studying the solar wind • Integral (2002– ) observing objects in gamma and X-rays • Hubble (1990– ) orbiting observatory for ultraviolet, visible and infrared astronomy (with NASA) • SOHO (1995– ) studying our Sun and its environment (with NASA) 5 TODAY’S SCIENCE MISSIONS (2) • Mars Express (2003– ) studying Mars, its moons and atmosphere from orbit • Rosetta (2004– ) the first long-term mission to study and land on a comet • Venus Express (2005– ) studying Venus and its atmosphere from orbit • Herschel (2009– ) far-infrared and submillimetre wavelength observatory • Planck (2009– ) studying relic radiation from the Big Bang 6 UPCOMING MISSIONS (1) • Gaia (2013) mapping a thousand million stars in our galaxy • LISA Pathfinder (2015) testing technologies
    [Show full text]
  • LISA and ESA's Cosmic Vision 2015-2025 Programme
    LISA and ESA’s Cosmic Vision 2015-2025 Programme J. Clavel Head, Astrophysics Mission Division, Science Directorate of ESA 7th International LISA Symposium, Barcelona, 16-June-2008 Missions in preparation HeHerschel-rschel- Planck Planck BBeepipi-C-Cololombomboo 2008 CoroCorott 2008 20132013 (CNES-ESA)(CNES-ESA) Lisa-Pathfinder 20062006 Lisa-Pathfinder 20102010 Chandrayan GaiaGaia Chandrayan SolarSolar (ISRO-ESA) 20112011 (ISRO-ESA) JWSJWSTT OrbiterOrbiter 20082008 (NASA-ESA-CSA)(NASA-ESA-CSA)(ESA-NASA)(ESA-NASA) MicroscopeMicroscope 20132013 20152015 (CNES-ESA)(CNES-ESA) 20102010 20052005 20062006 20072007 20082008 20092009 20102010 20112011 20122012 20132013 20142014 20152015 20162016 20172017 7th International LISA Symposium, Barcelona, 16-June-2008 ESA’sESA’s newnew longlong termterm planplan forfor spacespace sciencescience 7th International LISA Symposium, Barcelona, 16-June-2008 Cosmic Vision 2015-2025 process • Call for Science Themes in Spring 2004 • Responses analysed by ESA’s advisory structure in July 2004 • Workshop with community in Paris in September 2004 (400 participants) • Spring 2005: the Cosmic Vision Plan was presented to the community • Plan should cover one decade, with 3 Calls for Missions planned 7th International LISA Symposium, Barcelona, 16-June-2008 Four “Grand Themes” identified 1. What are the conditions for life and planetary formation? 2. How does the Solar System work? 3. What are the fundamental laws of the Universe? 4. How did the Universe originate and what is it made of? 7th International LISA Symposium, Barcelona, 16-June-2008 Cosmic Vision process • First “Call for Missions” issued in 1st Q 2007 • 50 proposals received by June 2007 deadline • Selection process by advisory structure on behalf of scientific community during summer 2007 • Final recommendation from SSAC in October 2007 7th International LISA Symposium, Barcelona, 16-June-2008 The ESA program is chosen by the Scientific Community….
