The Notion of Tight Closure in Equal Characteristic Zero1

Total Page:16

File Type:pdf, Size:1020Kb

The Notion of Tight Closure in Equal Characteristic Zero1 THE NOTION OF TIGHT CLOSURE IN EQUAL CHARACTERISTIC ZERO by Melvin Hochster Introduction Our ob jective is to explain how the results of tight closure theory in characteristic p can b e extended to equal characteristic zero The results describ ed in this pap er and not otherwise attributed are joint work of the author and Craig Huneke The detailed treatment of the theory we sketch here is given in HH One do es in fact get over an arbitrary No etherian ring containing the rational numbers Q a closure op eration dened on submo dules of nitely generated mo dules The op eration has the same kind of p ersistence prop erties as in the characteristic p case For regular rings every ideal and every submo dule of every nitely generated mo dule is tightly closed The tight closure of an ideal is contained in the integral closure and is usually much smaller One has the same kind of coloncapturing prop erties as in characteristic p and more generally one has an analogous phantom homology theory In consequence one has a theory that yields equal characteristic versions of what has b een done in characteristic p one gets a very short pro of that direct summands of regular rings are CohenMacaulay and more they are Fregular improved versions of the socalled lo cal homological conjectures these conjectures are now theorems for the most part and a tight closure version of the BrianconSkoda theorem In HH several notions of tight closure in equal characteristic are developed There is one for each eld of equal characteristic valid for algebras over that eld and a notion big equational tight closure that yields a larger tight closure than any of the theories linked to a sp ecic eld However here for simplicity we shall fo cus on the notion asso ciated to the eld of rational numbers also called equational tight closure in HH and denoted eq Q there by either or Since we shall b e dealing with only one notion we denote it and we omit the adjective equational This is the smallest of our tight closure notions It is not known whether the various characteristic zero notions of tight closure actually yield diering results It is p ossible that they all agree whenever they are dened We should note that some of the denitions here are simpler than those in HH although equivalent in the sp ecial case that we are studying 1 This is an expanded and contracted version of two talks given by the author at the NSFCBMS Conference on Tight Closure Big CohenMacaulay Algebras and Uniform ArtinRees Theorems held at North Dakota State University June 2 The author was supp orted in part by a grant from the National Science Foundation 3 The author wishes to thank Craig Huneke b oth for his enormous contributions to the development of tight closure theory and for the monumental eort and care he put into preparation for this conference Typeset by A ST X M E MELVIN HOCHSTER We shall use HH and Hu as our basic references for characteristic p tight closure theory We conclude this section by recalling some of the alternative characterizations of tight closure available in characteristic p Before immersing ourselves in the technique of reduc tion to characteristic p we want to stress the p oint that a variant of one of these other characterizations may give a go o d theory in equal characteristic zero or even p ossibly in mixed characteristic Having a dierent approach to the equal characteristic zero case would undoubtedly b e very valuable Recall that for go o d rings of characteristic p and in particular for rings p ossessing a completely stable test element one may test tight closure by passing to the complete lo cal domains of R ie to the rings obtained by lo calizing R at a prime completing and killing a minimal prime It turns out that u I if and only if the image of u is in IB for every complete lo cal domain B of R Thus the central problem is to characterize tight closure in a complete lo cal domain R m K Part a of the Theorem b elow is phrased in terms of Hilb ertKunz functions e p when I is primary to m RI as a function of e is called the HilbertKunz function cf Ku Mo HaMo Here denotes length By a result of Mo if dim R d e q d d there is a p ositive real number such that for all q p RI q O q If I I dim R then is a p ositive integer In general is conjectured to b e rational but this I I is an op en question even in dimension two The b ehavior of the Hilb ertKunz functions P is quite surprising For example if R ZZx x x x G where G x i i e e e Cf HaMo then Rm Recall that the absolute integral closure of the domain R cf Ar which we denote R is the integral closure of R in an algebraic closure of its fraction eld and is unique up to nonunique isomorphism When R is a domain an Rmo dule M is called solid if it p ossesses a nonzero Rmo dule map to R When R m K is a complete lo cal domain of dimension d this is equivalent d M Cf Ho to the condition that the lo cal cohomology mo dule H m Theorem Let R m K be a complete local domain of characteristic p Let d dim R Let I be an ideal of R and let u R Each of the fol lowing statements some of which include a supplementary hypothesis gives a characterization of when u is in I a Suppose that I is mprimary Let J I Ru Then u I if and only if J I More generally if I J m are mprimary then J I if and only if J I This result characterizes tight closure in complete local domains of characteristic p since an element is in the tight closure of I m if and