Developmental Trajectories of the Orbitofrontal Cortex and Anhedonia

Total Page:16

File Type:pdf, Size:1020Kb

Developmental Trajectories of the Orbitofrontal Cortex and Anhedonia ARTICLES Developmental Trajectories of the Orbitofrontal Cortex and Anhedonia in Middle Childhood and Risk for Substance Use in Adolescence in a Longitudinal Sample of Depressed and Healthy Preschoolers Joan L. Luby, M.D., Arpana Agrawal, Ph.D., Andy Belden, Ph.D., Diana Whalen, Ph.D., Rebecca Tillman, M.S., Deanna M. Barch, Ph.D. Objective: Deficits in reward processing are established in trajectories predicted later alcohol and marijuana use fre- mood and substance use disorders and are known risk fac- quency in adolescence. tors for these disorders. Volume reductions of the orbito- frontal cortex and the striatum, regions that subserve neural Results: The anhedonia-by-age interaction was significant response to reward, have been shown to be related to an- in the multilevel modeling of orbitofrontal cortical but not hedonia in depressive and substance use disorders. The au- striatal volume. Higher anhedonia ratings were significantly thors sought to investigate how structural maturation of associated with steeper decline in orbitofrontal cortical vol- these regions in childhood varies with level of anhedonia and ume with age. Orbitofrontal cortical volume and thickness predicts later substance use. at age 12 and trajectory over time significantly and negatively predicted subsequent alcohol and marijuana use frequency Method: The study employed data from a sample of de- but not depression during adolescence. pressed and healthy preschoolers studied longitudinally that included three waves of neuroimaging from school age to Conclusions: The findings suggest that the development of adolescence. Three years after scan 3, at ages 13–18, par- the orbitofrontal cortex during childhood is strongly linked ticipants underwent a comprehensive behavioral and sub- to experiences of anhedonia and that these growth trajec- stance use assessment. Multilevel modeling was used to tories predict substance use during a developmentally critical investigate the relationship between anhedonia and the period. growth trajectories of the striatum and orbitofrontal cortex. Zero-inflated Poisson regression models were then used to determine whether the intercepts and slopes of these AJP in Advance (doi: 10.1176/appi.ajp.2018.17070777) The ability to experience pleasure during the anticipation and cortex plays a role in processing sensory input and in esti- receipt of reward is a fundamental human experience and mating the value of experiences of reward, including natural is central to the drive to survive and thrive. Deficits in this (e.g., gustatory), monetary, and drug-related incentives (5, 6). domain have been identified in both mood and substance use The striatum drives appetitive behavior by facilitating in- disorders (1, 2). The symptom of anhedonia—the inability to centive salience (e.g., wanting) and reward-related learning enjoy previously pleasurable or rewarding activities—is a (7). While orbitofrontal cortical and striatal volumes show core feature of depressive disorders. Abnormalities in re- normative increases and then decline beginning in early ad- ward processing have been identified from observational, olescence (8), reductions in the volumes of these structures behavioral, and neurobiological studies as a potent risk factor have been identified in adolescent depressive disorders in for the emergence of depression as well as substance use relation to the symptom of anhedonia (9–11). Variations in disorders (3). orbitofrontal cortical and striatal volumes have also been Both human neurobiological studies and experimental linked to substance use and later substance use disorders. animal studies have localized key brain regions involved in Numerous studies have documented decreased gray matter experiences of reward (4). This combined body of data val- volume in the orbitofrontal cortex in substance-using indi- idates the central role of the orbitofrontal cortex and the viduals, including those using alcohol (12, 13) and marijuana striatum in neural responses to reward. The orbitofrontal (14–17). While the role of the striatum in “wanting” is evident ajp in Advance ajp.psychiatryonline.org 1 DEVELOPMENTAL TRAJECTORIES OF ORBITOFRONTAL CORTEX AND ANHEDONIA AND RISK FOR SUBSTANCE USE in reward-related behaviors such as substance use and relate to risk for later substance use, independently of an- substance use disorders, the role of the