<<

THE PATCH-CLAMP TECHNIQUE EXPLAINED AND EXERCISED WITH THE USE OF SIMPLE ELECTRICAL EQUIVALENT CIRCUITS.*

Dirk L. Ypey 1 & Louis J. DeFelice 2

1Department of Leiden University Medical Center (LUMC) P.O. Box 9604 2300 RC Leiden, The Netherlands voice 31715276815 fax 31715276782 email [email protected]

2Department of , Vanderbilt University Medical Center Nashville, TN 37232-6600, USA. voice 1(615)3436278 fax 1(615)3431679 email [email protected] *ThepresentchapterisaplannedadditiontotherevisedPlenumPressbook‘ElectricalProperties ofCells’byLouisJ.DeFelice.Itisashortenedversionofachapterwiththesameorsimilartitle whichmaybecomeavailableonlinefromPlenumPressunderthenamePlenumBTOL. NeithertheauthorsnorPlenumPresstakeresponsibilityforeitherpersonaldamageordamageto equipmentthatmayoccurduringthepracticalexercisessuggestedinthispaper. INDEX 1. INTRODUCTION 1.1.Whatispatchclamping? 1.2.Fivepatchclampmeasurementconfigurations. 1.3.Whyuseelectricalequivalentcircuits? 2. FOUR BASIC ELECTRICAL EQUIVALENT CIRCUITS

2.1.Charginga:ERCcircuitI. 2.2.Chargingaleakycapacitor:ERCcircuitII. 2.3.ClampinganERCmodel:ERCcircuitIII. 2.4.ClampinganERCmembranethroughapatch:ERCcircuitIV.

3. MODEL CELL EXPERIMENTS

3.1. Introduction

3.2. Model cell and measurement set-up description 3.2.1.Equivalentcircuit 3.2.2.Modelhardware 3.2.3.Patchclampsetup

3.3. Patch-clamp measurement procedures and configurations 3.3.1.Switchingonthepatchclamp:amplifieropeninputcapacitanceandresistance,andfiltering 3.3.2.Connectingthepipetteholderwithpipettetothepatchclamp:extrastraycapacity. 3.3.3.Immersingthepipettetiptomeasurepipettecapacitanceandresistance. 3.3.4.Gigasealingthecellandcancelingthefastcapacitycurrentsinthecellattachedpatch(CAP) configuration. 3.3.5.Makingawholecell(WC):measuringseriesresistanceandcellcapacitancewhilecanceling theslowcapacitytransients. 3.3.6.Pullinganoutsideoutpatch(OOP)andcheckingthesealresistance. 3.3.7.Excisionofaninsideoutpatch(IOP). 3.3.8.MakingapermeabilizedpatchWC(ppWC).

3.4. An instructive model experiment Checkingwholecellmembranepotentialandresistance

3.5. Conclusion

REFERENCES

2 1. INTRODUCTION 1.1. What is patch clamping? Whenonehearsthewords" patch-clamp "or"patchclamping"forthefirsttimeinthescientific context,inwhichthistermissooftenused(cellphysiologyandmembrane),it sounds like magic or silly jargon. What kind of patch, clamp or activity is one talking about? Obviously, not clamping patches ofmaterial together as onemight do inpatchwork orquilting! "Patch"referstoasmallpieceofcellmembraneand"clamp"hasanelectrotechnicalconnotation. Patchclampmeansimposingonamembranepatchadefined(" voltage-clamp ")withthe purposetomeasuretheresultingcurrentforthecalculationofthepatchconductance.Clamping couldalsomeanforcingadefinedcurrentthroughamembranepatch(" current-clamp ")withthe purposetomeasurethevoltageacrossthepatch,butthisapplicationisrarelyusedforsmallpatches ofmembrane.Thus,sincetheintroductionofthepatchclamptechniquebyNeherandSakmannin 1976,patchclampmostoftenmeans"voltageclampofamembranepatch.”NeherandSakmann appliedthistechniquetorecordforthefirsttimethetiny(picoAmpere,pA,pico=10 12 ) currentsthroughsinglechannelsincellmembranes.Othershadmeasuredsimilarsinglechannel eventsinreconstitutedlipidbilayers.However,thepatchclamptechniqueopenedthiscapabilityto awidevarietyofcellsandconsequentlychangedthecourseofelectrophysiology.Thatwas,atthat time,analmostunbelievableachievement,laterawardedtheNobelPrize[seetheNobellaureate lecturesofNeher(1992)andSakmann(1992)]. Thisaccomplishment,andthequirkynameofthetechnique,nodoubtaddedtothemagicalsound ofthetermpatchclamp.Remarkably,themechanicalaspectsofthetechniqueareassimpleas gentlypushinga1 mdiameterglassmicropipettetipagainstacell.Themembranepatch,which closes off the mouth of the pipette, is then voltageclamped through the pipette from the extracellularside,moreorlessinisolationfromtherestofthecellmembrane.Forthisreasonthe patchclampamplifiersofthefirstgenerationwerecalledextracellularpatchclamps. 1.2. Five patch-clamp measurement configurations Neher and Sakmann and their coworkers soon discovered a simple way to improve the patch clamp recording technique. They used glass with superclean ("firepolished") tips in filteredsolutionsandbyappliedslightunderpressureinthepipette.Thisprocedurecausedtight sealingofthemembraneagainstthepipettetipmeasuredintermsofresistance:gigaOhmsealing, giga=10 9.Thismeasurementconfigurationiscalled cell-attached patch (CAP) (seeFig.1.1), whichallowedtherecordingofsinglechannelcurrentsfromthesealedpatchwiththeintactcell stillattached.ThisgigasealprocedureallowedNeherandSakmannandtheircoworkerstoobtain threeothermeasurementconfigurations,includingoneforintracellularvoltageandcurrentclamp: themembranepatchbetweenthepipettesolutionandtheisbrokenbyasuctionpulse while maintaining the tight seal (Hamill et al., 1981). In this socalled whole-cell (WC) configuration (Fig. 1.1), the applied pipette potential extends into the cell to voltageclamp the plasma membrane. Alternatively, the amplifier could be used to inject current into the cell to currentclampthecellmembraneandtorecordvoltage,forexampletostudyactionpotentialsof small excitable cells, which was impossible until the development of the gigaseal. Another

3 achievementoftheWCconfigurationwasthepossibilitytoperfusetheintracellularcompartment withthedefinedpipettesolution.AlthoughtheWCclampconfigurationisnolongeraclampofa smallmembranepatch,electrophysiologistscontinuedtorefertotheWCclampconfigurationasa variant ofthe patchclamp technique, probably because the WCclamp starts with gigasealing a smallmembranepatch. Twoothervariantsareinherenttothepatchclamptechnique,sincetheyconcernclampingasmall areaofmembrane.Thegigasealcellattachedpatch,sometimescalledan"oncell"patch,canbe excisedfromthecellbysuddenlypullingthepipetteawayfromthecell.Oftenthecellsurvivesthis holepunching procedure by resealing of the damaged membrane, so that the excision can be repeated on the same cell. The excised patch is called an inside-out patch (IOP) (Fig. 1.1), because the inside of the plasma membrane is now exposed to the external salt solution. This configurationallowsonetoexposethecytoplasmicsidetodefinedsolutionsinorder,forexample, to test for intracellular factors that control membrane channel activity. Another type of excised patch can be obtained, but now from the WCconfiguration rather than the cellattached configuration.Itisthe outside-out patch (OOP) ,whichisexcisedfromtheWCconfigurationby slowly(notabruptlynow!)pullingthepipetteawayfromtheWC(Fig.1.1).Thismaneuverfirst defines a thin fiber that eventually breaks to form a vesicle at the tip of the pipette. The configuration obtained is indeed a microWC configuration, which allows one to study small populations of channels or single channels and to readily manipulate the “tiny cell” to different bathingsolutionsforrapidperfusion. Theconnectionofthecurrent(I)orvoltage(V)measuringamplifiertothepipetteandthebathis showninFig.1.1fortheOOP,butthisconnectionappliestoallotherconfigurationsaswell.The measuring electrode is inserted in the pipette, while the reference electrode is in the bath. The resultingcircuitisshownfortherecordingofasingleOOPchannelcurrent,drivenbyanintrinsic voltagesourceinthechanneland/oravoltagesourceintheamplifier.Thefifthconfigurationisthe permeabilized-patch WC-configuration (ppWC) (Fig. 1.1), in which the CAP is not actually ruptured for direct access to the inside of the cell, but made permeable by adding artificial ion channels(monovalentcationchannelforming)viathepipettesolution(HornandMarty, 1988). Examples of such antibiotics are amphotericin and , both produced by microorganisms.Thegreatadvantageofthisconfigurationisthatitallowsintracellularvoltage andcurrentclampmeasurementsonrelativelyintactcells,i.e.cellswithanearnormalcytoplasmic composition. This is in contrast to the perfused WCconfiguration. The various patchclamp configurationsarebeautifullydescribedinNeherandSakmann(1992). It is the purpose of the present contribution to make the beginning student familiar with the electrophysiological procedures involved in experimenting with each of the five patchclamp configurations.Therequiredtheoreticalbackgroundwillbeprovidedandtheexplainedtheorywill be exercised with patchclamp experiments on a model cell designed for teaching and testing purposes.

4 Figure 1.1. Diagram of the five patch-clamp measurement configurations. Thefiguredepictsalivingcellseen fromthesideimmersedinextracellularsolutionandadheredtothesubstrate.Thebarreltypeporesinthemembrane (somewithmovablelidsorgates)representionchannels.Thefive“cups”drawninsemiperspectiveclosetothecellare thetipsoffluidfilledglassmicropipettesconnectingthecelltotheamplifier.Thefigureisacompositedrawing,asif allfivepipetteswereplacedononecell.Althoughthisisnotapracticalpossibility,itispossibletomakesimultaneous twoelectrodeWC/CAPrecordings(seeelsewhereinthepresentbook)andCAP/CAPwouldnotbeoutofthequestion. Allfivetipsareinpositiontoillustratehowthevariousmeasurementconfigurationsarederivedfromtheinitialcell attachedpatch(CAP)configuration,establishedafterthegigasealingprocedure.Theinsideoutpatch(IOP)isaCAP excisedfromthecellmembrane.Thewholecell(WC)configurationisobtainedbyrupturingtheCAP.Theoutsideout patch (OOP) is a vesicle (a “tiny cell”) pulled from the WC configuration. The permeabilizedpatch WC (ppWC) develops from the CAP if the pipette solution contains poreforming molecules incorporating in the CAP. The measuringpatchclampamplifierandtheconnectingelectrodes,oneinsidethepipetteandoneinthebathingsolution, aredrawnfortheOOPconfiguration.However,theyapplytotheotherconfigurationsaswell.Theamplifiermeasures current(I)throughthemembraneorvoltage(V)acrossthemembrane.

1.3. Why use electrical equivalent circuits? Patch clamping is an electrical technique, which requires some skill in electrical thinking and measuring. When a patchclamper is going through the procedures to obtain one of the five measurement configurations, he or she is continuously monitoring voltagestep induced current

5 responsesorcurrentstepinducedvoltageresponsestocheckwhethertheprocedureswork.While doingthat,theexperimenterisalsocontinuouslyconceptualizingthemeasurementconditionasa simpleelectricalcircuitmodelconsistingof(R),(C),andbatteries(E).Because these models are nearly equivalent to the real measurement conditions in certain (but not all!) respects,thesemodelsarealsocalledequivalentcircuits. ExamplesofthiswayoftestingandproceedingareillustratedinFig.1.2a.Thepatchclamp(pc) amplifierishererepresentedbyavoltagesource,Epc,inserieswitha,Rpc,bothshuntedby aninputcapacitance,Cpc.Themeasuringpatchpipettecanberepresentedbythepipetteresistance, Rpip, and pipette capacitance, Cpip, as soon as the pipette entersthe solution. Gigasealing the patchpipettetothecellmembranecanberepresentedbyreplacingthedirectconnectionofthe pipettewiththegroundedbathbythesealresistanceRseal.Afterformingthegigaseal,thepipette openingisclosedoffbythecellattachedpatch(CAP)withitshighresistance,Rcap.Breakingthe CAP replaces Rcap for access resistance, Racc, providing access to the inside of the wholecell (WC)withitsEm:Rm:Cmmembrane. Fig. 1.2b shows that the three steps in the procedure for obtaining a WCconfiguration can be simulatedbyasimpleERCcircuitwiththreeswitches(S).ClosureofSpip(doubleswitchwith Scpip and Srpip) would represent entering the bath with the pipette, opening the switch Sseal symbolizes (abrupt) sealing, and closure of switch Sacc simulates WCestablishment by short circuitingRcapwiththeaccessresistanceRacc.Duringactualexperimentstheexperimentercan recognizeenteringthebath,gigasealingthecellandmakingaWCbyapplyingvoltagestepsinEpc tothepipetteandinterpretingthecurrentresponsesasifthecircuitofFig.1.2bapplies.Thisisthe main value of equivalent circuits. The same is true for obtaining the other three patchclamp configurations discussed above (IOP, OOP, ppWC). Thus, thinking in terms of simple ERC- circuits is essential for readily doing the tests and subsequent experiments. Therefore, students interested in learning patch clamping should begin to familiarize themselves with this way of thinkingandmeasuring.

6 Figure 1.2. A simple electrical circuit modeling the successive patch-clamp procedures for obtaining the whole- cell configuration. Apipette(PIP)enteringthebath,formingagigasealwiththecell,andbreakingthecellattached patch. Part a showshowthevariouscomponentsofthecircuitcanbeidentifiedwithcomponentsofthemeasurement configuration(s). Part b showsthecircuitabstractedfromthedrawinginParta,includingtheswitches(S)forgoing through the three successive procedures leading to a WC configuration. The procedures and component names are further explained in the text. During the experiment the quality of the pipette, the gigaseal, and the wholecell configurationaretestedbyapplyingvoltageclampEpcstepstothepipetteandmeasuringtheresultingpatchclamp currentIpc.