only if it is in the tight closure of al l mprimary ideals containing I b Fix a discrete Zvaluation nonnegative on R and positive on m and extend it to a valuation v of R to Q Then u I if and only if there exist elements R fg with v arbitrarily smal l such that u IR c K E Smith Sm Assume that I is generated by part of a system of parameters Then u I if and only if u IR d u I if and only if there exists a big CohenMacaulay algebra S for R such that u IS THE NOTION OF TIGHT CLOSURE IN EQUAL CHARACTERISTIC ZERO e u I if and only if there exists a solid Ralgebra S such that u IS see the discussion just prior to the statement of this theorem Proof By Theorem of HH when I J are mprimary ideals we have that J I q q if and only if lim J I which by Monskys result is equivalent to the e!1 d q condition that yielding a For b see HH Part c is proved in Sm The I J results of d and e are obtained in Ho from the p ersp ective of solid closure Since R is a big CohenMacaulay algebra in the characteristic p case cf HH and since big CohenMacaulay algebras are solid conditions c d and e are closely related Whether tight closure in lo cally excellent domains of characteristic p is in general simply the contracted expansion from R is an imp ortant op en question It reduces to the case of complete lo cal domains The answer is not known even in dimension It is known however that R is never a big CohenMacaulay algebra in equal charac teristic if dim R Moreover the main result of Ro shows that solid closure the notion dened by attempting to extend the characterization of tight closure given in part e do es not b ehave well in equal characteristic ideals of regular rings of dimension fail to b e solidly closed in general But d might give a go o d notion in equal characteristic see x See also Ho and HH Comparison of b ers and a simple example It will turn out that if K is any eld of characteristic then in the ring R K X Y Z X Y Z K x y z the element z is in the tight closure of I x y R although it is not in I Before giving the explanation we want to recall that if A R is a ring homomorphism P is any prime ideal of A and P A P A then the ber of A R over P is dened as the P algebra P P P R If P is a maximal ideal of A then A and the b er is simply RR A b ers over maximal ideals are referred to as closed b ers On the other hand if A is a domain and P then P is the fraction eld of A and the b er over may b e identied with A R and is referred to as the generic b er When R is nitely generated over a No etherian domain A of characteristic zero and one is studying some go o d prop erty P of the b ers esp ecially a geometric prop erty it is often true that the generic b er has prop erty P if and only if there is a dense op en subset U of the maximal sp ectrum of A such that the closed b ers over the p oints of U have prop erty P we say that almost al l closed b ers have P in this case It is true that the generic b er has P if and only if almost all closed b ers have P for the following prop erties smo othness normality b eing reduced the CohenMacaulay prop erty the Gorenstein prop erty equidimensionality Let x x R let u R and I x x R It is also true that the image n n of u is nonzero or not in the expansion of I in the generic b er if and only if this is true for almost all closed b ers and that if x x generate a prop er ideal of height n MELVIN HOCHSTER n in the generic b er then the images of the xs generate a prop er ideal of height n in almost all closed b ers which will b e reduced and equidimensional but not necessarily domains Consider Zx y x y whether the b er mo dulo p is a domain dep ends on the residue of p mo dulo This kind of b ehavior can b e remedied by adjoining a square ro ot i of to Z after which one has nondomain b ehavior for all b ers over Z i There is a detailed and essentially selfcontained exp osition of results on comparison of b ers in HH x The idea b ehind our tight closure theory in equal
Recommended publications
  • Foundations of Tight Closure Theory
    FOUNDATIONS OF TIGHT CLOSURE THEORY by Melvin Hochster These notes give an introduction to tight closure theory based on Lectures given in Math 711 in Fall, 2007, at the University of Michigan. In the current version, only the positive characteristic theory is covered. There are several novel aspects to this treatment. One is that the theory for all modules, not just finitely generated modules, is developed systematically. It is shown that all the known methods of proving the existence of test elements yield completely stable test elements that can be used in testing tight closure for all pairs of modules. The notion of strong F-regularity is developed without the hypothesis that the ring be F-finite. The definition is simply that every submodule of every module is closed, without the hypothesis of finite generation. This agrees with the usual definition in the F-finite case, which is developed first in these notes. A great deal of revision and expansion are planned. The structure of the individual lectures has been preserved. References often refer to a result as, say, \the Theorem on p. k of the Lecture of ::: ". The page numbering meant is internal to the lecture and is not shown explicitly. Thus, if the Lecture begins on p. n, the result specified would be on page n + k − 1. I have not tried to give complete references. When references are given, they occur in full in the text where they are cited. At this time there is no separate list. j Subsidiary material has been included in the notes that was not covered in detail in the lectures.