orbitofrontal cortex hedonia (15), suggesting that independent processes between may be related to the pursuit of goal-directed behaviors, or orbitofrontal cortical volume and adolescent substance use are drive, which may evolve into habitual actions (18, 19), as well also operative. Based on these established brain-behavior re- as learning associations between stimulus and reward (2), lationships, an investigation of the developmental trajectory both highly relevant to risk for substance use disorders. of the striatum and orbitofrontal cortex, as a function of an- Of particular interest, associations between orbitofrontal hedonia in relation to risk for later depression or substance cortical and striatal structure and substance use have been abuse, is of interest. Building on the literature, this study found during the reward-salient period of adolescence. In the aimed to test hypotheses about how behavior and brain in United States, alcohol and marijuana are among the first these domains change together or independently influence substances to be used by Caucasian and African American eachothertopredicttherisktrajectory for later substance youths, respectively, with onsets peaking between ages 15 and use or depression. 17 (20, 21). In addition, epidemiological studies suggest that Utilizing data from a longitudinal neuroimaging study of childhood internalizing problems may modify risk, positively children with early-onset depression and healthy comparison and negatively, for onset of substance use (22). The literature subjects who were followed from preschool into adolescence, thus supports the hypothesis that anhedonia-related changes we examined the developmental trajectory of orbitofrontal in brain maturation may have an impact on the onset of al- cortical and striatal volumes and how they varied as a func- cohol and marijuana use. Both the orbitofrontal cortex and tion of anhedonia ratings. While this study sample was not the ventral striatum have been investigated in the context of specifically designed to investigate risk for substance use adolescent substance use. For marijuana, while most studies and substance use disorder, it provided an ideal opportunity have conceptualized orbitofrontal cortical volumetric alter- to investigate the trajectory of brain change in the context of ations as a consequence of heavy use (23), one longitudinal varying anhedonia and depression across childhood to inform study (15) found that smaller orbitofrontal cortical volume at risk for first onset of substance use disorder in adolescence age 12 was related to onset of marijuana use by age 16. A few and risk for a later recurrence of depression. We hypothesized studies have linked orbitofrontal cortical structure and ad- that orbitofrontal cortical and striatal volumes would decrease olescent alcohol use (e.g., 24). Similar to the marijuana over time as a function of increased anhedonia even when findings, one adolescent co-twin-control study (25) reported other depressive symptoms were controlled for. Based on an an association of lower lateral orbitofrontal cortical volume extensive literature demonstrating the role of the orbitofrontal with alcohol use. However, as no volumetric differences were cortex and ventral striatum in onset of alcohol and marijuana found within pairs of twins with varying levels of alcohol use, use, the first substancestobe used bymost U.S. youths,we then these findings suggest that changes in orbitofrontal cortical sought to explore whether these brain-related volumetric volume may be a preexisting marker of risk and not a con- trajectories predicted later substance use and depression re- sequence of prolonged alcohol exposure. A link between currence as the study sample entered adolescence, which is a structural differences in the striatum and marijuana and key period of risk for onset of substance use and depression. alcohol use is less clearly established, with some studies sug- To examine the role of anhedonia in the associations with sub- gesting that ventral striatal volume increases in users (e.g., 26). stance use, we compared whether volumetric alterations re- These findings suggest that the orbitofrontal cortex and ven- lated to, and independent of, anhedonia were equally predictive tral striatum are key areas involved in adolescent substance of alcohol and marijuana use during adolescence. use and that while they may be vulnerable to the psychoac- tive effects of drugs, variations in their maturation may also METHOD precede and contribute to the onset of substance use. While the key roles of the orbitofrontal cortex and the A total of 305 children (54% white, 33% black, 13% other) ages striatum in reward processing are relatively clear, how struc- 3–6 at baseline, oversampled for symptoms of depression, tural maturation of these regions during childhood relates to were recruited in the St. Louis metropolitan area for par- variation in hedonic tone, experiences of anhedonia and later ticipation in a longitudinal study of preschool-onset de- reward-seeking and substance use, and depression outcomes pression. After a first, behavioral-only study phase, healthy remains unknown. Early deficits