    [Show full text]
  • Astrophysics
    National Aeronautics and Space Administration Astrophysics Committee on NASA Science Paul Hertz Mission Extensions Director, Astrophysics Division NRC Keck Center Science Mission Directorate Washington DC @PHertzNASA February 1-2, 2016 Why Astrophysics? Astrophysics is humankind’s scientific endeavor to understand the universe and our place in it. 1. How did our universe 2. How did galaxies, stars, 3. Are We Alone? begin and evolve? and planets come to be? These national strategic drivers are enduring 1972 1982 1991 2001 2010 2 Astrophysics Driving Documents http://science.nasa.gov/astrophysics/documents 3 Astrophysics Programs Physics of the Cosmos Cosmic Origins Exoplanet Exploration Program Program Program 1. How did our universe 2. How did galaxies, stars, 3. Are We Alone? begin and evolve? and planets come to be? Astrophysics Explorers Program Astrophysics Research Program James Webb Space Telescope Program (managed outside of Astrophysics Division until commissioning) 4 Astrophysics Programs and Missions Physics of the Cosmos Cosmic Origins Exoplanet Exploration Program Program Program Chandra Hubble Spitzer Kepler/K2 XMM-Newton (ESA) Herschel (ESA) WFIRST Fermi SOFIA Planck (ESA) LISA Pathfinder (ESA) Astrophysics Explorers Program Euclid (ESA) NuSTAR Swift Suzaku (JAXA) Athena (ESA) ASTRO-H (JAXA) NICER TESS L3 GW Obs (ESA) 3 SMEX and 2 MO in Phase A James Webb Space Telescope Program: Webb 5 Astrophysics Programs and Missions Physics of the Cosmos Cosmic Origins Exoplanet Exploration Program Program Program Missions in extended phase Chandra Hubble Spitzer Kepler/K2 XMM-Newton (ESA) Herschel (ESA) WFIRST Fermi SOFIA Planck (ESA) LISA Pathfinder (ESA) Astrophysics Explorers Program Euclid (ESA) NuSTAR Swift Suzaku (JAXA) Athena (ESA) ASTRO-H (JAXA) NICER TESS L3 GW Obs (ESA) 3 SMEX and 2 MO in Phase A James Webb Space Telescope Program: Webb 6 Astrophysics Mission Portfolio • NASA Astrophysics seeks to advance NASA’s strategic objectives in astrophysics as well as the science priorities of the Decadal Survey in Astronomy and Astrophysics.
    [Show full text]
  • New Building Offers Most Advanced Technology Of
    The magazine of Montclair State University MONTCLAIR Fall/Winter 2017 NEW BUILDING OFFERS MOST ADVANCED TECHNOLOGY OF ANY SCHOOL IN THE COUNTRY Alumnus Michael Price ’81, a writer and producer of The Simpsons, returned to campus at Homecoming to discuss his career with School of Communication and Media Director Keith Strudler and to dedicate the Michael Price Audio Production Center. See story in Alumni News, page 46. CONTENTS | FALL/WINTER 2017 FEATURES Poetic Justice 12 Ruth Bader Ginsburg spends day on campus, tackles The Merchant of Venice at round-table discussion Connecting Threads 17 Student mentors support personal growth of middle school boys in Newark Looking for Home Students travel to Greece to film the human stories 20 of the refugee crisis Hollywood East School of Communication and Media’s new home 24 is nation’s most technologically advanced university media production facility, rivaling professional studios Solving Cosmic Mysteries 30 Faculty on LIGO team help with historic detection of neutron stars’ collision 3 Feedback 4 Headlines 35 Athletics 41 Alumni Connections 47 Class Notes 54 In Memoriam 56 Lasting Lessons DEPARTMENTS Photo by Gennadi Novash MONTCLAIR The magazine of Montclair State University FROM President Susan A. Cole THE Vice President for University Advancement John T. Shannon Associate Vice President for PRESIDENT External Relations Carol Blazejowski ’78 n October, I had the honor of delivering the “President-to-Presidents Lecture” at Assistant Vice President for the annual meeting of the American Association of State Colleges and Universities Communications and Marketing Ellen Griffin I(AASCU), where 200 presidents and chancellors gathered to explore issues facing higher education to ensure that we, as leaders, are doing our best to provide future Assistant Vice President for generations with the tools they need to lead our country forward.