    [Show full text]
  • Arxiv:Math/0206250V2
    CANONICAL BIG COHEN-MACAULAY ALGEBRAS AND RATIONAL SINGULARITIES HANS SCHOUTENS Abstract. We give a canonical construction of a balanced big Coh- en-Macaulay algebra for a domain of finite type over C by taking ul- traproducts of absolute integral closures in positive characteristic. This yields a new tight closure characterization of rational singularities in characteristic zero. 1. Introduction In [4], Hochster proves the existence of big Cohen-Macaulay modules for a large class of Noetherian rings containing a field. Recall that a module M over a Noetherian local ring R is called a big Cohen-Macaulay module, if there is a system of parameters of R which is M-regular (the adjective big is used to emphasize that M need not be finitely generated). He also exhibits in that paper the utility of big Cohen-Macaulay modules in answering various homo- logical questions. Often, one can even obtain a big Cohen-Macaulay module M such that every system of parameters is M-regular; these are called bal- anced big Cohen-Macaulay modules. In [5], Hochster and Huneke show that for equicharacteristic excellent local domains, one can even find a bal- anced big Cohen-Macaulay algebra, that is to say, M admits the structure of a (commutative) R-algebra. In fact, for R a local domain of positive charac- teristic, they show that the absolute integral closure of R, denoted R+, is a (balanced) big Cohen-Macaulay algebra (it is easy to see that this is false in characteristic zero). In [6], using lifting techniques similar to the ones devel- oped in the original paper of Hochster, they obtain also the existence of big Cohen-Macaulay algebras in characteristic zero.
    [Show full text]
  • [Math.AC] 3 Feb 2005
    LOCALIZATION OF TIGHT CLOSURE IN TWO-DIMENSIONAL RINGS KAMRAN DIVAANI-AAZAR AND MASSOUD TOUSI Abstract. It is shown that tight closure commutes with localization in any two dimensional ring R of prime characteristic if either R is a Nagata ring or R pos- sesses a weak test element. Moreover, it is proved that tight closure commutes with localization at height one prime ideals in any ring of prime characteristic. 1. Introduction Throughout this paper, R is a commutative Noetherian ring (with identity) of prime characteristic p. The theory of tight closure was introduced by Hochster and Huneke [2]. There are many applications for this notion in both commutative algebra and algebraic geometry. However, there are many basic open questions concerning tight closure. One of the essential questions is whether tight closure commutes with localization. For an expository account on tight closure, we refer the reader to [3] or [8]. In the sequel, R◦ denotes the set of elements of R which are not contained in any minimal prime ideal of R. We use the letter q for nonnegative powers pe of p. Let I be an ideal of R and I[q] the ideal generated by q-th powers of elements of I. Then I∗, tight closure of I is the set of all elements x ∈ R for which there exists c ∈ R◦ such that cxq ∈ I[q] for all q ≫ 0. Also, for a nonnegative power q′ of p an element c ∈ R◦ is called q′-weak test element, if for any ideal I of R and any element x ∈ I∗, we have cxq ∈ I[q] for all q ≥ q′.
    [Show full text]
  • Tight Closure and Characteristic P Methods
    TIGHT CLOSURE THEORY AND CHARACTERISTIC P METHODS by Melvin Hochster 0. Introduction Unless otherwise specified, the rings that we consider here will be Noetherian rings R containing a field. Frequently, we restrict, for simplicity, to the case of domains finitely generated over a field K. The theory of tight closure exists in much greater generality, and we refer the reader to [HH1{14] and [Ho1{3], as well as to the expository accounts [Bru], [Hu1,2] and [Leu] (in this volume) for the development of the larger theory and its applications as well as discussion of related topics such as the existence of big Cohen- Macaulay algebras. We shall give an introductory overview of the theory of tight closure, which has recently played a primary role among characteristic p methods. We shall see that such methods can be used even when the ring contains a field of characteristic 0. Here, in reverse order, are several of the most important reasons for studying tight closure theory, which gives a closure operation on ideals and on submodules. We focus mostly on the case of ideals here, although there is some discussion of modules. We shall elaborate on the themes brought forth in the list below in the sequel. 11. Tight closure can be used to shorten difficult proofs of seemingly unrelated results. The results turn out to be related after all. Often, the new results are stronger than the original results. 10. Tight closure provides algebraic proofs of several results that can otherwise be proved only in equal characteristic 0, and whose original proofs depended on analytic tech- niques.