7 Buthow?Studyingelectronics(HorowitzandHill,1990)willhelp,butthismaybeanunwanted detourforthosestudentsreadytodotheexperiments.Manyelectronicscoursesandtextbooksalso discussthepropertiesofinductors,transistorsandoperationalamplifiers,whilethesesubjectsare notofmajorimportanceforthebeginningoreventheadvancedstudentinelectrophysiology.In our opinion, mastering ERCcircuits should have the highest priority for obtaining measurement skills.Theearlierchaptersofthepresentbookareparticularlydevotedtoprovidingthebasicsof bioelectricitytothebeginningstudentandattemptstofillthegapbetweenbasicphysicaltheoryand moreadvancedmembraneelectrophysiologytextbooks(Hille,2001). Afterthepresentintroduction,webeginwiththetheoryofthebasicERCcircuitsrelevantforpatch clamping.Sincepatchclampingisatechniqueoftenusedinmultidisciplinaryteamsofbiomedical scientists,studentsfrombiologyormedicineoftenwanttolearnthetechnique.Astheyfrequently donothavemuchbackgroundinphysicsorelectronictechnology,itmaybehelpfulifsuchstudents havebiologicalexamplesofthephysicstheyarelearning.Suchexamplesareusuallynotprovided in the general electronics courses. Here we take the opportunity to give such examples while explainingthetheory.Fig.1.2alreadyshowsseveralimportantmodelsandtheearlierchaptersof thepresentbookshouldhelpprovidethephysicalbasicsofERCcomponentsandcircuits.We stress,however,thatwhatevertheimportanceofthetheory,practicalexercisesareasimportant. isanexperimentalscienceandtryingtorecognizeERCcircuitbehaviorintheelectrical behaviorofarealcircuitorinalivingcellisofgreatinstructivevalue. ManualsforpracticalclassroomcoursesontheelectronicsofERCcircuitsforpatchclampstudents are available (Ypey, 1997). However, the most attractive way to become introduced to patch clampingistoexercisethetheoryinarealpatchclampsetuponanequivalentcircuitmodelofa cellshowingalltherelevantERCbehaviorofalivingcell,i.e.,withrealisticE,RandCvalues. That is what we do in Chapter 3. It allows the student to combine learning the theory with becomingfamiliarwithapracticalsetup.Italsoforcesthestudenttoidentifycomponentsofa patchedcellwithelectriccircuitcomponents(E,RorC).Studentsreadytostartpatchclamping may use Chapter 3 as an instruction manual for how to test a setup in preparation for actual experiments.ReadingChapter3beforebeginningexperimentswillservethestudentmorethan merely reading the instruction manual of a patchclamp amplifier, although that should not be forgotten! Toourknowledge,a structured patch-clamp measurement exercise course aspresentedherehas notyetbecomeavailableforgeneraluseandteaching.Thisisincontrasttothemanycomputer programs available for teaching concepts of biophysical or physiological mechanisms. Although these teaching models may be invaluable, in particular for patchclampers, they do not provide practicalmeasurementexercises.Thelatterareimportantbecausemeasurementconditionsalways presentpracticalproblemsthatmustbesolvedbeforeoneisabletomakesenseoftheobservations. Thereare,ofcourse, limitations tothemodelexercisespresentedhere.Oneisthelackof"wet" (i.e.,physicalchemical)propertiesintheERCcircuitcellmodel.Alsothereisnoopportunityto encounterandsolveelectrodeoffsetorjunctionpotentialproblems,ortostudytheionicdependence ofmembranepotentials.Thesetopicsmustbedealtwithseparately.Anothershortcomingofthe ERC cell model one should notice is that it lacks HodgkinHuxley “excitability” conductance properties.Thatwouldbeuseful,butonceabletomakereliablemeasurements,thestudentwillfind

8 that HodgkinHuxley teaching models for conceptual training (e.g. , Ref?, see also PlenumBTOL)areavailableforfurtherexercisesandexperiments.Abookofgreatpracticalusein allaspectsofthepatchclamptechniqueis The Guide of Sherman-Gold (1993). Afinalcommentonlimitations:theERCcircuitwithavoltagesourceEsinserieswithaninternal sourceresistorRs(thustwoconnectionterminals)onlyappliestopatchclampstimulation(voltage clamp or current clamp) because the patchclamp is a true twoterminal input, singleelectrode clamp. Although the approach in principle also applies to threeterminal, twomicroelectrode voltageclampstimulation,thiswouldrequiresomerethinkingandredrawingofthemeasurement configurations.FurtherjustificationforusingERCcircuitequivalentsinelectrophysiologyisgiven inPlenumBTOL.

9 2. FOUR BASIC ELECTRICAL EQUIVALENT CIRCUITS Inthepresentchapterwediscussthepropertiesoffoursimpleelectricalcircuitsrepresentingsix frequentlyencounteredexperimentalconditionsduringpatchclamping.Forpracticalanddidactic reasons, we discuss these successively as circuits of increasing complexity. Nevertheless, the differentsituationsarerathersimilarandreducetotwotypesofbasiccircuitsinmanyapplications, onewithonecapacitorandtheotherwithtwo.Thesimplestcircuit,thefirstone,ismostfrequently employedduringpracticalexperiments.Hereitisalsousedtointroduceandexplaintheequations (Ohm'sLaw,Kirchoff'sLaw,andcapacitorequation)thatdescribethebehaviorofallfourcircuits. The circuits are denoted as ERC-circuits , since they contain batteries (E), resistors (R) and capacitors(C).Whenintroducingthecircuits,wewillindicateinwhichrespectthesecircuitscan serveasequivalentsofpracticalpatchclampconfigurations.Thepracticaluseofthesecircuitswill becomeapparentindemonstrationsonthemodelcellinChapter3.Whereappropriate,wewill discussimportantpropertiesofthecircuitsforrealpatchclampexperiments. DiscussionofthefourERCcircuitswillserveaspreparationforthedemonstrations.Thetheoryof the four practical circuits is so important that one can hardly imagine doing patchclamp experiments without understanding this theory. The circuits will also be used to explain the differencebetweenvoltageclampandcurrentclampstimulation.Althoughthesetwostimulation techniquesaremethodologicallyverydifferent,technicallyspeakingtheyareonlyextremesofone and the same technique. It is very importantthatthe student becomes fluent in switching from voltageclamptocurrentclampthinking.Someelectrophysiologistsmayrelytooheavilyononly voltageclamp, even though voltageclamp was designed primarily to understand the unclamped behaviorofexcitablecells.TheERCcircuitapproachusedhereisanexcellentwaytointegrate bothwaysofclampinginoneframework.Inalaterstageoflearningpatchclamp,thisapproach willhelptounderstandandidentifybadvoltageclamprecordingsfromexcitablecells. 2.1. Charging a capacitor: ERC circuit I Fig. 2.1a gives the most simple batteryresistorcapacitor (ERC) circuit (ERCcircuit I) one can conceive,becauseitconsistsofonlyonebattery(Es),oneresistor(Rs)andonecapacitor(C),all threecomponentsinseriesinaclosedcircuit.Theindex‘ s’ (whichstandsfor‘source’)indicates thatweconsidertheEs:RscombinationasasourcethatprovidesthecurrenttochargeC.This sourcemaybeavoltageorcurrentclampinstrument,andCmaybethecapacityofthepatch clampinput,ofapatchpipetteorofthemembraneofacell,asillustratedinFig.1.2.Beforethe pipettetouchesthebath,Epc,Rpc,andCpcformtheERCcircuitI.Afterformingagigaseal,Epc, Rpc,andCpc+CpipagainformERCcircuitIifRsealandRcapareverylarge.Inthewholecell Epc,Rpc+Rpip+RaccandCmmayformERCcircuitI,ifRmandRsealareverylargeandCpc +Cpipverysmall.

10 Figure 2.1. Charging a capacitor: ERC-circuit I. Part a shows the ERCcircuit studied, b the voltageclamp behavioruponanEsvoltagestepatagiven(low)valueofRsandcthecurrentclampbehaviorofthecircuitupona muchhigherEsvoltagestepatamuchhighervalueofRs(noticetimecalibrationdifference).Theupperrecordsof bandcshowtheEsvoltagestepsapplied(positive,fromzero)andtheexponentialVcresponses.Thelowerrecords showtheexponentialcurrentresponses.NoticethattheVcandIrstransientschangewiththesametimeconstants andthatthecurrentclamptransientsaremuchslowerthanthevoltageclamptransients.Inbothcasesthereisno stationarycurrentafterthetransient,sinceVcbecomesexactlyequaltoEs.Esisthestimulatingvoltage,Irsisthe currentthroughthesourceresistanceRs,VcisthevoltageacrossthecapacitorC,andIcisthecurrentflowinginto C.Therecordsinpanelsbandchavebeencalculatedwiththeuseofacomputermodelofthecircuitinaforthe componentvaluesgiveninpanelsbandc. HerewewanttounderstandhowstepsinthevoltageEs,asoccurduringpatchclampexperiments, chargethecapacitor: how rapidly is C charged, by which current, and to what voltage? We consider step changes in Es rather than other functions, such as sinusoidal or ramp functions, because step changes are widely used in electrophysiology for membrane stimulation. Electrophysiologists often study how membrane conductance changes when the voltage changes abruptly to a new, fixedvalue because this is simple to analyze. A quick way to do that is by applyingastepchangeinpotential. WeneedthreeequationsasmathematicaltoolstodescribethebehaviorofcircuitslikeFig.2.1(for more theoretical background, see the earlier chapters of the present book). The first formula is Ohm's law , V = RI, which relates the voltage V (expressed in units of volts, with V as the symbol),acrossaresistorR(inunitsofohms,with asthesymbol)tothecurrentI(inunitsof

11 amperes,withAasthesymbol)flowingthroughtheresistor.YoumaythinkofRasproportionality constantbetweenVandI. It is convention in membrane electrophysiology to define intracellular voltage and membrane current polarity withrespecttotheground(=arbitrary‘zero’voltage)ontheexternalsideofthe membrane.ThusthegroundsymbolsinFigures2.14indicatetheexternalsideofamembraneif thecircuitistakentorepresentstimulationofacellwiththeEs&Rssource.Voltagesourcesare thenpositive,ifthepositivesideofthebatteryisfacingtheinsideofthemembrane.Membrane currentsarepositivewhentheyflowfromtheinsidetotheoutside,drivenbyanetpositivevoltage differenceacrossthemembrane. Inourderivationswewilloftenchoosepositivevoltagesourcesandconsideraconsistentpathof currentflow,buttheresultingequationswilldescribeandcurrentsforanyvoltagepolarity. ForERCcircuitI,Ohm'slawimplies Vrs=EsVc=RsIrs (1a) or Irs=(EsVc)/Rs (1b) withVrsthevoltageacrossRs,Esthesourcebatteryvoltage,Vcthevoltage(difference)acrossthe capacitorCandIrsthecurrentthroughRs.ThisequationalsoappliesifVcandIrschangeduring chargingofC.Thewaywewrite‘changingintime’mathematicallyisV(t),whichmeansthatVis changingintime.ThenVc(t)andIrs(t)shouldbesubstitutedforVcandIrs,respectively. Thesecondequationisthe capacitor equation ,Q=CV,whichrelatesthevoltageVacrossa capacitorwithcapacity C(inunitsoffarads,withFasthesymbol)tothechargeQ(inunitsof coulombs,withCasthesymbol)accumulatedonC.ThusCisaproportionalityconstantinthis equationbetweenQandC.InERCcircuitIwerefertothevoltageacrossCasVctocontrastit withVrs.ThechargeonCwecallQc.ThecapacitorequationforcircuitIthenbecomes Qc=CVc (2a) or Vc=Qc/C (2b) This equationmeansthat a given charge Q on acapacitorC causes a greater voltage difference acrossthecapacitorwhenthecapacitorissmaller.Ontheotherhand,alargecapacitorholdsmore chargeatagivenvoltagethanasmallone. InERCcircuitIwewanttodescribethechargingprocessofCuponastepchangeofEs,thusthe changesinQcandVc.Wecaneasilychangethecapacitorequationfroma(static)chargeequation toa(dynamic)currentequation,becausethechangeinQcisexactlyequaltothechargingcurrentIc flowing into or out ofC. Taken into considerationthat a changing charge Qc (dQc/dt) causes a changingvoltageVc(dVc/dt),Eq.2canberewrittenas Ic=dQc/dt=CdVc/dt (3)

12 ThisequationimpliesthataconstantchargingcurrentIcintocapacitorCcausesalinearlyrisingVc (dVc/dtconstant)acrossthecapacitor.Conversely,whenthereisalinearlyrisingVc,thereisa constantchargingcurrent. WhenEsincircuitIissteppedfromzeroVtoaconstantpositivevalue,whiletheprestepVc=0, a current will start to flow that is determined by Eq. 1, but the same current will change Vc accordingtoEq.3. Kirchoff's law forcurrentsentering(Iin)andleaving(Iout)abranchingnodein acircuitstatesthatSumIin=SumIout.ThisimpliesforthesimplebranchingnodeVcincircuitI (onlyoneentryandoneexit)that: Irs=Ic, (4) andwritteninfullwithEqs.2and3incorporated: (EsVc)/Rs=CdVc/dt (5a) dVc/dt=(1/RsC)(VcEs) (5b) Thisisasimple,firstorderlinear differential equation relatingthechangeinVc(dVc/dt)toVc,as ismoreclearlyexpressedbyEq.5b.WithVc>Es,dVc/dtisnegative,anditismorenegativeat smallerRsandCandatlarger(VcEs)values.ForVc<Es,dVc/dtispositive,andevenmore positiveatsmallerRsandCandatmorenegative(VcEs)values.AtVc=EsthendVc/dt=0, implyingsteadystateconditions.ThereforeVcmovestowardEswithlowerandlowerspeedthe closeritapproachesEs,bothfrommorepositiveandfrommorenegativevalues. Usually, the steadystate value of Vc reached after changing Es is directly determined from the differential equation by filling in the steady-state condition dVc/dt = 0. For that case, Eq. 5 changesto: Vc*=Es (6) withVc*thesteadystatevalueofVc.Thissolutionisconsistentwiththeabovereasoningbased onthepropertiesofthedifferentialequation. AlthoughtherecipeofEq.5bisaperfectprescriptionforthechangeofVcduringthecharging processofC,wewouldbehappierwiththe dynamics ofVc,i.e.theexact time course ofVc(t) uponsteppingEsfromonevoltagetoanother.ThistimecourseVc(t)isthesolutionofdifferential Eq. 5. The actual solution procedureis givenin PlenumBTOL. Here, we merely state the end result: Vc(t)=Es+(Vc(0)Es)e t/τs (7) with τs=RsC (8)

13 ThisequationshowsthatCischargedupfromitsinitialvoltageVc=Vc(0)tothesteadystate value Vc* = Es (fill in t = 0 and t = very large, respectively). The τs = Rs C determineshowquicklyVc(t)movestowardEs.Thesmallerτs,i.e.thesmallerRsandC,the fastertheVctransientoccurs.Therefore, τsisgenerallyusedasacharacteristicvalueindicatingthe chargingtimeofthechargingcircuit.Att=τs,theinitialdifferencebetweenVcandEs,Vc(0)Es, hasdeclinedtothevalue(Vc(0)Es)/e(verifythisresultbyfillingint=τs).Atthatexacttime, about60%ofthetotalchangeofVchastakenplace.Aftert=3τs,about95%ofthefullchangehas takenplace. NowthatweknowVc(t)ofthechargingprocess,wecaneasilydeterminethe charging current as afunctionoftimebycombiningEqs.1band7: Irs(t)=[EsVc(t)]/Rs=[Es–Vc(0)e t/τs]/Rs (9) It is this charging current one sees upon voltage steps during a patchclamp, voltageclamp experimentonaveryhighresistancemembranepatchorhighresistancewholecell.Thevoltage transientVc(t)isneverobservedinaregularoneelectrodepatchclamp,voltageclampexperiment, butitstimecoursecanbededucedfromthecurrenttransient.Fig.2.1bshowsthetimecoursesof Vc(Eq.7)andIrs(Eq.9)uponastepincreaseinEs.Thetimeconstantsofbothtransientsarethe same. Eq.9showsthatthechargingcurrentismaximalatt=0andzeroatverylargetvalues(t>>τs), consistentwiththeabovedifferentialequation.Thepeakcurrentatt=0is(EsVc(0))/Rs,whichis equal to Es/Rs when Vc(0) = 0. When only the change in voltage ( Es) and current ( Irs) is considered,the Irspeakisequalto Es/Rs.Thisisaruleofthumb,whichisusedduringevery patchclamp experimentafter breaking the sealed membrane patch to obtainWCconditions (see demonstrationexperimentsbelow).Thisquickcalculationservestodecidewhetherthevoltage clamp conditions of the newly obtained WC are good enough (low Rs) to proceed with the experiment,totrytoimprovetheconditions(lowerRs),ortoterminatetheexperimentandlookfor another cell. At the same time, one estimates τs from the current transient in order to decide whethertherateofcurrentdecline,i.e.therateofchargingCofthecellisfastenoughtofaithfully recordsubsequentrapidlyrisingvoltageactivatedioniccurrents.Thus,understandingtheproperties ofsimplebasicERCcircuitIisofextremeimportanceforsuccessfullycarryingoutanyWCpatch clampexperiment! What does this all mean for obtaining practical voltage-clamp or current-clamp conditions? Good clamp conditions are conditions under which the clamped quantity is imposed by the clampinginstrument,independentofthepropertiesoftheclampedobject.Thus,atgoodvoltage clamptheEs/RsinstrumentclampsCtoEsincircuitI.AtgoodcurrentclamptheEs/Rsinstrument injectsaconstantcurrentEs/RsintoC,withRsincurrentclamp>>Rsinvoltageclamp.Ifthe purposeofstimulationinERCcircuitIistovoltageclampCtoEs,thisconditionresults inperfectsteadystatevoltageclamp,sinceVcbecomesexactlyequaltoEs(Eq.6).Whetherthe voltageclampisfastenoughtorecordrapidlyactivatedcurrentsupontheEsstep(whichwedon't showanddonotdiscusshere),dependsonthevalueofthetimeconstantτs.Thesmallerτs,the