    [Show full text]
  • National Science Foundation LIGO FACTSHEET NSF and the Laser Interferometer Gravitational-Wave Observatory
    e National Science Foundation LIGO FACTSHEET NSF and the Laser Interferometer Gravitational-Wave Observatory In 1916, Albert What is LIGO? Einstein published the LIGO consists of two widely separated laser paper that predicted interferometers located within the United States – one gravitational waves – in Hanford, Washington, and the other in Livingston, ripples in the fabric of Louisiana – each housed inside an L-shaped, ultra-high space-time resulting vacuum tunnel. The twin LIGO detectors operate in from the most violent unison to detect gravitational waves. Caltech and MIT phenomena in our led the design, construction and operation of the NSF- universe, from funded facilities. supernovae explosions to the collision of black What are gravitational waves? holes. For 100 years, Gravitational waves are distortions of the space and that prediction has time which emit when any object that possesses mass stimulated scientists accelerates. This can be compared in some ways to how around the world who accelerating charges create electromagnetic fields (e.g. have been seeking light and radio waves) that antennae detect. To generate to directly detect gravitational waves that can be detected by LIGO, the gravitational waves. objects must be highly compact and very massive, such as neutron stars and black holes. Gravitational-wave In the 1970s, the National Science Foundation (NSF) detectors act as a “receiver.” Gravitational waves travel joined this quest and began funding the science to Earth much like ripples travel outward across a pond. and technological innovations behind the Laser However, these ripples in the fabric of space-time carry Interferometer Gravitational-Wave Observatory (LIGO), information about their violent origins and about the the instruments that would ultimately yield a direct nature of gravity – information that cannot be obtained detection of gravitational waves.
    [Show full text]
  • PROGRESS and PROSPECTS TOWARD a SPACE-BASED GRAVITATIONAL- WAVE OBSERVATORY John Baker 15Th Capra Meeting 13 June 2012 University of Maryland - College Park
    PROGRESS AND PROSPECTS TOWARD A SPACE-BASED GRAVITATIONAL- WAVE OBSERVATORY John Baker 15th Capra Meeting 13 June 2012 University of Maryland - College Park 1 Plan: LISA past and future • No theory here • Extreme/Intermediate Mass-Ratio Inspirals (EMRI/ IMRI) are an astrophysical testbed for GR • Space-based GW observation (ie LISA) needed • Our old friend LISA before 2010 • LISA 2011-2012 • (based on GSFC activity and 9th LISA Symposium) • Activity in Europe (LISA Pathfinder, NGO, Consortium) • Activity in the US (SGO Study) • Activity in Asia • LISA in the future 2 LISA: PROBING THE UNIVERSE WITH GRAVITATIONAL WAVES LISA capabilities Sensitivity The sensitivity of LISA is shown in Figure 2-5 together with a comparable sensitivity curve for the future ground-based Advanced LIGO. Sensitivity over a logarithmic frequency interval is shown here in terms of the dimensionless strain f Sh( f ) (where Sh( f ) is the 1-! level of strain noise spectral amplitude), in order to facilitate comparison with the much higher measure- ment frequencies of LIGO. The LISA sensitivity curve divides into three regions: a low- frequency region where proof-mass acceleration noise dominates, a mid-frequency region where shot noise and optical-path measurement errors dominate, and a high-frequency region where the sensitivity curve rises as the wavelength of the GW becomes shorter than the LISA armlength. Additionally, a diffuse background of unresolved galactic binaries is expected to contribute to the measured strain level in the frequency range from 0.1 - 1 mHz; this component is indicated in Figure 2-5. Figure 2-5 illustrates also the different astrophysical sources that LISA will study, contrasted with those studied by ground-based interferometersLISA such as LIGO.
    [Show full text]
  • LIGO- India Project by Indian Astrophysicist Mr. Karan Jani (Date
    A Report on GTU ITAP & CiC3 organized Discourse on LIGO- India Project By Indian Astrophysicist Mr. Karan Jani rd (Date: 23 August 2016) About GTU ITAP ITAP & NI Gujarat Technological University (GTU) is a premier academic and research institution which has driven new ways of thinking since its 2007 founding, established by the Government of Gujarat vide Gujarat Act No. 20 of 2007. GTU is a State University with 486 affiliated colleges in its fold operating across the state of Gujarat through its FIVE zones at Ahmedabad, Gandhinagar, Vallabh Vidyanagar, Rajkot and Surat. The University caters to the fields of Engineering, Architecture, Management, Pharmacy and Computer Science. The University has about 4 lakh students enrolled in a large number of Diploma, Under Graduate, Post Graduate programs along with the robust Doctoral program. GTU is associated with Institute and Student development activity right through its inception. In the same direction GTU has established “Integrated Training & Placement (ITAP) Cell”, wings to support Institutes to enhance employability skill in students which help their students to get job and also it would help them to fit in turbulence environment. This Cell also works for development of entrepreneur skills, which helps students to established new business generate employability for society. Enhance awareness regarding corporate professionalism Enhance soft skills and Employability skills Development of Entrepreneurship skill of students Specific focus on how stakeholders (Students) will able to fit with today’s turbulence Environment of corporate. GTU Integrated Training & Placement (ITAP) and Community Innovation & Co-Creation Centre (CiC3) has collaboratively organized a Discourse on LIGO (Laser Interferometer Gravitational-Wave Observatory) for India Project by renowned Indian Astrophysicist Mr Karan Jani.