Recommended publications
  • A Brief Anatomical Sketch of Human Ventromedial Prefrontal Cortex Jamil P
    This article is a supplement referenced in Delgado, M. R., Beer, J. S., Fellows, L. K., Huettel, S. A., Platt, M. L., Quirk, G. J., & Schiller, D. (2016). Viewpoints: Dialogues on the functional role of the ventromedial prefrontal cortex. Nature Neuroscience, 19(12), 1545-1552. Brain images used in this article (vmPFC mask) are available at https://identifiers.org/neurovault.collection:5631 A Brief Anatomical Sketch of Human Ventromedial Prefrontal Cortex Jamil P. Bhanji1, David V. Smith2, Mauricio R. Delgado1 1 Department of Psychology, Rutgers University - Newark 2 Department of Psychology, Temple University The ventromedial prefrontal cortex (vmPFC) is a major focus of investigation in human neuroscience, particularly in studies of emotion, social cognition, and decision making. Although the term vmPFC is widely used, the zone is not precisely defined, and for varied reasons has proven a complicated region to study. A difficulty identifying precise boundaries for the vmPFC comes partly from varied use of the term, sometimes including and sometimes excluding ventral parts of anterior cingulate cortex and medial parts of orbitofrontal cortex. These discrepancies can arise both from the need to refer to distinct sub-regions within a larger area of prefrontal cortex, and from the spatially imprecise nature of research methods such as human neuroimaging and natural lesions. The inexactness of the term is not necessarily an impediment, although the heterogeneity of the region can impact functional interpretation. Here we briefly address research that has helped delineate sub-regions of the human vmPFC, we then discuss patterns of white matter connectivity with other regions of the brain and how they begin to inform functional roles within vmPFC.
    [Show full text]
  • Functional Connectivity of the Precuneus in Unmedicated Patients with Depression
    Biological Psychiatry: CNNI Archival Report Functional Connectivity of the Precuneus in Unmedicated Patients With Depression Wei Cheng, Edmund T. Rolls, Jiang Qiu, Deyu Yang, Hongtao Ruan, Dongtao Wei, Libo Zhao, Jie Meng, Peng Xie, and Jianfeng Feng ABSTRACT BACKGROUND: The precuneus has connectivity with brain systems implicated in depression. METHODS: We performed the first fully voxel-level resting-state functional connectivity (FC) neuroimaging analysis of depression of the precuneus, with 282 patients with major depressive disorder and 254 control subjects. RESULTS: In 125 unmedicated patients, voxels in the precuneus had significantly increased FC with the lateral orbitofrontal cortex, a region implicated in nonreward that is thereby implicated in depression. FC was also increased in depression between the precuneus and the dorsolateral prefrontal cortex, temporal cortex, and angular and supramarginal areas. In patients receiving medication, the FC between the lateral orbitofrontal cortex and precuneus was decreased back toward that in the control subjects. In the 254 control subjects, parcellation revealed superior anterior, superior posterior, and inferior subdivisions, with the inferior subdivision having high connectivity with the posterior cingulate cortex, parahippocampal gyrus, angular gyrus, and prefrontal cortex. It was the ventral subdivision of the precuneus that had increased connectivity in depression with the lateral orbitofrontal cortex and adjoining inferior frontal gyrus. CONCLUSIONS: The findings support the theory that the system in the lateral orbitofrontal cortex implicated in the response to nonreceipt of expected rewards has increased effects on areas in which the self is represented, such as the precuneus. This may result in low self-esteem in depression. The increased connectivity of the precuneus with the prefrontal cortex short-term memory system may contribute to the rumination about low self-esteem in depression.