14 better are the dynamic properties of the voltageclamp,inthis case only consisting of the Es/Rs combination. ThecurrentclampconditionsinERCcircuitIareworse.Onlyattheverybeginningjustafterthe stepinEs(t<<τs,with τsmuchlargerthaninvoltageclamp),isIrsdeterminedbyEs(Fig.2.1c). SoonafterchargingCbyIrs,thedrivingforce(EsVc)declines,suppressingIrsmoreandmore, untilIrshasbecomezero.Thus,whileitisimpossiblewithERCcircuitItoobtaingoodsteady statecurrentclampconditions(att>>τs),itisimpossibletoobtaingoodvoltageclampconditions justafterthestepchangeinEs(t<<τs). 2.2. Charging a leaky capacitor: ERC-circuit II Although cell membranes may be very high resistant, they usually have some conductance (the inverse of resistance) in parallel with their capacitance. Thus, mostly we are dealing with capacitance(C)shuntedbyresistance(R).SuchaparallelRCcombinationisoftencalleda leaky capacitor ,aswedohere.Fig.2.2ashowsacircuitwithaleakycapacitorstimulatedbytheEs/Rs source,asinFig.2.1a.Thus,thecircuitofFig.2.2a,ERCcircuitII,isthatofFig.2.1awithan addedRacrossC. TheRCpartofthiscircuitlookslikeapatchpipette,withR=Rpip(pipetteresistance)andC= Cpip(pipettecapacitance)(seeFig.1.2bforswitchesSpipandSsealclosed)oracellmembrane, withR=Rm(membraneresistance)andC=Cm(membranecapacitance),butwithoutamembrane potential(cf.Fig1.2bforRs=Rpc+Rpip+Racc,Cpc+Cpip=0,Rseal>>RmandEm=0).The Es/RscombinationmayrepresentavoltageorcurrentclampusedtomeasureRpipandCpiporRm andCm,respectively.

15 Figure 2.2. Charging a leaky capacitor: ERC-circuit II. Circuit ( a), record types ( b,c ) and symbols are as in Figure2.1exceptforanextracomponentinthecircuit,resistanceRinparalleltoC.ItisnowtheparallelRC circuitthatisvoltageclamped(Rs<<R)( b)orcurrentclamped(Rs>>R)( c)bytheEs/Rssource.Therecords havebeencalculatedfortheindicatedcomponentvalues.TheEsstepincis100mV.Thevoltageclamprecordsat thegivenresolutiondonotlookverydifferentfromthoseinFig.2.1b,butthesignificantdifferenceisthatVcnever becomesexactlyequaltoEsandthatIrsreachesa stationary value ~Es/R. It is the value after the capacitance transientthatisimportantduringarealpatchclampexperiment,becausethisvaluereflectstheconductanceofthe membraneifR>>Rs.Thisimpliesthatthecapacitancepeakcurrentismuchlargerthanthecurrentafterthepeak transient. The currentclamp records look very differentfromthoseinFig.2.1c.Irsreachesastationary value Es/(Rs+ R)~Es/RsandVcshowsa stationarydisplacement~IrsR.Thetimeconstantis nowsmallerthan for ERCcircuitI:~RCinsteadofRsC. WeinvestigatethebehavioroftheERCcircuitIIinthesamewayaswedidforERCcircuitI: we want to know Vc(t) and Irs(t) upon a step in Es .TheequationsforIrsandIcarethesameasfor circuitI,butwehavenowonecurrentmore,thecurrentIrthroughtheaddedR,whichis,according toOhm'slaw,equalto Ir=Vc/R (10) BranchingnodeVchasoneentrycurrent(Irs)buttwoexitcurrents(IcandIr).So,applicationof Kirchoff's current law resultsin Irs=Ic+Ir (11) Bysubstitutionoftheequationsforthethreecurrents(Eqs.1b,3and10),oneobtainsagainthe differential equation describingthechangeinVc(dVc/dt)uponEssteps

16 (EsVc)/Rs=CdVc/dt+Vc/R (12a) or dVc/dt=(1/τsp).(VcVc*) (12b) with Vc*=REs/(Rs+R) (13) and τsp=RspC (14) withRsptheparallelequivalentresistanceofRsandR Rsp=RsR/(Rs+R) (15) Eq.12ahasbeenrewrittenasEq.12binordertoobtainanexpressionwhichmoreclearlyshows howdVc/dt(writtenasasingletermattheleftsideof=)dependsonVc(presentasasingleterm attherightside)withaproportionalityconstanttobemultipliedwithVc.Trytodothealgebraof thisrewritingyourself! ThemeaningofdifferentialEq.12bcannowbeinvestigatedinthesamewayasforEq.5bfor ERCcircuit I: Vc moves toward Vc*, both from Vc > Vc* and from Vc < Vc*, with a rate proportionaltotheabsolutevalueofVcVc*andinverselyproportionalto τsp,RspandC.AtVc =Vc*dVc/dt=0,thenVc*(Eq.13)isthevalueofVcunder steady-state conditions ,ascould have been found directly from Eq. 12a by filling in the steadystate condition dVc/dt = 0. It dependsontherelativevalueofRshowcloseVm*istoEs. The time behavior ofVc,namelyVc(t),canbefoundinthesamewayasforERCcircuitI,i.e.by solvingdifferentialEq.12a(seePlenumBTOL).Theresultisgivenheredirectly: Vc(t)=Vc*+(Vc(0)Vc*)e t/τsp (16) withVc*givenbyEq.13and τspgivenbyEqs.14and15.Thus,theVctransientisasingle exponential,movingfromVc(0)toVc*withatimeconstant τspdeterminedbybothRsandR,but mainlybythesmallestofthetworesistorsiftheyhaveadifferentvalue.Onemaybesurprisedthat the time constant τsp is determined by the equivalent resistance Rsp of Rp and R in parallel, althoughtheresistorsareinseriesinthecircuit.Forthecapacitor,theyareapparentlyinparallel, becausetheyaretwoparallelsimultaneouslycharging/dischargingpathwaysforthecapacitor. Vc*in voltage-clamp (Rs<>Rs,voltageclampisverygood,forexamplewithin1% ifR>100Rs.Therefore,atverylowRs,bothdynamic(small τsp)andsteadystate(Vc*closeto Es)voltageclamparegood.ThetimecourseofVcuponanEsvoltageclampstepisgraphically illustratedbyFig.2.2b.

17 The time course of the charging current Irs,Irs(t),nowfollowsbysubstitutingEq.16inEq.1b. WehavedonesomethingsimilarwithERCcircuitI,buttheresultisnowdifferentbecauseofthe presenceofR: Irs(t)=[EsVc(t)]/Rs (17a) or Irs(t)=[Es(Vc*+(Vc(0)Vc*)e t/ τsp )]/Rs (17b) with Irs(0)=[EsVc(0)]/Rs (17c) and Irs*=[EsVc*]/Rs=Es/(Rs+R) (17d) ThedifferencebetweenEq.17andthecurrentequationofERCcircuitI(Eq.9)isthatRallowsa steadystatecurrenttoflow,namelyIrs*. Eqs. 1317 allow us to further define good voltage- and current-clamp conditions . Eq. 13 impliesthataleakycapacitorisverywellvoltageclampedtotheapplied,Es,ifRs<<R.Forthat condition,Eq.17impliesthatthesteadystatecurrentinthecircuit,Irs*,isthenalmostcompletely determinedbyR(orbyconductanceG,inSiemens,S=1/Ohm)andthatslowchangesinR(orG) willbewellreflectedbyIrschanges.“Slow”meanswithtransienttimes>> τsp,with τsp~RsC (Rs<<R).VoltageclamprecordsareillustratedinFig.2.2b. Good current-clamp conditions are guaranteed for the condition Rs>>R, since then Irs will be independentofR(cf.Eq.17d). Vc*willthenbe(cf.eq.13) Vc*=RIcc (18) withthecurrentclampcurrentIcc Icc=Es/Rs (19) AlthoughIrs(0)willstillovershootIrs*alittlebitunderthiscondition,theshapeoftheincreasein currentuponastepincreaseinEswillbenearlystepwise.ThetimeconstantofVc(t)isnowτsp~ R.C,whichismuchlargerthanundervoltageclampwithτsp~RsC.ThisisillustratedinFig. 2.2c.NoticethattheVcvalueincurrentclampalwaysremainsasmallfractionoftheappliedEs! 2.3. Clamping an ERC model: ERC-circuit III Cellmembranesareleaky capacitors,whicharechargedbecausethey accumulatechargeonthe capacitor through the "leaks" that generate a membrane potential. By voltage or currentclamp stimulationonecanchangethechargeonthecapacitor.Sofar,wehaveneglectedthepresenceof an intrinsic voltage source in the leaky capacitor stimulatedbytheexternalEs/Rssource(ERC circuitII).Fig.2.3ashowsERCcircuitIII,whichiscircuitIIwiththevoltagesourceEplacedasan extracomponentintheRbranch,inserieswithR.Herewestudythepropertiesofthiscircuit,

18 whichisequaltotheWCcircuitdrawninFig.1.2forRs=Rpc+Rpip+Racc,Cpc=Cpip=0. andforRseal>>R.

Figure 2.3. Clamping an ERC-model: ERC-circuit III. Thiscircuit( a)contains,comparedtoERCcircuitII,an extravoltagesourceEaddedinserieswithR.ThismakestheresultingERCcircuitresemblingapatchpipettewith offsetvoltageoracellmembranewithmembranepotential,voltage( b)orcurrent( c)clampedbytheEs/Rssource. TheEsstepincis100mV.Notethedifferenceintimescalebetweenbandc.Therecordsinbandchavebeen calculated for the indicated component values and are similar to those in Fig. 2.2b,c, except for the following differences:(1)Ecausesstationary(inward)currentinbwhenEs=0andthestationarycurrentupontheEsstepis alsodifferentbecauseofthepresenceofE;(2)theVcrecordincnowstartsfromE(herechosenpositive)instead offromzero. ThebehaviorofERCcircuitIIIuponstepsinEscanbederivedinthesamewayasforERCcircuit II.TheonlyequationthatisdifferentisthatforIr,whichis Ir=(VcE)/R (20) Thisdifferenceaffectsthedifferentialequationresultingfromtheapplicationof Kirchoff's current law tothecurrentsinnodeVc Irs=Ic+Ir (21a)

19 whichbecomes,aftersubstitutingtheequationsforIrs(Eq.1b),Ic(Eq.3)andIr(Eq.20), (EsVc)/Rs=CdVc/dt+(VcE)/R (22b) The student herself may now derive all the other equations describing both the steadystate and dynamicbehaviorofERCcircuitIIIuponstepsinEsbyfollowingtheproceduresexplainedunder ERCcircuits1and2.Weprovidethemherewithoutmuchfurtherexplanationofthederivations. Therewritten differential equation is dVc/dt=(1/τsp).(VcVc*) (22c) with Vc*=(RsE+REs)/(Rs+R) (23) and τsp=RspC (24) with Rsp=(RsR)/(Rs+R) (25) The steady-state behavior ofVc,Vc*,isgivenbyEq.23.Eisnowpresentintheequationto contributetoVc.TherelativevaluesofRsandRdeterminewhetherVcismoreattheEsside(Rs <<RforvoltageclampbyEs)orattheEside(Rs>>RforcurrentclampbytheEs/Rssource). The time behavior ofVcuponstepsinEsisdescribedby Vc(t)=Vc*+(Vc(0)Vc*)e t/τsp (26a) withVc*givenbyEq.23.NotethatEq.26aisidenticaltoEq.16.Thedifferenceisintheactual valueofVc*(Eq.23)becauseofthepresenceofE.Upon voltage-clamp stepsinEsfromEs=0 (Rs<<R),Vcmoveswithasingleexponentialtimecourse(τsp~τs=RsC)fromavaluecloseto theprestepEs=0valuetooneclosetotheEsstepvalue(Fig.2.3b).Upon current-clamp stepsin EsfromEs=0(Rs>>R),Vcmovesrelativelyslowly(comparedtoundervoltageclamp)witha singleexponentialtimecourse(τsp~τp=R.C)fromavalueclosetoEtoavalueclosetoEplusa voltagedropacrossRduetothecurrentclampcurrentIcc=Es/Rs(Fig.2.3c).Inequation Vc(t)=E+RIcc(1et/τsp ) (26b) Theequationforthe current behavior ofIrs(t)uponstepsinEsisobtainedagainbysubstituting Eq.26ainEq.1b,whichresultsinthenextequation(thesameexpressionasEq.17a): Irs(t)=[EsVc(t)]/Rs (27a) or Irs(t)=[Es(Vc*+(Vc(0)Vc*)e t/τsp )]/Rs (27b) with Irs(0)=[EsVc(0)]/Rs (27c) and Irs*=[EsVc*]/Rs=(EsE)/(Rs+R) (27d)