    [Show full text]
  • 6.3 LISA CNS MH.Indd
    NEWS FEATURE NATURE|Vol 452|6 March 2008 HEARING THE HEAVENS The cosmos is thought to be awash with gravitational waves to which humanity is, as yet, deaf. Trudy E. Bell reports on LISA, an experiment on an unprecedented scale designed to put that right. 18 NATURE|Vol 452|6 March 2008 NEWS FEATURE magine a new constellation — a narrow triangle about this way, as LISA is intended to do, is a three-step process. as deep as the scoop of the Big Dipper. But this constella- First you set up a situation in which masses can fall freely tion, unlike the familiar natural ones, moves through the along their geodesics without being disturbed by magnetic Isky, always appearing in the evening sky after sunset. The fields or other spurious forces. Then you must measure new constellation slowly rotates, each component circling with extraordinary precision how the distance between around the centre once every year. And as it does so, it also their geodesics changes when passing gravitational waves expands and contracts. distort the local curvature of space. The last step is analysing Unaided earthly eyes will never actually see the Laser these changes to determine the exact shape, frequency and Interferometer Space Antenna (LISA), as this artificial con- intensity of the distortions to the curvature of space, so as to stellation is to be named. Its three component spacecraft learn about the nature of distant events producing them. will be too small, and the light with which they shine will be To provide Vitale’s geodesic-joining rays of light, LISA invisible infrared.
    [Show full text]
  • Dr. Franco Ongaro Keynote Address
    30th AIAA/USU Conference on Small Satellites Logan, Utah, USA August 8, 2016 [email protected] Director of Technology and Quality Management, European Space Agency ESA UNCLASSIFIED - For Official Use Purpose of ESA “To provide for and promote, for exclusively peaceful purposes, cooperation among European states in space research and technology and their space applications.” Article 2 of ESA Convention Slide 2 Member States ESA has 22 Member States: 20 states of the EU (AT, BE, CZ, DE, DK, EE, ES, FI, FR, IT, GR, HU, IE, LU, NL, PT, PL, RO, SE, UK) plus Norway and Switzerland. Seven other EU states have Cooperation Agreements with ESA: Bulgaria, Cyprus, Latvia, Lithuania, Malta, Slovakia and Slovenia. Discussions are ongoing with Croatia. Canada takes part in some programmes under a long-standing Cooperation Agreement. Slide 3 Activities space science human spaceflight exploration ESA is one of the few space agencies in the world to combine responsibility in nearly all areas of space activity. earth observation launchers navigation * Space science is a Mandatory programme, all Member States contribute to it according to GNP. operations technology telecommunications Slide 4 ESA’s locations Salmijaervi (Kiruna) Moscow Brussels ESTEC (Noordwijk) ECSAT (Harwell) EAC (Cologne) Washington Houston Maspalomas ESA HQ (Paris) ESOC (Darmstadt) Oberpfaffenhofen Santa Maria Kourou Toulouse New Norcia Perth Redu Malargüe ESA sites ESAC (Madrid) Cebreros ESRIN Offices ESA Ground Station + Offices (Rome) ESA Ground Station ESA sites + ESA Ground Station Slide 5 Some missions trends in ESA (1/3) ESA missions are selected for a purpose, not to be large or small, the increase in type of missions confirms this.
    [Show full text]