    [Show full text]
  • Introduction
    Introduction These notes were written to accompany my ten lectures on tight closure at the Institute for Studies in Theoretical Physics and Mathematics (IPM), School of Mathematics, in Tehran, Iran, in January 2002. The participants ranged from researchers with knowledge in tight closure to graduate students new to tight closure and research in general. My goal was to introduce the theory of tight closure and show its utility and beauty through both its early and its recent applications. I worked through some more technical aspects of tight closure, for example test elements, because the theory of test elements is central to many applications, and furthermore, because it uses and develops some beautiful commutative algebra. Throughout I tried to emphasize the beauty of the commutative algebra as developed through tight closure, as well as the need to understand various aspects of commutative algebra to work in the area of tight closure (such as the need to understand excellent rings, Cohen-Macaulay rings, asymptotic properties of (Frobenius) powers of ideals, local cohomology, homology theory, etc.). All this of course points to the depth and the acuity of the two originators of the theory, namely of Melvin Hochster and Craig Huneke. They started the theory in the mid 1980s. They took several standing proofs in commu- tative algebra, such as the proofs of the homological conjectures-theorems, the proof of Hochster and Roberts [HR1] that the ring of invariants of a re- ductive group acting on a polynomial ring is Cohen-Macaulay, and Huneke's proof [Hu1] about integral closures of the powers of an ideal, and from these standing proofs Hochster and Huneke pulled the essential ingredients to de- fine a new notion.
    [Show full text]
  • Tight Closure and Elements of Small Order in Integral Extensions*
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Pure and Applied Algebra 71 (1991) 233-247 233 North-Holland Tight closure and elements of small order in integral extensions* Melvin Hochster Mathematics Department, University of Michigan, Awt Arbor, MI 48109-1003, USA Craig Huneke Mathematics Department, Purdue university, West Lafayette, IN 47907, USA Communicated by T. Hibi Received 7 September 1989 Dedicated to Professor Hideyuki Matsumura on his sixtieth birthday 1. Introduction Throughout this paper ‘ring’ means commutative ring with identity and modules are unital. Given rings are usually assumed to be Noetherian, but there are notable exceptions. The phrase ‘characteristic p’ always means ‘positive prime characteristic p’, and the letters q, q’, etc. denote pe, p”, etc., where e, e’ E N, the nonnegative integers. The authors have recently introduced the notion of tight closure for a sub- module N of a finitely generated module M over a Noetherian ring R of characteristic p and in certain equicharacteristic zero cases, including affine algebras over fields of characteristic 0. The theory started with the study of the notion of tight closure for an ideal I c R, i.e. with the case M = R, N = I,and this is still perhaps the most important case. The notion of tight closure has yielded new proofs, and, in many instances, unexpectedly strong improvements, of the local homological conjectures, of the existence of big Cohen-Macaulay modules, of the Cohen-Macaulay property for subrings which are direct summands of regular rings (where A is a direct summand of R means that A is a direct summand of R as an A-module) in the equicharacteristic case (in fact, tight closure techniques give the first proof of this fact in complete generality in the * Both authors were partially supported by grants from the National Science Foundation.
    [Show full text]
  • Tight Closure Does Not Commute with Localization
    ANNALS OF MATHEMATICS Tight closure does not commute with localization By Holger Brenner and Paul Monsky SECOND SERIES, VOL. 171, NO. 1 January, 2010 anmaah Annals of Mathematics, 171 (2010), 571–588 Tight closure does not commute with localization By HOLGER BRENNER and PAUL MONSKY Abstract We give an example showing that tight closure does not commute with localiza- tion. Introduction At the outset of Chapter 12 of [15], Huneke declares: “This chapter is devoted to the most frustrating problem in the theory of tight closure. From the first day it was clearly an important problem to know that tight closure commutes with localization.” The reason for Huneke’s frustration in establishing the result is now clear. It is not always true, and our paper provides the first counterexample. We recall the notion of tight closure, which was introduced by M. Hochster and C. Huneke some twenty years ago and is now an important tool in commutative algebra (see [13], [15], [16]). Suppose that R is a commutative noetherian domain containing a field of positive characteristic p > 0. Then the tight closure of an ideal I is defined to be I f R there exists t 0 such that tf q I Œq for all q pe : D f 2 W ¤ 2 D g Here I Œq .f q f I/ is the ideal generated by all f q, f in I . The localization D W 2 problem is the following: suppose that S R is a multiplicative system and I is 1 1 Â 1 1 an ideal of R.