20 Thus,Eshowsupintheexpressionsforthesteadystatevoltagesandcurrents,whethertheyapply tovoltageclamporcurrentclamp.In voltage-clamp, Edoesnotcontributemuchtotheclamped potential,butitdoesclearlycontributetothecurrent,becauseEsandEvaluesinpracticalsituations areofthesameorderofmagnitude,whileRs<>R)E dominatesVc,butsignificantcurrenttobringVcawayfromEcanonlybeappliedifEs>>E.This isdemonstratedbyEq.23afterrewritingforthecurrentclamp(CC)conditionRs>>R: Vc*=E+RIcc (28) with Icc=Es/Rs (29) Voltageclamp and currentclamp records are illustrated in Fig. 2.3b and 2.3c, respectively. In principletheyhavethesameshape,buttheovershootundercurrentclampishardlynoticeable. InsteadofstartingwiththesimplercircuitsIIandI,wecouldhavestartedwithERCcircuitIIIfor the derivation of all the equations describing the behavior of the circuit upon stimulation with voltageorcurrentsteps.Wecouldhaveshown,then,thattheequationsforthesimplercircuitsII andIeasilyfollowfromthoseofthemorecompleteERCcircuitIII.AssumingE=0yieldsthe equationsofcircuitII,andassumingE=0andR=infinityyieldsthoseofcircuitI.Thebeginning student is better off with the above procedure, because the concepts and derivations are better introducedandexplainedthere.Theadvancedstudentcould,however,certainlyfollowtheinverse sequencefromcircuitIIItoI. The general conclusion from ERCcircuits I to III is that voltage-clamp and current-clamp stimulation are extremes of the same stimulation technique with an Es/Rscontaining instrument. But membrane electrophysiologists know how different both techniques are in methodologicalrespectandhowimportantitistohavethembothatyourdisposal.Goodvoltage clamp allows complete voltage control over membrane conductance behavior, since the various ionicconductancesinthemembranesoflivingcellsarevoltageandtimedependentbutnotcurrent dependent.Thus,whenapplyingconstantcurrentundercurrentclamp,themembranevoltageis changed.Thismayfurtheramplifythechangingvoltagebyopeningupionicchannelsaffectingthe membrane potential in the same direction and may result in an impulsive change in membrane potentialcalledexcitability.Itwasforthepurposeofstudyingthemechanismsofexcitabilitythat voltageclamp techniques were developed. Voltageclamp instrumentation involves modern operational amplifier technology rather than a simple controllable Es battery with a good low resistanceRscomponent.Conceptually,however,theEs/Rscombinationservesasagoodelectrical equivalent of the clamp instrument because it summarizes what the technology has achieved: providing an ideal controllable voltage source with a relatively low output resistance Rs for the purposeofmeasuringverysmallcurrents(nAtopA). 2.4. Clamping an ERC through a patch pipette: ERC-circuit IV Acellmembranecannotdirectlybevoltageorcurrentclamped,assuggestedbythediscussionsof ERCmodels IIII. One always needs access electrodes between the clamping source and the clampedmembrane.The access pathway directlyconnectedtothecellisapatchpipettewithits

21 narrow, high resistance tip and its pipette capacitance of the thin glass wall between the pipette solutionandtheextracellularbathingsolution.Thereferenceelectrodeusuallydoesnotaddmuch accessresistanceorparallelcapacitancetothecircuit,becauseitisdirectlyimmersedinthebathing solutionsurroundingthecell(cf.Fig.1.2).ERCcircuitIVinFig.2.4agivesabetterrepresentation ofthisconditionthanthepreviouscircuits.ItisidenticaltothecircuitdrawninFig.1.2forthe WCconfiguration(withRseal>>Rm).CpandRpmaybeseenasrepresentingthepipetteplus patchclampcapacitanceandthepipetteplusaccessresistance,respectively,andCm,Rm,andEm representtheERCcircuitofthecell.Usually,involtageclampRs<<Rp<<RmandCp<Cm.If Esisastepfunction,RsactsasanaccessresistanceforchargingCp.Subsequently,Rpactsasan accessresistancetochargeupCm.Becausetherearetwocapacitorscoupledbyaresistor,thereisa two-phase charging process inthemeasurementcircuit,whichoccursduringeachvoltagestepin apatchclampexperiment.ThiswillbeanalyzednowusingERCcircuitIV.

Figure2.4. Clamping an ERC cell membrane through a patch pipet: ERC circuit IV. ThecircuitinaisFig.2.3a forawholecellconfiguration,extendedwithcomponentsrepresentingthepropertiesofthemeasuringpatchpipet. ThepipetresistanceRpistheaccessresistancetotheEm/Rm/Cmmembranecircuit,andCpshuntstheinputofthe Es/Rssource.Thepresenceoftwocapacitors(CpandCm)coupledbyaresistor(Rp)makesthevoltageclamp(b) and currentclamp (c) responses biphasic (less clearly visible in currentclamp at the given resolution). Records calculatedfortheindicatedcomponentvalues.

22 AfterthediscussionofERCcircuitsIto III,wedon'tneedtoexplaintheequationsforcurrents through resistors (Ohm's law) or currents into capacitors (capacitor equation). We can instead directlyapply Kirchoff's current law tothetwonodesVpandVm. FornodeVp(seeFig.2.4)wewrite Irs=Icp+Irp (30) or (EsVp)/Rs=CpdVp/dt+(VpVm)/Rp (31a) or RsRpCpdVp/dt=(Rs+Rp)Vp+RpEs+RsVm (31b) Eqs.31aisafirstorderdifferentialequation,butitssolutionisundeterminedbecauseitincludes Vmasanothervariableobeyinganotherfirstorderdifferentialequation(seebelow).GiventhatVm isundetermined,thesteadystatesolutionofEq.31(fordVp/dt=0)is Vp*=(RpEs+RsVm*)/(Rp+Rs) (32) AlthoughthisequationdoesnotprovideauniquesolutionofVp*,becauseVm*isundetermined (Vm*dependsonEmandRm,whicharenotincludedinthisequation,seebelow!),itprovidesa measureofVp*/Vm*valuepairsconsistentwithsteadystateconditions.Weneedtoincorporate EmandRmintheequationtofindauniquevalueofVp*(seeEq.36). FornodeVm(seeFig.2.4a)Kirchoff'scurrentlawallowsustowrite Irp=Icm+Irm (33) or (VpVm)/Rp=CmdVm/dt+(VmEm)/Rm (34a) or RpRmCmdVm/dt=(Rp+Rm)Vm+RpEm+RmVp (34b) Eq.34bisalsoafirstorderdifferentialequation.ItiscoupledtodifferentialEq.31throughIrp. Togethertheseequationsformasetof two coupled linear first order differential equations .The steadystatesolution(dVm/dt=0)forVm,againwithnouniquesolution,is Vm*=(RpEm+RmVp*)/(Rp+Rm) (35) Eqs.32and35formasetoftwo steady-state equations withtwounknowns.Wecansolvethem bysubstitution,bothforVp*andforVm*.Theresultis Vp*=[(Rp+Rm)Es+RsEm]/(Rs+Rp+Rm) (36) and Vm*=[RmEs+(Rs+Rp)Em]/(Rs+Rp+Rm) (37)

23 TheseequationsimplythatVm*~Vp*~Esundergood voltage-clamp conditions,withRm>>Rp >>Rs,aswanted.However,Vp*isclosertoEsthanitistoVm*,becauseoflossofvoltageacross Rp.DuringpracticalexperimentsRp(andanextraaccessresistanceRaccassociatedwithRp,see Fig.1.2andChapter3)maybecomeaproblemifRmisnotmuchlargerthanRp.Thenthecellwill escapevoltagecontrolandanexcitablecellmayfireadistortedactionpotentialuponvoltagesteps, seenasanactioncurrentinsteadofavoltagecontrolledcurrent. Rpmayalsocomplicate current-clamp recordings,sinceVp*isusuallymeasuredinsteadofVm*, althoughtheinterestisinVm*.FortheconditionRs>>Rm,Rp(currentclamp),Eq.36becomes Vp*=Em+(Rm+Rp).Icc (38) with Icc=Es/Rs (39) Thus,onlyforRp<<RmthechangeinVp*uponcurrentclampstimulationislargelyduetoRm. The voltage time courses Vp(t)andVm(t)forEsstepsaremoredifficulttodetermine,becausethis requiressolvingtwocoupleddifferentialequations.Thiscanbedonebywritingfirsttwoseparate secondorderdifferentialequationsbysubstitutionofoneintotheother,andviceversa,aswhen solvinganytwoequationswithtwounknowns.Bothsecondorderequationscanbewrittenina generalform Kp.d 2Vp/dt 2+LpdVp/dt+MpVp=Np (40) and Km.d 2Vm/dt 2+Lm.dVm/dt+MmVm=Nm (41) withK,L,MandNbeingconstantsdefinedelsewhere(PlenumBTOL). Thesolutionsofthesetwoequationshaveageneralform(HirschandSmale,1974;seeInceetal., 1986forasimilarproblem). Vp(t)=Ape t/Tp1 +Bpe t/Tp2 +Dp (42) and Vm(t)=Am.e t/Tm1 +Bme t/Tm2 +Dm (43) with A, B and D being constants. Thus, these solutions have the shape of the sum of two exponentialfunctions,withT1andT2beingcomplexfunctionsofτsp=RsCp,τpm=RpCmas wellasotherparameters. InsteadofanalyzingtheexplicitexpressionsofEqs.42and43,herewefollowapracticalapproach bynumericallycalculatingthefunctionsVp(t)andVm(t)fortheequivalentcircuitofFig.2.4aunder good voltage-clamp conditions(Rs<<Rp<<Rm).Theformsofthesefunctionsaresketchedin Fig. 2.4b. Cp is charged in two phases, an initial rapid phase and a second slow phase. Cm is chargedwithasigmoidaltimecourseinwhichtheonsetcorrespondstotherapidchargingofCp andthelaterphasecorrespondstotheslowchargingofCp.Theinitialfastchargeisclosetothe timeconstantτsp=RsCpandthelongchargeisclosetothetimeconstantτpm=RpCm.Thus,the

24 timeconstantsT1andT2intheequationsVp(t)andVm(t)correspondtoapproximatelytoτspand τpm,respectively.ThisseemsreasonablebecauseatextremedifferencesbetweenRs,Rp,andRm, as occur during good voltageclamp, charging of Cp and Cm is virtually independent. In the calculated current-clamp responsestoEssteps,thepresenceofasignificantRpcanbeseenasan initialshoulderintheVp(t)responseandasasmalldelayintheVm(t)response(seeFig.2.4c).The calculated charging currents, Irs(t) , are also given in Fig. 2.4b,c. The voltageclamp currents (lowerrecordoffigureb)clearlyshowsuccessiveCpandCmcharging.Irs(t)wascalculatedfrom theequation(cf.Eq.1b): Irs(t)=(EsVcp(t))/Rs (44) Theexplicitformofthisexpressionisnotderivedhere. For voltage-clamp conditions,theaboveequationdescribeswhateverypatchclamperknowswell asatwophase(fastandslow)capacitancechargingcurrentinresponsetovoltagesteps(seeFig. 2.4b),onwhichtheyspendsomuchtime,cellaftercell,tomeasureandcancel.Thefastcurrent transient mainly reflects Cp charging, while the slow transient mainly reflects Cm charging, as discussedaboveforthevoltagechangesVp(t)andVm(t). Under current-clamp conditions(Rs>>RpRm),Eq.44describesthecurrentleavingtheclamp instrument, but not exactly the current entering the membrane, because the initial fast current componentmainlyservestochargeCp.Theactualcurrentofinterest,Irp(t),isdescribedby Irp(t)=[(Vp(t)Vm(t)]/Rp (45) butitisimpossibletocatchthiscurrentinoneelectrodepatchclampexperiments,inwhichonecan only record current Irs (in voltageclamp) or Vp (in currentclamp). Fortunately, the difference betweenIrsandIrpisofnoconcernifRs>>Rm>>RpandCp<Cm.Inthatcasethecurrentsteps are practically square both for Irs and Irp. There should nevertheless be a very small two componentovershootintheappliedcurrentIrs,butthisishardlyvisibleinrecords(cf.Fig.2.4c). Eqs. 36, 37, and 4244 are probably the most important and practical equations of this course, becausetheydescribethepatchclampstimulationtechniqueinawaythatincludesbothvoltage and currentclamp stimulation under ideal and nonideal clampconditions. Although many problemscanbeunderstoodthroughtheseequations,practicalproblemscan,ofcourse,bemore complexthanmodeledbytheERCcircuitsdiscussedsofar.Forexample,acellmaybecoupledto anothercellortosurroundingcells(Harksetal,200?)sothatthestimulatedobjectisnolongera singleERCcompartment.InthatcasetheERCcircuitrepresentingthestimulatedobjectshouldbe extendedwithanotherresistivelycoupledERCcompartment(Torresetal,2004).Iftheequivalent circuit becomes complex, it may be useful to employ a computer model to simulate the measurementconfigurationortomakeanelectricalequivalentmodelaswedidinChapter3for demonstratingtheERCcircuittheoryofthischapter(cf.Torresetal.,2004). Finally,itisofinteresttomentionthatERCcircuitIVisidenticaltoa model of two electrically coupled cells .TheEsRsCpcircuitwouldrepresentcell1andtheEmRmCmcircuitcell2,withRp beingthecouplingresistanceofagapjunction.ThismodelcanbeusedtostudytheeffectofEs

25 changesincell1onVmofcell2,aswellastheroleofthemembraneresistances(Rs,Rm),the couplingresistance(Rp),andmembranecapacitors(Cp,Cm)inthisinteraction.Thus,ERCmodels maybeofgreatuse,notonlyforpracticalpatchclampingbutalsoinmoregeneralproblemsofcell physiology. 2.5. Conclusion AfewfinalremarksmayplacethesimpleequivalentERCcircuitapproachofthepresentchapterin abroaderperspective.Thisapproachhelpstounderstandhowandwhatoneismeasuringduring patchclamping, but the ERC-circuit theory used here only describes voltage and current changes upon abrupt changes of the components of the ERC-circuit .AbruptEchangesapply tothepatchclamptechniquewithitsvoltageandcurrentclampjumps.AbruptRchangesapplyto channel openings and closures and relatively sudden conductance changes. Sudden Cchanges seemlessrelevant,butareneverthelesseasilydescribedwiththesameequivalentcircuittheory. Fusionoftwocellsorvesicleswithdifferentmembranepotentialswouldbeanexampleofinterest. Thesimple ERC-circuit approach does not apply to the kineticsofvoltagedependentchannelor conductanceactivation,whichiswidelystudiedinmembraneelectrophysiology.Thisfieldofstudy requiresadditionalconcepts,bridgingthemicroscopicmechanismsofsinglechannelactivationand macroscopicelectricphenomenalikeexcitability.Studentsinterestedinthissubjectarereferredto theearlierchaptersofthepresentbook,toothertexts(Hille,2001)orarereferredtotheinstructive teachingmodelsnowwidelyavailable(seePlenumBTOL). Arecommendednextstepafterthischapteristoexerciseyourgraspoftheequivalentcircuittheory bytestingitinarealpatchclampsetupwitha model cell displayingERCcircuitpropertieslike thoseshownabove.Howtoproceedisexplainedinthenextchapter.Oronecouldalsodirectlygo toactualpatchclampexperiments,butwehavelearnedfromexperiencethatitisstilldifficultinthe beginning to recognize ERCcircuit phenomena in living cells. Instant recognition during experimentsmaybeimportantforquickdecisionsabouthowtocontinuesuccessfulprotocolsif technicalproblemsarise.However,spendingsomeextratimenowonamodelcellsavestimeinthe longrun,becausetheobservationsarenotobscuredthenbyaccidentalexperimentalcomplications.