    [Show full text]
  • Impairment of Social Perception Associated with Lesions of the Prefrontal Cortex
    Article Impairment of Social Perception Associated With Lesions of the Prefrontal Cortex Linda Mah, M.D. Objective: Behavioral and social im- Results: Relative to the comparison sub- pairments have been frequently reported jects, patients whose lesions involved the Miriam C. Arnold, M.A. after damage to the prefrontal cortex in orbitofrontal cortex demonstrated im- humans. This study evaluated social per- paired social perception. Contrary to pre- Jordan Grafman, Ph.D. ception in patients with prefrontal cortex dictions, patients with lesions in the dor- lesions and compared their performance solateral prefrontal cortex also showed on a social perception task with that of deficits in using social cues to make inter- healthy volunteers. personal judgments. All patients, particu- larly those with lesions in the dorsolateral Method: Thirty-three patients with pre- prefrontal cortex, showed poorer insight frontal cortex lesions and 31 healthy into their deficits, relative to healthy volunteers were tested with the Interper- volunteers. sonal Perception Task. In this task, sub- Conclusions: These findings of deficits in jects viewed videotaped social interac- social perception after damage to the or- tions and relied primarily on nonverbal bitofrontal cortex extend previous clinical cues to make interpersonal judgments, and experimental evidence of damage- such as determining the degree of inti- related impairment in other aspects of so- macy between two persons depicted in cial cognition, such as the ability to accu- the videotaped scene. Patients with pre- rately evaluate emotional facial expres- frontal cortex lesions were classified ac- sions. In addition, the results suggest that cording to lesion involvement of specific the dorsolateral prefrontal cortex is re- regions, including the orbitofrontal cor- cruited when inferences about social in- tex, dorsolateral prefrontal cortex, and teractions are made on the basis of non- anterior cingulate cortex.
    [Show full text]
  • Increased Functional Connectivity of the Posterior Cingulate Cortex with the Lateral Orbitofrontal Cortex in Depression Wei Cheng1, Edmund T
    Cheng et al. Translational Psychiatry (2018) 8:90 DOI 10.1038/s41398-018-0139-1 Translational Psychiatry ARTICLE Open Access Increased functional connectivity of the posterior cingulate cortex with the lateral orbitofrontal cortex in depression Wei Cheng1, Edmund T. Rolls2,3,JiangQiu4,5, Xiongfei Xie6,DongtaoWei5, Chu-Chung Huang7,AlbertC.Yang8, Shih-Jen Tsai 8,QiLi9,JieMeng5, Ching-Po Lin 1,7,10,PengXie9,11,12 and Jianfeng Feng1,2,13 Abstract To analyze the functioning of the posterior cingulate cortex (PCC) in depression, we performed the first fully voxel- level resting state functional-connectivity neuroimaging analysis of depression of the PCC, with 336 patients with major depressive disorder and 350 controls. Voxels in the PCC had significantly increased functional connectivity with the lateral orbitofrontal cortex, a region implicated in non-reward and which is thereby implicated in depression. In patients receiving medication, the functional connectivity between the lateral orbitofrontal cortex and PCC was decreased back towards that in the controls. In the 350 controls, it was shown that the PCC has high functional connectivity with the parahippocampal regions which are involved in memory. The findings support the theory that the non-reward system in the lateral orbitofrontal cortex has increased effects on memory systems, which contribute to the rumination about sad memories and events in depression. These new findings provide evidence that a key target to ameliorate depression is the lateral orbitofrontal cortex. 1234567890():,; 1234567890():,; Introduction pathophysiology of major depression and it appears to be Depression characterized by persistently sad or related to rumination and depression severity in MDD6.
    [Show full text]
  • Medial Orbitofrontal Cortex, Dorsolateral Prefrontal Cortex, and Hippocampus Differentially Represent the Event Saliency
    Medial Orbitofrontal Cortex, Dorsolateral Prefrontal Cortex, and Hippocampus Differentially Represent the Event Saliency Anna Jafarpour1,2, Sandon Griffin1, Jack J. Lin3, and Robert T. Knight1 Abstract ■ Two primary functions attributed to the hippocampus and watched a movie that had varying saliency of a novel or an prefrontal cortex (PFC) network are retaining the temporal anticipated flow of salient events. Using intracranial electro- and spatial associations of events and detecting deviant events. encephalography from 10 patients, we observed that high-frequency It is unclear, however, how these two functions converge into activity (50–150 Hz) in the hippocampus, dorsolateral PFC, one mechanism. Here, we tested whether increased activity and medial OFC tracked event saliency. We also observed that with perceiving salient events is a deviant detection signal or medial OFC activity was stronger when the salient events were contains information about the event associations by reflecting anticipated than when they were novel. These results suggest the magnitude of deviance (i.e., event saliency). We also tested that dorsolateral PFC and medial OFC, as well as the hippo- how the deviant detection signal is affected by the degree of campus, signify the saliency magnitude of events, reflecting anticipation. We studied regional neural activity when people the hierarchical structure of event associations. ■ INTRODUCTION more salient new events (Figure 1C; also see Yeung, “I was waiting at home for my friend. I made some tea, Yeo, & Liu, 1996). washed the cups, and poured hot water. Then I felt The magnitude of deviance of events is referred to as everything shaking. It was an earthquake.