    [Show full text]
  • Arxiv:1909.05739V3 [Math.AC] 22 Apr 2021 31,13C60
    CLOSURE-INTERIOR DUALITY OVER COMPLETE LOCAL RINGS NEIL EPSTEIN AND REBECCA R.G. Abstract. We define a duality operation connecting closure operations, interior operations, and test ideals, and describe how the duality acts on common constructions such as trace, torsion, tight and integral closures, and divisible submodules. This generalizes the relationship between tight closure and tight interior given in [ES14] and allows us to extend commonly used results on tight closure test ideals to operations such as those above. Contents 1. Introduction 1 2. Submodule selectors and residual operations 3 3. Duality between submodule selectors 8 4. Closure-interior duality 10 5. Test ideals for preradicals 11 6. Exactness properties for preradicals 14 7. Limits of submodule selectors 15 8. Special cases: trace, torsion, completion, and module closures 18 9. Special cases: torsion and divisibility for a multiplicative set 25 10. Special case: tight closure and integral closure 27 11. Special case: almost ring theory, Heitmann closures and post-2016 mixed characteristic closures 29 12. Good localization is dual to good colocalization 31 Acknowledgment 33 References 34 arXiv:1909.05739v3 [math.AC] 22 Apr 2021 1. Introduction Closure operations have long been an important subject in commutative algebra (c.f. the first named author’s survey [Eps12]). Many of these clo- sures, including tight closure, are residual, i.e., the closure of a submodule Date: April 22, 2021. 2010 Mathematics Subject Classification. Primary: 13J10, Secondary: 13A35, 13B22, 13C12, 13C60. Key words and phrases. closure operation, test ideal, interior operation, trace, torsion, tight closure, integral closure, Matlis duality, complete local rings.
    [Show full text]
  • Arxiv:1806.07522V2 [Math.AC] 22 May 2019 of Fsnuaiiso Leri Aite.Re [ Rees Varieties
    TIGHT CLOSURE OF POWERS OF IDEALS AND TIGHT HILBERT POLYNOMIALS KRITI GOEL, VIVEK MUKUNDAN, AND J. K. VERMA Abstract. Let (R, m) be an analytically unramified local ring of positive prime characteristic p. ∗ ∗ For an ideal I, let I denote its tight closure. We introduce the tight Hilbert function HI (n) = n ∗ ∗ ℓ(R/(I ) ) and the corresponding tight Hilbert polynomial PI (n), where I is an m-primary ideal. It ∗ is proved that F -rationality can be detected by the vanishing of the first coefficient of PI (n). We find the tight Hilbert polynomial of certain parameter ideals in hypersurface rings and Stanley-Reisner rings of simplicial complexes. 1. Introduction Let (R, m) be a d-dimensional Noetherian local ring and I be an m-primary ideal. Let I be n n the integral closure of I. The Rees algebra of I is denoted by R(I) = ⊕n∈ZI t where t is an −1 n n indeterminate. The integral closure of R(I) in R[t,t ] is R(I) = ⊕n∈ZI t . We use ℓ(M) to denote the length of an R-module M. David Rees [14] showed that if R is analytically unramified then R(I) is a finite module over R(I). This implies that for all large n, the normal Hilbert function n of I, HI (n)= ℓ(R/I ) is a polynomial of degree d. This is called the normal Hilbert polynomial of I and it is denoted by P I (n). We write n + d − 1 n + d − 2 P (n)= e (I) − e (I) + · · · + (−1)de (I).