26 3. MODEL CELL EXPERIMENTS. 3.1. Introduction Thefollowingdemonstrationsandexerciseswillbepresentedmoreorlessinthesequenceofareal patchclampexperiment,fromswitchingontheequipmentto,forexample,pullinganoutsideout patch, through all the intermediate phases, such as pipette testing, gigasealing and wholecell formation.Fortunately,thissequenceisinlinewiththesequenceoftheERCcircuitsdiscussedin thepreviouschapter.WewilloftenrefertothoseERCcircuits,includingthederivedequations. No new equations need to be derived. The descriptions will be as if we were giving a demonstration,butwithsuggestionstothereaderfordoingherownextraexperiments.Ifyoudo theexperiments,makesurethatyoustarteachsessionwithastandardamplifierandmodelsetting (seebelow).Otherwise,youmaygetlostinabnormalamplifierbehavior(e.g.oscillations),orthe amplifiermaylookdead(insaturation),oryoumaymisinterpretthemodelcellresponses.Prevent touching the (+) input of the patchclamp amplifier as much as possible, since your body is a capacitor(probablyisolatedfromgroundbynonconductingshoes)andmaybechargedtoquitea fewvoltswithrespecttoground.Thisbodycapacitancetendstoshareitschargeandvoltagewith thesmallinputcapacitanceofthepatchclamp,andlargevoltagesmaydamagetheinput.Therefore useinsulatedforcepstocontactthecircuitorgroundyourselffirstbeforetouchingthecircuitsothat youwillnotcarrylargeharmfulvoltages. The importance of the demonstrations and experiments is that they provide exercises in recognizing simple electric circuit behavior in complex experimental conditions .Withoutsuch exercisesitmighttakemonths,orevenyears,todevelopthatskill.

3.2. Model cell and measurement set-up description 3.2.1.Equivalentcircuit Fig. 3.1 shows the full electrical equivalent circuit of the model cell used to illustrate the electrophysiological properties of the various patchclamp measurement configurations in a real patchclampsetup.Itisan ERC-circuit model ,i.e.itonlyconsistsofvoltagesources(E),resistors (R) and capacitors (C). Switches (S112) are used at various points in the circuitto switch the circuitfromoneconfigurationtoanotherortorepresentopeningandclosingofionchannelsand abruptactivationofionconductances.ItisverysimilartotheERCmodelinFig.1.2bbutmore detailed.Forexample,itincludesspecificresistorsorconductorsintheCAPandWCandalso allowstheestablishmentoftheIOP,OOPandppWCconfiguration.E,RandCcomponentsand valuesaswellasswitchesarelistedinTable3.1.Componentvaluesareinthephysiologicalrange. Switchesaredrawninthestandardinitialpositions,fromwherechangesaredefined.

27 Figure 3.1. Diagram of the electrical equivalent circuit of the model used to exercise patch-clamp procedures and measurements. The dashed capacitors are stray capacitances, not added to the circuit as components. A schematicdrawingofthemeasurementconfiguration(pipettetipleft,cellright)hasbeenoverlaidoverthecircuitto identify the physical and biological origin of the circuitcomponents. Forfurtherexplanations,see text and for componentvalues,seeTable3.1. ThecircuitleftofthepatchclampconnectionswitchSpc(#2)isthe ERC-circuit equivalent of the patch-clamp amplifier . Switch Scvc (# 1) is used to switch between the two measurement modes,voltageclamp(vc)andcurrentclamp(cc).Thecircuitincludesanidealvolt(V)meterand anidealcurrent(I)meter(withI=Vrvc/Rvcrepresentingthecurrenttovoltageconversion).Epc correspondstoEs,andRvcandRccrepresentthetwoextremes(Rcc>>Rvc)ofRsvaluesinthe ERCcircuitsofthepreviouschapter.Cpcistheinputcapacityofthepatchclamp.SwitchSpc connects the pipetteholder (with pipette) to the patchclamp and introduces the extra capacity Cpipholdtotheamplifierinput.Practicalinformationonpatchclampamplifiersettingsisgiven below.SimultaneousclosingofswitchesScpip(#3)andSrpip(#4)represents entering the bath solution with the pipette ,thusconnectingpipettecapacitanceCpipandpipetteresistanceRpipto thepatchclampinput.ClosingonlyScpipsimulatestestingacloggedpipettewithimmeasurably highRpip.OpeningswitchSseal(#5)afterclosingswitches2,3,and4symbolizes giga-sealing of thepipettetiptothecellandthe formation of a cell-attached patch (CAP) withresistanceRcap andcapacitanceCcap.ClosureofchannelswitchScapch(#6)intheCAPactivatesaCAPchannel byinsertingintheCAPtheCAPchannelresistanceRcapch,shuntingtheresistanceoftheCAP membrane,Rmcap.RcapistheequivalentofRmcapandRcapchinparallel.TheCAPmembrane and CAPchannel have not been given intrinsic voltage sources (CAPmembrane potential and channelreversalpotential),assumingthatthepipettesolutionhasanioniccomposition,whichis essentiallythesameasthecytoplasm.

28 Breaking the CAP for establishing the whole-cell (WC) configuration is simulated by closing accessswitchSacc(#7),whichshortcircuitsRcapbyinsertingthemuchloweraccessresistance RaccasanextraresistanceinserieswithRpip.Switchinginsideoutpatch(IOP)switchSiop(#8) totheleft,fromitsWCpositiontotheIOPpositionwhileSaccisopen,imitates excision of an IOP fromthecellbyabruptlypullingupthepipetteintheCAPconfiguration.WithSaccclosed,Siopin theWCpositionandoutsideoutpatchswitchSoop(#9)closedweareintheconventionalWC configuration, from where we can enter the OOP-configuration by opening switch Soop. ConductanceswitchesSgl(#10),Sgk(#11)andSgna(#12)canbeusedtosuddenlyactivateor deactivatethethreeWCmembraneconductancesGl(leakconductance),Gk(K +conductance)and Gna(Na +conductance),respectively.TotalmembraneconductanceGm=Gm'+Goop,withGm' beingthesumoftheactiveconductancesGl,Gk,andGna,thusexcludingGoopandGcap.WC membrane capacitance is Cm = Cm' + Coop, thus excluding Ccap. Formation of the permeabilized-patch WC (ppWC) configurationissimulatedbyinsertingsuccessivelydecreasing Raccvalues Thegroundedsideofthecircuitistheextracellularsideofthecellmembrane.Thepatchclamp potential,Epc,thepipettepotential,Vpip,themembranepotential,Vm,andthereversalpotentials, Eoop,El,Ek,andEnaaremeasured(ordefined)withrespecttothisextracellulargroundpotential. VrvcisthevoltageacrosstheresistorRvc. 3.2.2.Modelhardware Thepresentinformationonthehardwarecomponentsandpatchclampsetupthatweusedisonly importantforthosestudentswhowanttodothemodelexercisesthemselvesintheirowntimeonan available patchclamp setup. The other students can directly proceed to the demonstrations (Chapter3.3.). The model circuit was not constructed by soldering together ERC components and mechanical switches.Thatturnedouttobeunsatisfactory,becauseofunwantedstraycapacitiesintheswitches, sensitivitytohandmovementartifactsduringmanipulationsonthecircuit,andlimitedflexibility for changes of the circuit. Furthermore, switches showed “bouncing” of the contacts causing undefined switching. We preferred to employ commercially available circuit boards ("bread boards")generallyusedforprototypecircuitbuildingandforteaching.Asmallboardof8x6cm (seeFig.3.2)wasidealtobuilduptheentirecircuitandtoplaceitonthestageofthe insteadofacellchamberwithbathingsolutionandcells.Itwasfixedinplacewithmagneticstrips adheringtoagroundedmetalplateonthemicroscopestage.Thisplateinfactcorrespondstothe grounded bath solution around the cells in a cell chamber. Working in this way and using the regularequipmentofasetupgivesthe"feel"ofdoingarealpatchclampexperiment.Onealso benefitsfromthegroundedenvironmentaroundthemodelcircuit,screeningoffthemodelcellfrom 60(or50)Hzinterference.

29

Figure 3.2. Example of equivalent circuit wiring on the breadboard (or circuit board). The figure shows a 8x6cm breadboard seen from above. The dots are wire insertion holes for easily making electrical connections withoutsoldering.Thestraightlinesbetweenthedotsaretheconnectingwiresbetweentheinsertionholes,under thesurfaceoftheboard.TheseconnectionscannotbeseenbutcanbecheckedwithanOhmmeter.Byinsertingthe leadsofthecomponents(resistors,capacitors,batteries) in the holes, one can easily build circuits to study the electrical properties of the various patchclamp configurations and to exercise the experimental procedures. Resistors(cylinders)andcapacities(halfdrops)addedascomponentstoobtaintheequivalentcircuitofFig.3.1are black.TheswitchesofthecircuitdiagraminFig.3.1arejusttheleadswiththearrowpoints,pointingtoorfroma connectionhole.Theenlargeddotsshowtheestablishedcontacts.Arrowspointingtoclosebyholesindicateswitch contactstobemadeduringtheproposedseriesofmodelexperiments.Arrowspointingawayfromholesindicate contactstobreakduringtheexperiments.Bycomparingthispracticalbreadboardcircuitwiththecircuitdiagramin Fig. 3.1, one can identify the various components. In the present circuit wiring, the probe (preamplifier) of the patchclampamplifierhasbeenconnectedtothepipetteholderwithpipette(switchSpcon),the“pipettehasentered the bathing solution around the cell” (Scpip and Srpip on) and the pipette is “touching the cell, ready for giga sealing”. Gigasealing is established by opening the seal switch, Sseal. This results in the CAP measurement configuration.ByconnectingRacctohole12C(switchSaccon),onecanmakeaWCfromtheCAP.Byopening SooponeobtainsanOOPfromtheWC.Instead,connectingSiopunderCAPconditionsresultsinanIOP.With switchesSkandSnaonecanintroduceintotheWCaGkandaGna,respectively.TheNernstpotentialshavebeen established with a simple voltagedivider circuit (the small white resistors). The leak conductance and the OOP conductancehasbeengiveninthisfigureareversalpotentialof0mV.Theinterruptedlinewiresarenonexisting wires,butindicatethepresenceofstraycapacities(Cpc,Cpiphold,Ccap).ResistorRcapchwithswitchScapch(Fig. 3.1)isnotshownonthecircuitboard

30 A breadboard isaplasticboardwithgroupsofrowsofinternallyinterconnectedholesforinsertion of the leads of the components (Fig. 3.2). Connected holes quickly join components together (insteadofsoldering)andunconnectedrowsofholescanbebridgedbycomponents,thuseasily creatingERCcircuitsofapipette,amembranepatch,andawholecellmembraneaswellasthe switches between these circuits and the components. The switches were just simple solid (insulated)wires(Sseal,Siop,Soop),orcomponentleads,insertedintoorpulledoutoftheholesby hand or by using a forceps with insulated tips. In certain cases, when switching had to occur quicklyandbewelltimed,magneticswitches(reedcontacts)wereused.Movingasmallmagneton arodalongthecontactoperatedmagneticswitches.Inordertoprotecttheinputoftheamplifier duringmanipulation,weinsulatedtheleadsofcomponentsbyputtingshrinkisolationtubingaround them.Thistubingshrinkstightlyaroundtheleadswhenheated,forexample,byholdingasolder gunclosetothetubing. Smallsize 3.4volt lithium cells in a voltagedividing resistor circuit were employed to obtain physiological reversal potentials for insertion in the parallel conductance branches of the cell membrane.Resistorvaluesof1100M andcapacitorsof1100pFcanusuallybeobtainedina departmental electronic workshop or can be bought in a commercial shop for electronic components.Higherresistorvaluesprobablyneedspecialordering.AxonInstrumentsInc.(Foster City,CA94404,USA)offersalowpriceselectionofGigaOhmvalues.Lowstraycapacity(< 0.5pF)isanimportantspecificationofgoodhighresistancecomponents,inparticularforthecell attachedpatch resistors and the seal resistance. The small capacity Ccap was not an added component,butwastheactualstraycapacitancenaturallyassociatedwiththecircuitconnectionsin theboardandwiththeresistorscoupledtogetherintheCAPsectionofthemodel. 3.2.3.Patchclampsetup Each patch-clamp set-up requires specific instruction. Therefore, we only briefly describe the patchclampsetupweusedforthedemonstrationmeasurementspresentedhere.Theheartofthe setupisthecellchamberonthestageofthemicroscopewiththesmallpatchclamppreamplifier box (probe or headstage) above the cells. The headstage is held and manipulated by a micromanipulatorandhasaconnectorforconnectingthepipetteholder.Inourexercisesthecircuit boardwith the cell model takes the place of the cell chamber,anda5cmwireservesasapipette holderconnectingthe(+)inputtothepipetteresistor,Rpip,andpipettecapacity,Cpip(Fig.3.2). Thegroundedreference()inputoftheheadstage(theprobe)isconnectedtotheexternalsideof themodelmembrane.Thepatchclampusedisthe L/M-PC amplifier ofListMedical(D6100 Darmstadt,Germany).Asallcommercialpatchclamps,itcaneitherbeusedinthevoltageclamp orcurrentclampmode.Italsohasthestandardfacilitytocancelfast(pipette)andslow(wholecell) capacitancecurrentsandtomeasurethecapacities(CpipandCm)andseriesresistances(Rvcand Rpip + Raccess) causing these voltagestep induced transients. The amplifier is equipped with electronic low(frequency)pass filters to remove highfrequency components from the signal at differentcutofffrequencies(180KHz). Itisimportantthatallswitchesanddialsofthemainpatchclampunitintherackarein standard initial positions beforestartinganyexperiment:Amplifiermodeshouldbeonvoltageclamp;Vpip

31 offsetandVholdpotentiometerdialsshouldbeonzero;seriescompensationshouldbeoff;capacity cancellation dials should be on zero, and the cancellation switch(es) should be off; filter setting shouldbeon10kHz(80kHzintheinitialexperiments,seeFig.3.3),andstepsteepnesson2srise time(noroundedvoltagesteps).Finally,thegainandstimulusscalingshouldbestandardoras requiredbythesoftwareused. Theapplicationof voltage- and current-clamp protocols tothemodelcellandthesimultaneous storageoftheevokedresponsescanbecontrolledbyapersonalcomputerusing pClamp/Clampex software of Axon Instruments (Foster City, CA 94404, USA). The monitor of the PC run by pClampcaninprinciplebeusedasanoscilloscopescreentomonitorthestimulusstepsandthe currentorvoltageresponses,butwefounditusefultouseaseparateoscilloscopeandsimpleblock pulsegeneratorforextratests.Emphasisinthisdemonstrationisonthedirectinterpretationofthe records, so we will not use sophisticated data analysis procedures. Note that pClamp is not necessaryfortheseexperiments;allthatisrequiredisafunctiongeneratorandanoscilloscope.

32 Figure 3.3. Voltage-clamp records obtained during patch-clamp procedures leading to the whole-cell (WC) configuration, all on one scale (lowest gain recording) . The various procedures, described in the text, were carriedoutwhileapplyingvoltageclampstepsof10mV.TheinitialmodelsettingswereasillustratedinFig.3.1. Recordaappliestotheseinitialsettings.RecordbistakenafterclosureofswitchSpc,cafterclosingScpip,dafter closing Srpip, e after opening Sseal and fafterclosingSacc.Themodelcomponentswereasin Table 3.1, with Racc=2.2M,El=Eoop=~60mV.TheGkandGnabranches werenotconnected(switches1012open).Amplifier settings:80KHzfilteringandnocapacitivetransientcancellation.