    [Show full text]
  • Connectivity Reveals Relationship of Brain Areas for Reward-Guided
    Connectivity reveals relationship of brain areas for PNAS PLUS reward-guided learning and decision making in human and monkey frontal cortex Franz-Xaver Neuberta,1, Rogier B. Marsa,b,c, Jérôme Salleta, and Matthew F. S. Rushwortha,b aDepartment of Experimental Psychology, University of Oxford, Oxford OX1 3UD, United Kingdom and bCentre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom; and cDonders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EZ Nijmegen, The Netherlands Edited by Ranulfo Romo, Universidad Nacional Autonóma de México, Mexico City, D.F., Mexico, and approved February 25, 2015 (received for review June 9, 2014) Reward-guided decision-making depends on a network of brain distinct processes for task control, error detection, and conflict regions. Among these are the orbitofrontal and the anterior resolution (13, 14). Reliable identification and location of ACC cingulate cortex. However, it is difficult to ascertain if these areas subcomponent regions could assist the resolution of such debates. constitute anatomical and functional unities, and how these areas In the present study we formally compared brain regions im- correspond between monkeys and humans. To address these plicated in reward-guided decision making and learning in humans questions we looked at connectivity profiles of these areas using and monkeys, and attempted to identify their key subdivisions in resting-state functional MRI in 38 humans and 25 macaque relation to function (Fig. 1). We used fMRI in 25 monkeys and 38 monkeys. We sought brain regions in the macaque that resembled humans to delineate the functional interactions of “decision- 10 human areas identified with decision making and brain regions making regions” with other areas in the brain while subjects were in the human that resembled six macaque areas identified with decision making.
    [Show full text]
  • Non-Reward Neural Mechanisms in the Orbitofrontal Cortex Edmund T
    cortex 83 (2016) 27e38 Available online at www.sciencedirect.com ScienceDirect Journal homepage: www.elsevier.com/locate/cortex Research report Non-reward neural mechanisms in the orbitofrontal cortex Edmund T. Rolls a,b,* and Gustavo Deco c,d a Oxford Centre for Computational Neuroscience, Oxford, UK b University of Warwick, Department of Computer Science, Coventry, UK c Universitat Pompeu Fabra, Theoretical and Computational Neuroscience, Barcelona, Spain d Institucio Catalana de Recerca i Estudis Avancats (ICREA), Spain article info abstract Article history: Single neurons in the primate orbitofrontal cortex respond when an expected reward is not Received 28 January 2016 obtained, and behaviour must change. The human lateral orbitofrontal cortex is activated Reviewed 18 April 2016 when non-reward, or loss occurs. The neuronal computation of this negative reward predic- Revised 3 May 2016 tion error is fundamental for the emotional changes associated with non-reward, and with Accepted 24 June 2016 changing behaviour. Little is known about the neuronal mechanism. Here we propose a Action editor Angela Sirigu mechanism, which we formalize into a neuronal network model, which is simulated to enable Published online 15 July 2016 the operation of the mechanism to be investigated. A single attractor network has a reward population (or pool) of neurons that is activated by expected reward, and maintain their firing Keywords: until, after a time, synaptic depression reduces the firing rate in this neuronal population. If a Emotion reward outcome is not received, the decreasing firing in the reward neurons releases the in- Reward hibition implemented by inhibitory neurons, and this results in a second population of non- Non-reward reward neurons to start and continue firing encouraged by the spiking-related noise in the Reward prediction error network.