    [Show full text]
  • The Mathematical Contributions of Craig Huneke
    Journal of Algebra 571 (2021) 1–14 Contents lists available at ScienceDirect Journal of Algebra www.elsevier.com/locate/jalgebra Introduction ✩ The mathematical contributions of Craig Huneke ✩ The research of the authors was supported by grants from the National Science Foundation: DMS 1902116 (Hochster) and DMS 1802383 (Ulrich). https://doi.org/10.1016/j.jalgebra.2020.05.009 0021-8693/© 2020 Elsevier Inc. All rights reserved. 2 Introduction This issue of the Journal of Algebra grew out of a conference honoring Craig Huneke on the occasion of his sixty-fifth birthday, and the special editorial board for this issue coincides with the organizing committee for that conference. The contributors to this volume have a large overlap with the speakers at the conference, but the correspondence is far from exact. During the conference, the authors of this introduction gave a joint talk highlighting some of the work of Craig Huneke. We have included here a version of what was said at the conference, but have supplemented it with additional remarks on Huneke’s work and his enormous influence on the field of commutative algebra. We want to mention right away that Huneke has published over one hundred sixty papers with more than sixty co-authors. He has written two books and he has been an editor for four volumes. He has had twenty-five graduate students with another in progress. This does not take account of a huge number of mentees and colleagues who have benefited from his enormous generosity in sharing insight and ideas. Huneke received his Bachelor of Arts degree from Oberlin College in 1973 and his Ph.D.
    [Show full text]
  • Arxiv:2101.00365V3 [Math.AC] 1 Feb 2021
    GENERALIZED F -DEPTH AND GRADED NILPOTENT SINGULARITIES KYLE MADDOX AND LANCE EDWARD MILLER Abstract. We study generalized F -depth and F -depth, depth-like invariants associated to the canonical Frobenius action on the local cohomology modules of a local ring of prime characteristic. These invariants are naturally associated to the singularity types generalized weakly F -nilpotent and weakly F -nilpotent, which have uniform behavior among the Frobenius closure of all parameter ideals simultaneously. By developing natural lower bounds on these invariants, we are able to provide sufficient conditions which produce broad classes of rings that have these singularity types, including constructions like gluing schemes along a common subscheme, Segre products of graded rings, and Veronese subrings of graded rings. We further analyze upper bounds on Frobenius test exponents of these constructions in terms of the input data. 1. Introduction In this paper we introduce and study generalized F -depth, a depth-like invariant inspired by Lyubeznik’s F -depth. Given a local or graded ring of prime characteristic, these F -depth and generalized F -depth track the degree to which the canonical Frobenius action on the local cohomology modules is nilpotent under composition. Moreover, these invariants are naturally associated to singularity types called weakly F -nilpotent and generalized weakly F -nilpotent singularities as outlined below. The first of these is a weak form of F -nilpotent singularities, which were studied by Blickle in [Bli01] and formally introduced by Srinivas-Takagi in [ST17]. Recently, there has been a significant growing body of literature exploring the properties of these singularity types, see [ST17, PQ19, Quy19, Mad19, KMPS].
    [Show full text]
  • Progress in Commutative Algebra 2
    Progress in Commutative Algebra 2 Progress in Commutative Algebra 2 Closures, Finiteness and Factorization edited by Christopher Francisco Lee Klingler Sean Sather-Wagstaff Janet C. Vassilev De Gruyter Mathematics Subject Classification 2010 13D02, 13D40, 05E40, 13D45, 13D22, 13H10, 13A35, 13A15, 13A05, 13B22, 13F15 An electronic version of this book is freely available, thanks to the support of libra- ries working with Knowledge Unlatched. KU is a collaborative initiative designed to make high quality books Open Access. More information about the initiative can be found at www.knowledgeunlatched.org This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 License. For details go to http://creativecommons.org/licenses/by-nc-nd/4.0/. ISBN 978-3-11-027859-0 e-ISBN 978-3-11-027860-6 Library of Congress Cataloging-in-Publication Data A CIP catalog record for this book has been applied for at the Library of Congress. Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.dnb.de. ” 2012 Walter de Gruyter GmbH & Co. KG, Berlin/Boston Typesetting: Da-TeX Gerd Blumenstein, Leipzig, www.da-tex.de Printing: Hubert & Co. GmbH & Co. KG, Göttingen ϱ Printed on acid-free paper Printed in Germany www.degruyter.com Preface This collection of papers in commutative algebra stemmed out of the 2009 Fall South- eastern American Mathematical Society Meeting which contained three special ses- sions in the field: Special Session on Commutative Ring Theory, a Tribute to the Memory of James Brewer, organized by Alan Loper and Lee Klingler; Special Session on Homological Aspects of Module Theory, organized by Andy Kustin, Sean Sather-Wagstaff, and Janet Vassilev; and Special Session on Graded Resolutions, organized by Chris Francisco and Irena Peeva.
    [Show full text]