3.3. Patch-clamp measurement procedures and configurations 3.3.1.Switchingonthepatchclamp:amplifieropeninputcapacitanceandresistance,andfiltering When you observe a patchclamp experiment for the first time, you may see the patchclamper turning on her equipment and bringing the switches and dials of her patchclamp and other instruments to standard settings. Then she may start voltage-clamp step stimulation while watching the oscilloscope for the display of signals. The voltage steps clearly evoke sharply

33 peaked,needlelikecurrentresponses(~30s spikes at10KHzlowpassfiltering;~5sspikesat 80KHz filtering, see Fig. 3.3a). But, what is being clamped here? There is no pipette or cell connectedtotheinput.Theinputisopen.Itisonlyexposedtotheair!Istheairbeingvoltage clamped?Inasense,yes. Thatthereisnosteadycurrentduringtheapplicationofsteadyvoltageisnosurprise,sinceairhas noconductance(infinitelylargeresistance).Butthen,wheredothespikescomefrom?Although airhasnoconductance,itseparatestheconductinginputterminals.Andoneofthese,the()input (thereferenceelectrode)isconnectedtoground,i.e.toagreatconductingmasssurroundingtheset up,andthereforeinsomeproximitytothe(+)input(themeasuringterminal).Thus,airfunctions as a , creating capacitance which is called here stray capacitance (Cstr), because it is unintendedanddistributed(strayed)overtheconductingmassaroundthe(+)inputterminal,inside andoutsidetheheadstageinanunforeseeableway,butclearlymeasurable.Itisthiscapacitance, alsoindicatedasCpc(Cofthepatchclamp),whichischargedbythevoltageclampstepthrough the internal resistance Rvc of the amplifier (Figs. 3.1 and 3.2). And the resulting shortduration chargingcurrents,spikelikeonamstimebase,arevisibleontheoscilloscope.Notethatthisisan exampleofERCcircuitI(Fig.2.1)!Theappearanceofthespikesontheoscilloscopeindicatesto theexperimenterthatthepatchclampamplifierandconnectedequipmentareworkingandthatshe maygoontothenextstepinherexperiment. But first we measure this stray capacity Cpc. The patchclamp instrument is equipped with a capacitymeasurementoptionbasedonprecise cancellation of a capacitance current transient by adding to the transient at the input (from within the amplifier) an identical (singleexponential) currenttransientofoppositepolarity.Atprecisecancellationtheadjustmentdialscanbereadoffin termsofcancelingcapacitanceCf(foffasttransient)andcancelingtimeconstantτforresistanceRf (orconductanceGf).RfcanbederivedfromτfandCforτfcanbederivedfromRfandCfusingτf =RfCf,asexplainedatERCcircuit1.Withthiscancellationmeasurement,whichcanbecarried outatanyfiltersettingthougheasieratthehighersettings,wefindforourpatchclampthatCf= Cpc = 1.0 pF at τf ~ 2 s. This capacitance may look very small, but is nevertheless well measurable.Thetimeconstantτscouldnotpreciselybedeterminedfromthedial,buttheestimated CfandτfvaluesallowustocalculateanestimatedseriesresistanceRvc=Rffromτf=RvcCpc(cf. ERCcircuit I). Then, Rvc seems to be ~2M . This is too large for reliable voltageclamp measurements of Rpip ~1M , as we will see below. What could be the reason of this high estimatedRvcvalue?Itmaybeaninaccuratereadingoftheτfcancelingdial.Thisdialisnotwell calibrated,becausemeasuringτfisnotanimportantgoalduringpatchclampexperiments. Let us try to obtain Rvc from direct, current peak measurements . At ERCcircuit 1 it was explainedthatRvc=dEvc/dIpeak.ThereforewemeasuredIpeakat10KHz(standard)filteringfor Evcstepsof10mVandusethisequation.WefindRvc=10mV/0.5nA=20M .Evenmuchhigher than the value obtained by the canceling procedure! What could be the reason here for the overestimationofRvc?Onepossibleansweristheinternalfilteringinthepatchclampamplifier, whichlowersdIpeak. We donotdiscuss heresignal filtering intermsof ERCcircuits.The relationship betweenRC filtering and frequency filtering is further explained in PlenumBTOL. Filtering is here simply definedasanelectronicproceduretoselectivelysuppressfastwave(highfrequency),mediumor

34 slowwave(lowfrequency)componentsofarecordedsignalsuchasavoltageclampcurrentsignal. A patchclamp usually has various filter settings allowing to remove the higher frequency componentsfromtherecord.Standardfiltersettingusedhereisatacutoffof>10KHzfrequencies. Thismeans that the30s duration transient is adrastically filtered signal, due to a frequency settingthatistoolowtofaithfullyrecordthefastcapacitancepeaktransient.Thisresultsinadrastic reductionofthepeakamplitudeofthefastcapacitancecurrenttransientandinamuchslowertime courseoftheremaining30ssignal. Thisisareasontorecordthefasttransientatthebestpossiblefrequencysetting:80KHz(asinFig. 3.3). This high frequency filter requires recording at a better time resolution than the analogto digital conversion (ADC) card for pClamp controlled data storage may provide. Therefore, the readingsaredonefromtheoscilloscope.Wefindshorter(~5s)andmuchhigherpeaktransients (~2.6nAonthescope,~2nAinpClamprecords,seeFig.3.3a)and,consequentlyamuchbetterRvc value(~4M),butstillworsethantheamplifierrating.Understandably,wecannotreliablymeasure a 5s transient with an80KHz filter. Furthermore, the steepness ofthe voltage step (2s) also limitsIpeakofthepresumed5stransient.ThuswemaythinkthatmeasuredIpeakvaluesaretoo low and, consequently, calculated Rvc values too high. As we cannot do better now, we find anotherwaytoestimateRvcbelow. Wesummarizetheresultsand conclusions asfollows: *Althoughthechargingcurrenttransientsuponvoltagestepsareheavilyfilteredbytheamplifier, currentcancellationisperfectlypossiblewithfast( τ~2s)singleexponentialcurrenttransientsof oppositepolarity. * Thus, ERCcircuit I applies to the open input properties of the patchclamp amplifier, and, in principle,itispossibletomeasureinputcapacityandresistancebycancellation. *Seriesresistance(Rvc)estimationfromcurrentpeakmeasurementsprovidesRvcvaluesthatare toohighbecauseofsignalfilteringinsidetheamplifier. 3.3.2.Connectingthepipetteholderwithpipettetothepatchclamp:extrastraycapacity Weexpectthatconnectingthepipetteholder(withinsertedpipette)withitsstraycapacity(Cstr)to theinputwouldaffectthesespikesbymakingthemwider,butnothigher,aswepredictedfromthe propertiesofERCcircuitI.Thisisbecausethemassandsurfaceoftheinputwiringisincreased, andprobablyalsotheproximitytoground.IfthechargingsourcevoltagestepEvcandthecharging internalsourceresistorRvcremainthesameandCstrincreases,thenthechargingtimeconstant wouldincreasebutnotthepeakheightofthechargingcurrent.Thiscanbecheckedby connecting a pipette-holder (with inserted pipette) equivalenttothe(+)inputbyclosingswitchSpc(see Figs.3.1and3.2),namely,a5cmwire,asolderedresistor,Rpip=2.2M,andacapacitorCpip=4.7pF (not grounded). All other switches of the circuit are in the initial standard setting; filter still at >80KHzcutoff).Maybetoyoursurprise,itisthepeakofthespikethatisincreasedratherthanthe spikeduration(cf.Fig.3.3a,b).Theaddedcapacitance,measuredbycancellationatτf~2.5s(for bestcanceling),is~1.0pF. Whatisthecauseofthe increase in peak height instead of peak width whenincreasingC?The answer,whichagainliesintheinternalfilteringoftheamplifier,willalsosolvetheaboveproblem

35 aboutwhytheRvcvaluescalculatedfromthepeaksofthefastcapacitancetransientsaretoohigh. We don’t touch this problem here, because it is not of great importance for actual patchclamp experimentsonlivingcells.WejustmentionherethatwehavetoconsiderastraycapacityCvc across Rvc to explain the increase of peak width with C. A detailed explanation is given in PlenumBTOL. AssumingthisratherdifficulttounderstandfilteringeffectofCvc,wefurtherexploretheeffectof externallyaddedstraycapacityonthefastcapacitancecurrent(Icf)transientbyinsertingalonger (1020cm)wire(unconnectedtothereferenceinputterminal)inthe(+)input.Indeed,wedosee nowanevenfurtherincreasedCstr(measuredbycancellation).Wecanalsoobserveanincreasein Cstrwhenthewireisbroughtclosertosurroundinggroundedobjects.Wiresofthetypeusedbyus introduceapproximately Cstr ~ 0.1pF per 2 cm wire length .Thesamewireinthereferenceinput doesnothaveeffect,unlessthewireisusedtobringgroundclosertothe(+)input.Apparently,the surface enlargement of the already large ground mass does not contribute to Cstr. Cstr can be increaseddrasticallybyholdingthe(insulated!)inputconnectionwire(pipetteholder)betweenyour fingersandgroundingyourself,becausethisactionbringsgroundveryclose(butnotintouch!)to the(+)inputterminal! These simple tests illustrate not only the drastic effects of stray capacity, but also indicate an obvious way to obtain better estimations of Rvc. This is done by measuring capacitance peak height at higher and higher C's intentionally applied across the patchclamp input, and by calculatingtheRvcvaluesfromdEvc/dIpeakuntilcalculatedRvcbecomesconstant.Inthisway one can findthat Rvc < 100Kohm , quite acceptable for a patchclamp which should be ableto measureRpipvalues>1M . During these measurements with increasing C's one only observes slower capacitance transients withincreasingC'sforthehigherC's(equaltoor>Cvc),becausethetimeconstantofthetransients isRvc.(Cvc+Cexternal),asexplainedabove.Buttheshapesofthesetransients,inparticularat smallappliedC's,arenotpuresingleexponentialsbutshow" oscillatory ringing ",i.e.overand undershoot behavior upon voltagestep stimulation. This response too abrupt stimulation stems from the properties of the filters of the amplifier and makes it difficult to recognize the single exponentialnatureofthefastcapacitancetransients.Thefactthatthesefastcapacitancetransients areverywellcancelablebysingleexponentialtransientsofoppositepolarityattheinputmeansthat theEvc/Rvc/CpcERCcircuitofthepatchclampstillholdsandthatthenonexponentialshapeof these fast transients are response deformations resulting from amplifier (filter) properties . However,thesedeformationsdoaffectcapacitancepeakcurrentmeasurements.Thus,calculated Rvc values are not precise but can be improved by using less steep voltage steps causing less ringing.(Tryit,thisoptionispresentonthepatchclamp).Nevertheless,thedrasticincreasein IpeakwithincreasingappliedCshowsthatcalculatedRvcvaluesareordersofmagnitudesmaller thanmeasuredattheintrinsicCpc=1pF.ForpreciseRvcmeasurementswewouldneedanother approach(notdiscussedhere). Soonerorlateryoumayswitchthepatchclampto current-clamp whilemeasuringintheair.Doit nowtodiscoverthatthevoltageisprobablynotstableat0Vbutsoonincreasestolarge(outof range)positiveornegativevalues,eventhoughthereisnovoltagesourceconnectedtotheinputor intentionalcurrentinjectedintotheinput.Thereasonofthebuildinginputvoltageisatiny offset

36 current producedbytheamplifierinputandinjectedintothestraycapacityattheinputfrominside. Thus,theaccumulatingchargeonCstrcausestheincreasingpotential,asexplainedatERCcircuitI andillustratedinFig.2.1c.Switchingtheamplifierbacktozerovoltageclampcaneasilydischarge theinputagain. TheCCzeroscrewonthefrontplateoftheL/MPCpatchclampcancompensatetheinputoffset current.Itwillbeverydifficulttozerotheinputpotentialatanopeninput,butyoucanshowthat bringing offset compensation out of balance in the positive or negative direction determines the polarity and the speed of input voltage development. This input offset current compensation procedureisofgreatimportanceforvoltagemeasurementsfromhighresistancevoltagesources,as wewillseelater. Wedrawthefollowing conclusions fromtheseexperiments: * Stray capacity, amplifier filtering, and input offset current further complicated our openinput patchclampmeasurementstoidentifyERCcircuitIinthismeasurementcondition. *ThetestsonstraycapacityshowedthattwofactorsareofimportancetoreduceCstr,oneisthe sizeoftheleadstothe(+)input,thesecondistheproximityoftheseleadstogroundsurfaces.This is,forexample,importantinthedesignofpipetteholders(Buismanetal,1990),whichshouldnot addmorethan0.5pFtotheinputcapacitanceofthepatchclamp. *Addingcapacitytothepatchclampamplifierinputwasausefulmethodtoestimatethevalueof RvcandtheseriesresistanceinchargingCstr,accordingtoequivalentERCcircuitI. * Amplifier filtering deformed the capacitance current responses to steep voltage steps, but this deformationdidnotaffectthecapacitymeasurementsbycancellation. * Input offset current errors in voltage measurements are important to consider when measuring fromhighresistancevoltagesources. 3.3.3.Immersingthepipettetomeasurepipettecapacitanceandresistance Weproceedwiththepatchclampexperimentby"immersingthepipettetipinthebathingsolution" (byclosingswitchScpipinFig.3.1)during voltage-clamp stimulation tofindoutthat"thepipette tipisnotwellfilledwithpipettesolutionandiscloggedbyanairbubbleintheoutertip"(Srpipis notyetclosed,seeFig.3.3c).Thisallowsustoobservetheeffectof inserting only Cpip inthe circuit without masking the charging current Icpip by the current through the pipette resistance Rpip. We see again an increased spike peak (cf. Fig. 3b and 3c) rather than increased spike duration.CpipmeasurementbycancellationyieldsCpip=5pF(nominalvalue4.7pF)asanadded capacitancetoCpc+Cpiphold(~2pF).CancellationthisincreasedCfvaluerequiresanincreasedτf value,asexpectedfromτ=R.C. Cpipisthecapacitancebetweenthepipettesolutionandthebathsolutionacrossthethinglasswall separatingthetwoconductors.Weareclampingtheglasswallofthenonconductingpipette!In practiceonecancheckthatthisimmersedglasswallistheoriginofCpipbyimmersingthepipette deeperintothesolution.ItwillincreaseCpip.

37 Nowitistimeto"unclogthepipettebyremovingtheairbubblebysuctionorblowing".Ifthatis unsuccessful,we“takeapipettethatisfilledbetter.”Bothactionscorrespondto inserting Rpip by closingswitchSrpipinadditiontoswitchScpip(switch#4inFig.3.1).Thevoltageclampstep nowcausessteady(DC)currenttoflowduringthepulseaftertheinitialIcfspike(Fig.3.3d).The appliedvoltagedividedbythemeasuredsteadycurrentyieldsaresistanceof2.2M ,whichisthe right value. Thus, the voltageclamp is good enough to reliably measure Rpip ~ 2M , which impliesthatRvc<<2M . The spiky, cancelable, and overshoot current response to the voltage step indicates that the immersedpipettehasthepropertiesofERCcircuitII,eventhoughthisspikeisstronglyaffectedby amplifierfiltering,asexplainedabovefortheroleofCvinthisfiltering.Therefore,thisspikecan only be seen clearly when the amplifier is set at sufficiently high (80KHz ) lowpass filtering, becausethespikeisahighfrequencysignal.Atlowerhighfrequencycutoffs(e.g.10KHz)the spikemaybecomelowerthanthesteadycurrentresponseofapipette,inparticularwhenRpip< 2M .Fig.3.4aisarecordexample,wherethespikejustovershootsthesteadypipettecurrentat 10KHzfiltering.WhenusingPCcontrolledanaloguetodigitalconversion(ADC)onemaymiss suchfasttransientswhenchoosingtoolowsamplefrequencies.