    [Show full text]
  • The Cingulate Cortex and Limbic Systems for Emotion, Action, and Memory
    Brain Structure and Function https://doi.org/10.1007/s00429-019-01945-2 REVIEW The cingulate cortex and limbic systems for emotion, action, and memory Edmund T. Rolls1,2 Received: 19 April 2019 / Accepted: 19 August 2019 © The Author(s) 2019 Abstract Evidence is provided for a new conceptualization of the connectivity and functions of the cingulate cortex in emotion, action, and memory. The anterior cingulate cortex receives information from the orbitofrontal cortex about reward and non-reward outcomes. The posterior cingulate cortex receives spatial and action-related information from parietal cortical areas. It is argued that these inputs allow the cingulate cortex to perform action–outcome learning, with outputs from the midcingulate motor area to premotor areas. In addition, because the anterior cingulate cortex connects rewards to actions, it is involved in emotion; and because the posterior cingulate cortex has outputs to the hippocampal system, it is involved in memory. These apparently multiple diferent functions of the cingulate cortex are related to the place of this proisocortical limbic region in brain connectivity. Keywords Cingulate cortex · Limbic systems · Hippocampus · Orbitofrontal cortex · Emotion · Memory · Depression Introduction: the cingulate cortex and other stream processing areas that decode ‘what’ the stimulus is limbic structures (Rolls 2014b, 2016a, 2019a, b). The hippocampus is a key structure in episodic memory with inputs from the dorsal A key area included by Broca in his limbic lobe (Broca stream cortical areas about space, action, and ‘where’ events 1878) is the cingulate cortex, which hooks around the cor- occur, as well as from the ‘what’ ventral processing stream pus callosum.
    [Show full text]
  • The Orbital and Medial Prefrontal Circuit Through the Primate Basal Ganglia
    The Journal of Neuroscience, July 1995, 75(7): 4851-4867 The Orbital and Medial Prefrontal Circuit Through the Primate Basal Ganglia S. N. Haber,’ K. Kunishio,* M. Mizobuchi,2 and E. Lynd-BaItal ‘Department of Neurobiology and Anatomy, University of Rochester School of Medicine, Rochester, New York 14642 and ‘Department of Neurological Surgery, University of Okayama Medical School, Okayama 700, Japan The ventral striatum is considered an interface between The ventral striatum has long been consideredan interface be- limbic and motor systems. We followed the orbital and tween the limbic cortex and motor responseto stimuli (Nauta medial prefrontal circuit through the monkey basal gan- and Domesick, 1978; Mogenson et al., 1980). Physiological, glia by analyzing the projection from this cortical area to pharmacological, and behavioral studieshave demonstratedthe the ventral striatum and the representation of orbitofron- integral role the ventral striatum plays in motivated behavior tal cortex via the striatum, in the globus pallidus and sub- (Jones and Leavitt, 1974; Mogenson et al., 1980, 1993; Mo- stantia nigra. Following injections of Lucifer yellow and gensonand Nielsen, 1983; Apicella et al., 1991; Schultz et al., horse radish peroxidase into the medial ventral striatum, 1992; Napier et al., 1993; Koob et al., 1994). However, the there is a very densely labeled distribution of cells in ar- anatomical framework through which the ventral striatum can eas 13a and 13b, primarily in layers V and VI, and in me- influence subsequentmotor output has not been worked out in dial prefrontal areas 32 and 25. Injections into the shell of the primate. One current theory concerning the organization of the nucleus accumbens labeled primarily areas 25 and 32.
    [Show full text]
  • A Neuroimaging Study of Personality Traits and Self-Reflection
    behavioral sciences Article A Neuroimaging Study of Personality Traits and Self-Reflection Joseph Ciorciari 1,* , John Gountas 2 , Patrick Johnston 3, David Crewther 4 and Matthew Hughes 1 1 Department of Psychological Sciences, Centre for Mental Health, Swinburne University of Technology, Melbourne 3122, Australia; [email protected] 2 Department of Psychological Sciences, Adjunct, Swinburne University of Technology and Department of Marketing, Adjunct University of Notre Dame Western Australia, Fremantle 6959, Australia; [email protected] 3 Faculty of Health, School of Psychology and Counselling, Queensland University of Technology, Brisbane 4000, Australia; [email protected] 4 Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne 3122, Australia; [email protected] * Correspondence: [email protected] Received: 21 October 2019; Accepted: 2 November 2019; Published: 5 November 2019 Abstract: This study examines the blood-oxygen level dependent (BOLD) activation of the brain associated with the four distinctive thinking styles associated with the four personality orientations of the Gountas Personality Orientations (GPO) survey: Emotion/Feeling-Action, Material/Pragmatic, Intuitive/Imaginative, and Thinking/Logical. The theoretical postulation is that each of the four personality orientations has a dominant (primary) thinking style and a shadow (secondary) thinking style/trait. The participants (N = 40) were initially surveyed to determine their dominant (primary) and secondary thinking styles. Based on participant responses, equal numbers of each dominant thinking style were selected for neuroimaging using a unique fMRI cognitive activation paradigm. The neuroimaging data support the general theoretical hypothesis of the existence of four different BOLD activation patterns, associated with each of the four thinking styles.
    [Show full text]
  • Repetitive Transcranial Magnetic Stimulation Over the Right Dorsolateral Prefrontal Cortex Decreases Valuations During Food Choices
    European Journal of Neuroscience, Vol. 30, pp. 1980-1988, 2009 NE NCE Repetitive transcranial magnetic stimulation over the right dorsolateral prefrontal cortex decreases valuations during food choices Mickael Camus,' Neil Halelamien, 2 Hilke Plassmann, 3 Shinsuke Shimojo, 2 '4 John O'Doherty," ' 4 ' 5 Colin Camererl'4 and Antonio Rangel 1•4 1 Humanities and Social Sciences, California Institute of Technology, MC 228-77, Pasadena, CA, USA 2Division of Biology, California Institute of Technology, Pasadena, CA, USA 3 INSEAD, Fontainebleau, France 4ComputaTion and Neural Systems, California Institute of Technology, Pasadena, CA, USA 5 lnstitute of Neuroscience and School of Psychology, Trinity College, Dublin, Ireland Keywords: decision making, DLPFC, TMS, choice Abstract Several studies have found decision-making-related value signais in the dorsolateral prefrontal cortex (DLPFC). However, it is unknown whether the DLPFC plays a causal role in decision-making, or whether it implements computations that are correlated with valuations, but that do not participate in the valuation process itself. We addressed this question by using repetitive transcranial magnetic stimulation (rTMS) while subjects were involved in an economic valuation task involving the consumption of real foods. We found that, as compared with a control condition, application of rTMS to the right DLPFC caused a decrease in the values assigned to the stimuli. The results are consistent with the possibility that the DLPFC plays a causal role in the computation of values at the time of choice. Introduction Most theoretical models of goal-directed decision-making in neuro- Glimcher, 2007; Plassmann et al., 2007; Rolls et al., 2007; Tom et al., science, psychology and economics assume that subjects make choices 2007; Valentin et ut, 2007; Hare et al., 2008, 2009).
    [Show full text]
  • The Human Orbitofrontal Cortex: Linking Reward to Hedonic Experience
    REVIEWS THE HUMAN ORBITOFRONTAL CORTEX: LINKING REWARD TO HEDONIC EXPERIENCE Morten L. Kringelbach Abstract | Hedonic experience is arguably at the heart of what makes us human. In recent neuroimaging studies of the cortical networks that mediate hedonic experience in the human brain, the orbitofrontal cortex has emerged as the strongest candidate for linking food and other types of reward to hedonic experience. The orbitofrontal cortex is among the least understood regions of the human brain, but has been proposed to be involved in sensory integration, in representing the affective value of reinforcers, and in decision making and expectation. Here, the functional neuroanatomy of the human orbitofrontal cortex is described and a new integrated model of its functions proposed, including a possible role in the mediation of hedonic experience. REINFORCERS The human orbitofrontal cortex has received relatively expansion and heterogeneous nature of this brain Positive reinforcers (rewards) little attention in studies of the prefrontal cortex, and region mean that a full understanding of its functions increase the frequency of many of its functions remain enigmatic. During pri- must be informed by evidence from human neuro- behaviour that leads to their mate evolution, the orbitofrontal cortex has developed imaging and neuropsychology studies. acquisition. Negative reinforcers (punishers) decrease the considerably, and although some progress has been Recently, neuroimaging studies have found that 3 4 frequency of behaviour that made through neurophysiological recordings in non- the reward value , the expected reward value and leads to their encounter and human primates, it is only during the past couple of even the subjective pleasantness of foods5 and other increase the frequency of years that evidence has converged from neuroimag- REINFORCERS are represented in the orbitofrontal cortex.
    [Show full text]