38 Figure 3.4. Experimental procedures for preparing a conventional whole-cell experiment, including fast capacity current (Icf) and slow capacity current (Ics) cancellation during 10mV voltage step application. RecordaservestocalculateRpip(here2.2M),recordbshowsIcfaftergigasealing,thusinthecellattachedpatch (CAP)configuration.RecordcshowsIcfafteralmostcompletecancelling.Therecordsinframedshowthesudden appearance of Ics upon establishing a WC from the CAP.ThebettertheaccestotheWC(thelowerRacc), the higherandfasterIcs(examplesRacc=∞,47,10and2.2M).FrameseandfillustratethechangesinIcsduringIcs cancellation, in frame e for Cs adjustments (070pF) at the right Rser value (4.3M) and in frame f for Rser adjustments (>100M3.3M) at the right Cs value (51pF). Lowpass frequency filter setting is at 10KHz. Other generalconditionsareasinFig.3.3. Current-clamping theuncloggedpipettewillnotgivethecurrentoffsetproblemseenabovefor theopeninput.Thetinyoffsetcurrentmayflow,butwouldonlybuildupatinyvoltageonCpc+ Cpiphold+Cpip,untilthecurrentthroughRpipequalstheoffsetcurrent.Thatwillbeatapotential equaltoIoffsetxRpip,asexplainedatERCcircuit2.IfIoffset~1pA,thenCpipwillbechargedto 2V(1pAx2Mohm),whichissmallenoughtobeneglected.A10G resistancewould,however,be

39 polarizedby10mVandanopeninputwouldchangeitspotentialby1Voltin1s(rateofchange 1V/s,seeequation2.3).Thus,offsetcurrentsareparticularlydisturbingwhenmeasuringvoltages fromhighresistancevoltagesources. Thegeneral conclusions fromtheseexperimentsare: * Pipette capacity can simply be measured by cancellation when a pipette is clogged (non conducting)intheoutertip. *Fastcapacitancepipettecurrentsovershootingsteadypipettecurrentsuponstepstimulationofa (nonclogged) patch pipette can only be seen at minimal signal filtering. Thus, ERCcircuit 2 appliesduringRpipandCpipmeasurements. * The input resistance Rvc of the amplifier is small enough to carry out good measurements of Rpip>1M. *Straycapacityofthepipetteholderandpipettecapacityshouldbeminimizedwhenpatchclamp measurementsrequirehighfrequencyresolution.Thiscanbedonebyusingshortleads,smallsize pipetteholdersandshortpatchpipetteswiththickenedglasstips(coveredwithSylgard,asilicone coating),containinglittlefillingsolutionandnotdeeplyimmersedinthebathingsolution. 3.3.4. Gigaseals and canceling the fast capacity currents in the cellattachedpatch (CAP) configuration Oncetheexperimenterknowsthathisequipmentfunctionsproperlyandthathispatchpipettehas therightresistance(usually13M ),i.e.notcloggedorbroken,hechecksthepipetteforoffset potentialinzerocurrentclamporforoffsetcurrentinzerovoltageclamp.Hedoesthisinorderto compensatethisoffsetwiththeuseoftheVpipoffsetpotentiometeronthepatchclamp.Thiswill not be necessary for our model pipette, since it does not include a voltage source. The present model,however,providestheopportunitytocheckwhetherthezerovoltagesettings(Vholdand Vpipoffset)oftheamplifierareallrightandwhetherthereareotherhiddenvoltagesourcesinthe instrumentstobecompensated. Afterthenecessarychecksandadjustmentsacellisselectedforasealattempt.Thepipetteisgently pushed against the cell and slight suction is applied to initiate gigasealing. Sealing may occur slowly(minutes)orveryquickly(seconds).Theobtainedmeasurementconfigurationisthe cell- attached patch (CAP) , so widely used for singlechannel current recording. In practice, the appearanceofspontaneoussinglechannelactivityisoftenthebestproofoftheestablishmentofa CAP. Inthepresentcellmodelsealingoccursabruptly,whenswitchSseal(switch5inFig.3.1)isopened. Thisactionrepresentstheexchangeoftheshortcircuitconnectionofthepipettetogroundforthe gigasealresistanceRseal(20G ).ItisillustratedinFig.3.3de(for<80KHzlowpass(or>80KHz highcutoff)filteredrecords),wheretheopenpipetteresponsebeforesealingisindicatedinpaneld andtheremainingfastcapacitorcurrentonandoffspikesaftersealinginpanele.These giga-seal spikes arepracticallythesameasthespikesmeasuredforthecloggedpipette.Infact,aftergiga sealingthepipetteiscloggedagain,butnowbyaCAPwithaverysmallcapacitanceCcapanda veryhighresistanceRcap=Rmcap=20G,shuntedbyRseal=20G.Thus,theapparentsealresistance Rcapseal=10G(measurableathighergainsandvoltagesteps),sincethe series resistance of the

40 attached cell withRm<1Gmaybe(practically)neglected.The membrane capacity Cm of the attached cell mayalsobeneglected,sincethetwocapacitiesinseries(CcapandCm)areequivalent toacapacitance Ccapm=Ccap.Cm/(Ccap+Cm)~Ccap,forCm>>Ccap. Thus, for resistance and capacitance measurements on the CAP, it is as if the CAP is directly coupledtogroundatitsintracellularside.Thisisfurtherillustratedbelowunder3.3.7andinFig. 3.6. The of the attached cellmaynot,however,beneglected.Itisimposingits voltage on the CAP through the voltageclamp circuit (as it would also do without the voltage clamp!)andthevoltageclampmayadditsvoltagetothatmembranepotential.Thatisallwhatthe voltageclamp can do, change the existing membrane potential across the CAP. In certain applicationsitisadisadvantagethatVmisunknownorisnotconstant. AtzerovoltageclampandintheabsenceofvoltagesourcesintheCAP,Vmisthedrivingforcefor currentthroughtheCAP,sendingcurrentthroughtheCAPandintothevoltageclamp,becausethe currents will not choose the high resistance path to ground through Rseal. This current, if significant,isseeninthevoltageclampasa small holding current . Underfavorableconditions(highRseal,nointrinsicEcap))wecanseepartofVminzero current- clamp recordings from a CAP .Inourmodelweexpecttomeasureabout0.5Vm,sinceVmis voltagedivided over Rcap(=Rmcap) and Rseal. This can be confirmed after minimizing Ioffset fromtheamplifierfirst,whichisnowveryimportantbecauseofthehighresistanceoftheCAPand theseal. Wereturnnowtothecapacitancemeasurements(byIcfcanceling)tocheckwhetherthecharging capacity in the fast capacity current transients is still Cpc + Cpiphold + Cpip, as in the current transientschargingthecloggedpipetteinthebath.Thisturnsouttoberoughlythecasewhenusing fasttransientcancellationalone,asbefore.However,thecancelingisnotperfectandthevaluesare notexactlythesame.ItlooksasifonehastoforcefasttransientcancellationwithcompromisedCf andτfsettings.Itisasifsealinghasaddedasmallandslowercapacitancetransienttothestep response.ThereasonforthiscouldbethatconnectionofRpiptothecircuitaddsRpipasanextra seriesresistancetothestraycapacitance(e.g.Ccap)ofthecircuit. FastcapacitycurrentcancellationisusefulforCpipmeasurement,butanotheruseofthisoptionis notlessimportant:the removal of the large sharp current spikes fromthevoltagestepresponses. Thisisofparticularimportancefortheresponsestothelargervoltagesteps,astheycansaturatethe amplifier and spoil its high frequency performance. Clipping of signals because of amplifier saturationcanbeevokedbyincreasingthevoltagestepsizeundertheconditionsoftheexperiment ofFig.3.3. 3.3.5.Wholecell(WC)recording:measuringseriesresistanceandcellcapacitancewhilecanceling theslowcapacitytransients

41 InmanycasestheCAPisonlyatransientstagetowardreachingthefinalgoal,the whole-cell (WC) configuration. As explained in Chapter 1.2, WCconditions are obtained by breaking the CAP whilemaintainingthegigasealtotheattachedcell.Ifthisisdoneduringvoltageclampstimulation with voltage steps, one can easily conclude from the responses whether a WC is obtained and whether the quality of the WC is good enough to proceed with the planned experiment. This procedurewillbedemonstratednow. Withthemodelcell(Figs.3.1&3.2)onecansimulateWCformationbyclosingswitchSacc(#7). ThisactioncausesshuntingofRmcapbyRacc,asillustratedbytheexperimentofrecordfinFig. 3.3,whereRacc=2.2M .RecordfshowsthatWCformationcausesthesuddenappearanceofan extra,slowcapacitorcurrenttransientuponvoltagestepstimulation.Thisslowtransientismuch smallerinamplitude(~2nA)thanthefastcapacitortransient(~12nA,at80KHzfiltering)andits timeconstantτs(~0.25ms)>>τf(~2.5s).Theobservedamplitudeandtimeconstantareconsistent with the slow component properties of ERCcircuit IV (Fig. 2.4), with Rp=4.4M (the series resistanceRser=Rpip+Racc)andCm=50pFinthepresentcase. Thepredictedamplitudeis10mV/4.4M =2.2nAandthepredictedτs=4.4Mx50pF=0.22ms.The steadystatechangeincurrentof10mV/1G =10pAcannotbeseenonthecurrentscaleofFig.3.3. TheexperiencedpatchclamperroutinelyestimatesRser=Rpip+Raccfromthepeakheightofthe slowcapacitancetransientontheoscilloscopeorPCscreenandCs=Cmfromthetimeconstantτs. ShewillthenknowwhetherRserislowenoughtocontinuetheexperimentonthewholecell(WC) obtained, or try to get better access to the WC (lower Racc) by extra suction. In the newer WindowsversionsoftheAxonInstrumentspatchclampacquisitionsoftware(pClamp7and8and 9) Rser, Cs and τs are calculated online from the records. When Rser is satisfactory, the experimenterstartstocanceltheslowcapacitortransientinordertoobtainflatcontrolrecordsfor easierrecognitionofvoltageactivatedcurrentsevokedbylargervoltagesteps. The canceling procedure isillustratedinFig.3.4forthesameelectroniccellasinFig.3.3,butat anincreasedcurrentresolution,whichisclosertoregularexperimentalpractice.Highfrequency cutofffilteringisnowat10KHz.Thecurrentthroughthepipetteinthebathisasexpectedfora 2.2M pipette resistance (frame a). After gigasealing the fast capacity current transient (Icf) remains (frameb). This transientmust be cancelled (frame c) to preventamplifier saturation at higher current gains and voltage steps and to better be able to recognize the shape of the slow capacitancecurrenttransient(Ics)ofthewholecell.WCtransientsIcsareillustratedinframed, where the curve labeled Racc = 47M exemplifies a "bad" WC, in which CAP perforation is incompletesothatRaccremainshigh("smallCAPhole").IcsimprovesifRacc=10M istaken, butitisbest(highandfast)ifRacc=2.2M .RememberthatitisRserthatmattersfortheshapeof Ics,andthatRser=Rpip+Racc=2.2M +Racc.ThelowerRser,thehigherandthefasterisIcs, thusthesoonerthecellmembraneischargedtotheclampedpotential(10mVhere).Inpractice, similar successive Ics transients as in Fig. 3.4d may be obtained during successive attempts (repeatedsuctionpulses)togetbetterandbetterWCconditionsonthesamecell.Theymayoccur in reverse order if WCconditions deteriorate due to closure of the hole in the CAPmembrane (resealingoftherupturedCAPmembrane).Rser=2Rpipisusuallyconsideredthebestobtainable WCcondition.

42 Noticealsothatbreakingintothecellcausesasmallholdingcurrentbecauseoftheappearanceof themembranepotential(=El=~60mV,measurableincurrentclampaftercarefulzeroinginput offsetcurrent)andconductance(=Gl=1/Rl)inthecircuit.Thiswouldproduce~60mV/1G= 60pAoutward(positive)currentattheholdingpotentialof0mV.The10mVvoltagestepwould add another 10pA, but the resolution in Fig.3.4 is too low to precisely measure these current changes. Frameseandfshowhowtherecordslooklikeduringthe Ics cancellation procedure.InframeeCs isincreasedfrom0to70pFatexactlytherightRs=4.3M value,closetotheexpectedvalueof Rpip+Racc=4.4M (nominalvalue).At51pFtheresponseisexactlyflat,atsmallerCsthe responseispositive, while the responses are negative attoo large Cs values (e.g. 70pF). But all transientsaremonophasic,whethertheyarepositiveornegative. Inframef,RserisadjustedatexactlytherightCs.Rserisdecreasedfrom>100M to10,4.3and 3.3M .At4.3M cancellationisperfect(flatrecord).BothathigherandlowerRserthecurrent transients are biphasic. At higher Rser (10M ), the biphasic transient is positivenegative. At lower Rser (3.3M ) Ics is negativepositive. From these examples one may derive a quick procedureforIcscancellationforobtainingflatcurrentrecordsdespitetheabruptstepsinvoltage. Quickactionisrequired,sincecancellationtimeisattheexpenseofexperimenttime. First,quicklyadjustCstoavalueestimatedinthephysiologicalrange.Second,dialRstoavalueat which there is neither an initial overshoot nor an initial undershoot. Third, adjust Cs to flat or almost flat records. In the latter case Rser and Cs may need finetuning according to the same procedure. The biphasic nature of the records inframefcaneasilybeunderstoodfromthenatureofthe cancellationprocedure.Icshas,underidealconditions,asingleexponentialshape,inwhichthe peakcurrentisequaltoV/RserandthetimeconstantofthedecayisequaltoRserCm.Whenthe cancellationprocedureiscarriedout,theamplifierproducesfromthevoltagestepanexponential currenttransientofoppositepolaritytoIcsattheinputoftheamplifier.Thepeakofthisopposite transientisdeterminedby thevalueonthedialthatcancelsRser,whilethedialthatcancelsCs determinesthetimeconstantofthedecayofthecancelledtransientaccordingtoRser.Cs.Ifthe canceling Rser is smaller than the real Rser but at approximately the right canceling Cs, the canceledtransientislargerinpeaksizeandshorterindurationthantherealIcs.Thus,theaddition ofthenegativecancelingtransienttothepositiverealtransientresultsinaninitialnegativepeak. Furthermore,becauseoftheshortercancelingtransient,cancelingoccursonlyinthefirstpartofIcs, thusthesecondpartofIcsisnotcancelledandremainspositive.Inthiswaythenegativepositive IcstransientarisesatRser=3.3M inFig.3.4f.Inasimilarwaythepositivenegativecapacity transientsatcanceledRservaluesthataretoolargecanbeexplained.Insightintheoriginofthe shape of the partially cancelled transients helps in following a quick and rational procedure for capacitytransientcancellation.ThisalsoappliestoIcfcanceling,thoughtheconditionmaylooka bitmoredifficult,becausetheextremelyfastIcftransients(stimeconstants)areusuallydistorted evenbythebestamplifierfiltersettings.ReconstructionofthevariousincompletelycancelledIcs shapesisbestillustratedbydrawingbyhandthesummationofvariousIcstransientsandvarious cancelingexponentialtransientsofoppositepolarity.

43 TheRservaluereadfromthecancelingdialisanimportantindicatorofthequalityofvoltageclamp conditions(thelowerRser,thebetter,seeChapter2),whiletheCs=Cmvaluethatisdeterminedis importantfornormalizingthecurrentrecordstocellsize(reflectedinCm).SinceRsermaychange during an experiment, Rser should be checked by Ics cancellation regularly in the course of an experiment. The first indication of Rser changes afterperfectIcs canceling is the appearance of biphasic Ics transients in the records, positive/negative if Rser improves (i.e., decreases) and negative/positiveifRserincreases,ascanbeunderstoodnowfromtheaboveexplanations. ItisimportanttoemphasizeherethatIcscancellationisonlyasafetyagainstamplifiersaturation andacosmeticprocedure,becauseitdoesnotimprovethevoltageclampconditions.Theflatbase linemaygivebetterrecordsforcurrentrecognition.However,ifyouwouldrecordthemembrane potential with an independent electrode during a voltageclamp step after Ics cancellation, you wouldobservethatthemembranepotentialstillfollowstheappliedvoltagestepwithanexponential transientwithtimeconstantRserCm(seethemodelexperimentofFig.3.9).Asarule,onlyafter ~3Xthetimeconstantisthemembranepotentialactuallyclampedtotheappliedpotential.Forthis reason,experimentersmaysometimeschoosenottofullycancelIcs,keepingasmallIcsvisibleto remindthemselvesoftheactualdurationofthemembranepotentialtransientinthecell.Thus,it remainsimportanttomakeRserassmallaspossible. 3.3.6.Pullinganoutsideoutpatch(OOP)andcheckingthesealresistance AsexplainedinChapter1.2,the outside-out patch (OOP) isobtainedbygentlypullingavesicle fromtheWC.Thus,theOOPisamicroWCwithonlyoneorafewchannels.Anexceptionis whenalargevesicleisdrawnorchanneldensityisveryhighintheOOP.TheOOPallowsthe patchclampertostudysinglechannelactivationkineticsandcooperativechannelbehavior.With thepresentequivalentcircuitcellmodelwedemonstrateafewOOPpropertiesofmethodological interest. Fig. 3.5 shows how the slow capacity current (Ics) changes upon establishing the OOP measurementconfiguration.IcwcinframeashowsanoncancelledIcsintheWCconfiguration (Icfiscancelled!).ItisfromthesameelectroniccellasinFig.3.4.AfterperfectIcwctransient cancellationatRser=4.3M andCs=51pF,therecordisflat(seearrow).PullingasuccessfulOOP byopeningswitchSoop(switch9inFig.3.1)suddenlycausesthe appearance of a large inverted exponential transient ofasimilarsizeasthatofIcwc.AnOOPattemptisunsuccessfuliftheseal islostduringpullingupofthepipette.Inthatcase,the10mVvoltagestepcausesaverylargeoff screen current response and the holding current may already jump offscreen at small offsets or holdingpotentials.Thisdoesnothappenhere,becauseRseal=20G iskeptconstant.Here,we observeasmallchangeinholdingcurrent,sincethemembranepotential(El~60mV)isnolonger inserieswithRl=1G ,butwiththemuchlargerRoop=20G .

44 Figure 3.5. Slow capacity current (Ics) changes upon establishment of the outside-out-patch (OOP) measurement configuration. The model cell and the test pulse are the same asthoseinFig.3.4.Icwc is the uncancelledIcsoftheWC(frame a)andIcoop istheuncancelledIcsoftheOOP(frame b).Theflatrecordinframe aistheperfectlycancelledIcwc,whilethenegativerecordsinframesaandb,labeledovercanc(eled)Icoop ,arethe recordsobtainedjustafterOOPformationfromtheconditionofperfectIcwccancellation(flatrecordinframea). ThesuddenappearanceofthelargeinverseIcwclikecurrenttransientisindicativefortheformationofanOOP. NoticethatEl=Eoop~60mVinthisexperiment,asinFigs.3.3and3.4.

Theinvertedtransientis,infact,anovercompensatedIcoopresponserevealingthemajorpartofthe Icwccancelingtransientcausingtheflatrecordinframea.ThisovercancelledIcoopisnotexactly equaltoaninvertedIcwc,becausethereisaremainingIcoopmadevisibleinframebbyremoving transientcancellationwiththeswitchontheamplifier.WithoutIcscancellationonewouldseea change from Icwc (Fig. 3.5, frame a) to Icoop (frame b) upon OOPformation. Icoop could be perfectlycancelledatthesameseriesresistanceRser=4.3M asforcancelingIcwc,butwitha muchsmallercapacitanceCs=6.1pF.AlthoughthisCsvalueislargerthanthenominalvalueof Coop=3.3pF,itisquiteacceptable,becausethenominalvalueisimpreciseandthecircuiteasily addsafewpFstraycapacitancetothisnominalvalue.TheimportantobservationisthatRserhas thesamevalueasthatforIcwccancellation.ThisimpliesthatIcwcandIcoopshouldhavethesame peakcurrent(seetheoryofERCcircuitsIIV).FramebshowsthatIcoophasasmallerpeakthan Icwc.Thisisduetotheuseofthe10KHzfilter,whichaffectstheveryshortIcoopmorethanthe largerdurationIcwc.Changingthefilterto80KHzindeedincreasedtheIcooppeaktothatofIcwc.

45 A few currentclamp observations are instructive. After careful zeroing current offset with the CCzeroscrew,VmoftheWC(Vmwc)wasmeasuredtobe57.8mV.ForVmooponewouldexpect approximatelyVmwc/2,becauseof voltage division of El ~ -57.8mV over Roop (20Gohm) and Rseal (20Gohm) .Vmoopwasfoundtohavetheexpectedvalueof28.9mV. The general conclusion from these observationsis that one easily recognizesthe formation ofa good OOP from an Icscancelled WC by the sudden appearance of an inverted Icwc and the maintenance of high resistance conditions (Rseal not affected). Pulling an OOP can sometimes evenserveasatesttoseewhetherahighapparentWCconductanceisduetoahighmembrane conductanceortoabadseal(lowRseal).IncurrentclampoftheOOP,voltagedivisionofthe membrane potential over the various resistors of the circuit was as expected, provided the input offsetcurrentwaswellzeroed. 3.3.7.Excisionofaninsideoutpatch(IOP) Aninsideoutpatch(IOP)isobtainedbyexcisionofaCAPfromtheattachedcellbyasuddenpull upofthesealedpatchpipette.IntheabovediscussionoftheCAPconfigurationwearguedthatthe RCpropertiesoftheCAPandtheattachedcellmembranehardlycontributetotheresponseofa gigasealed CAP to voltagestep test pulses. The measured spikes (Fig. 3.3e), though heavily filtered, were mainly reflecting Cpip charging through Rvc. Thus, one would expect that these spiky test responses of a CAP would not change upon excision of an IOP .Thisturnsouttobe thecaseinthemodelcellexperimentofFig.3.6,wheretheIOPwasobtainedbyswitchingSiop (switch8inFig.3.1)togroundconnectionfromtheCAP.Frameashowsanoncancelledfast capacitycurrent(Icf)responseofaCAPtostimulationwith10mVvoltagesteps,whileamplifier settingwasat10kHz(lowpass).Therecordshowsperfectgigasealing.InframebtheCAPIcf waslargelycancelled.FramecshowstheIcfrecordafterIOPexcision.Itispracticallythesameas theCAPrecordinframeb.Therefore,thisrecordshowsmaintenanceofgigasealconditionsrather than any electrophysiological change, which is in contrast to the capacity current changes upon OOPformationfromtheWC(Fig.3.5).Apparently,thelargecellmembranecapacity(~50pF)does notcontributetoIcf,becauseitcannotbeaccessedforchargingbyEvcthroughRvc.Itisonly accessiblethroughRpip+Rcap,whichishereverymuchlarger(~20G )thanRvc(<100K).We wouldratherexpectatiny,butslowercapacitycurrentcomponentforchargingCcap(afewpF) throughRpip(2.2M ),unaffectedby IOPexcisionbecauseofthelargedifferencesbetweenthe accessresistancesRpip(forCcap)andRpip+Rcap(forCm).Thistinycomponentisnotresolved intherecordsofFig.3.6.

46 Figure 3.6. Fast capacitive current (Icf) transients of the cell-attached-patch (CAP) and inside-out-patch (IOP) compared. TheuncancelledCAPIcftransientsinframeaarethesameasthoseinFig.3.4bforthesame experimental conditions. Largely cancelled CAPIcf transients are shown in frame b. Essentially the same Icf transientsareseeninframecafterexcisionoftheCAPtoobtainanIOP(byswitchingSiop,switch7inFig.3.1,to groundconnection).Icfwaslargelyratherthanfullycancelledinframesbandc,inordertobeabletobetterobserve changesinIcfuponuncouplingthecellfromtheCAP. However,the disconnection of the membrane potential ofVm=60mVfromtheCAPmusthave someconsequence.Itdrivesaholdingcurrentof60mV/20G =3pAthroughtheCAPanditis thiscurrent,whichmusthavedisappearedintheIOP.TheresolutionintherecordsofFig.3.6istoo low to observe this change. During highresolution recording of CAPchannel activity under favorableconditions,onemaybeabletoseesuchchanges.However, changed channel activity willprobablybeamoresignificantindicationofthechangefromCAPtoIOP.Thisisbecausethe loss of the membrane potential will alter voltage dependent channel activity and the loss of the intracellular chemical environment will cause the disappearance of intracellular ion channel activatorsorinhibitors(Weidemaetal.,1993). 3.3.8.MakingapermeabilizedpatchWC(ppWC) TheformationofppWCconditionsduringnystatinoramphotericin(channelformingantibiotics) incorporation in the CAP can elegantly be followed from the gradual development of an increasing slow capacitor current (Ics) .ThisprocesshasalreadybeendemonstratedinFig.3.4d, where WC conditions improved in steps from Racc = 47 to Racc = 2.2M by applying “successivesuctionpulses.”ThethreeincreasingIcstransientsmayalsobeseenasthreeexamples from a gradually growing Ics during ppWC development. The increase in the Ics peak would reflectthedecreaseinRaccduetopermeabilizationoftheCAPbythe.Theimmediate consequenceofadecreasingRserisadecreaseofthedecaytimeconstant(Rser.Cm)ofIcs.Thus,

47 thebetterthepermeabilization,thefasterandclosertheWCmembraneischargedtotheapplied potential.

Current-clamp potential measurements areagaininstructive.LongbeforeCAPpermeabilization issatisfactoryforreliablevoltageclamprecording,conditionsmaybefavorableforzerocurrent clampmembranepotentialmeasurementsiftherecordingpipetteisfilledwithanintracellularlike solution.Forexample,atRser~Racc=100M (badppWC),Vmwcmeasurementsarealready acceptablewithin10%forRsealvalues>1G ,providedinputoffsetcurrentiswellcancelled.In Fig.3.4d,Vmwc=58mVatRacc=47M ,whichispracticallyequaltotheVmwc=59mVat Racc=2.2M (atRser=4.4M ,averygoodppWC).

3.4. An instructive model experiment We describe below one wholecell model experiment, which is very relevant for daily patch clamping.SeveralmoreinstructivemodelexperimentsaresuggestedinPlenumBTOL. Checkingwholecellmembranepotentialandresistance One of the first actionsof an experimenter afterobtaining the WC patchclamp configuration is measuringtherestingVmandRminthecurrentclampmode.AsufficientlynegativeVmandhigh Rmisoftenacriterionforacceptingacellasagoodcellforacontinuedexperiment.Therefore,we demonstratethesemeasurementshereonourmodelcell(Fig.3.1)andshowhowtheconductance propertiesofacelldeterminethemembranepotentialandresistancepropertiesand,incombination withmembranecapacity,alsothetimeconstantoftheVmresponseofthemembranetocurrent pulses.WeapplyherethetheoryexplainedinChapter2.3and2.4(parallelconductanceequations andexponentialtransientsoncurrentstimulation). Fig.3.7showsobservationsfromsuchanexperimentforexperimentalconditionsfurtherdescribed inthelegendofthefigure.InFig.3.7aVmwasrecordedasafunctionoftimewhilesuccessively insertingandremovingconductancebrancheswiththeswitches11and12inFig.3.1.InFig.3.7b Vm(t) was recorded upon stimulation by current blocks of 100pA for the cell membrane in 3 differentconductancestates.

48 Figure 3.7. Whole-Cell membrane potential changes upon sudden conductance changes (a) and upon current- step stimulation (b) GkandGnawereswitchedonandoffwiththeuseofareedcontactinserieswithGkand Gna,whichcanbeoperatedbyapproachingitwithasmallmagnet.Intheinitialconditionoftheexperimentof figureaonlytheGlbranchofthe3conductancebranchesGl,GkandGnawasswitchedon(SglonandSgkand Sgnaoff,seeFig.3.1),whichcausedtheinitialVm=El=0mV.At~200msSgkwasalsoswitchedon,whichresulted in a hyperpolarization towards Ek=86mV. At ~340ms Gna was added, causing a depolarization towards Ena=+60mV.At~500msGkwasswitchedoff,causingafurtherdepolarizationtowardsEna.WhenfinallyGna wasswitchedoffat~800ms,Vmreturnedtotheinitial Vm=El=0mV.In figurebthecell wasstimulatedby a 100pAblockpulsecurrentinthe3conductancestatesoffigureaindicated.TheresponsesreflecttheRCproperties ofthemembraneinthe3conductancestates.Othercircuitmodelproperties:Rpip=Racc=2M,Rl=400M,Rk=200M, Rna=100M,Rseal=20G,Rcap=20G,Cm~86pFandCpip~5pF(measuredbycancellation). The initial membrane potential was Vm = 0mV,sinceinitially Gl with El = 0mV was the only conductance present in the membrane. Upon activating Gk, Vm hyperpolarizes towards Ek = 86mV.TheobservedVm=56.2mV,whichisEkdividedoverRkandRl,isclosetothevalue Vlk=57mVcalculatedfromthegeneralequationforthemembranepotentialVm12ofacellwith twoparallelmembraneconductances Vm12=(G1E1+G2E2)/(G1+G2). Thisequationhasalreadybeenusedaboveinanothercontextinitsresistanceform(cf.Eq.23).In thatcontextoneofthetwoparallelconductancebrancheswasthatofthecell(withEandR),while

49 theotherwasthatofthevoltageclampvoltagesourceEsinserieswiththevoltageclampsource resistanceRs).Eq.37isanotherexampleofthistwoconductance(resistance)parallelequation. UponadditionalactivationofGna,Vmbecomes+9.6mV,closetothecalculatedvalueVlkna= +9.4mV,calculatedfromageneralequationforthemembranepotentialVm123ofathreeparallel conductancemembrane Vm=(G1E1+G2E2+G3E3)/(G1+G2+G3). DeactivationofGkresultsinVm=+47.2mV,closetothecalculatedVlna=+48mV(seetheabove equationforVm12). Thetransientsbetweentheconductancestatesaresingleexponentialwithtimeconstantvaluestobe calculatedfromtheinversevaluesofthesumoftheactiveconductances(equivalentvaluesofthe activeresistances)timesthemembranecapacitance(cf.Eqs.14&15and24&25).Thehigherthe conductance,thefasterthetimeconstant.Theslowesttimeconstantoccurswhenthemembraneis intheGlstateandisRlCm=400M x86pF=344ms(cf.lastpartofrecordinFig.3.7a). TheVmresponsestothecurrentsteps(panelb)areconsistentwiththeseobservations.Thehigher themembraneresistance,thelargerandtheslowertheVmresponses.Thetimeconstantsofthe currentresponsesinthevariousGstatesinpanelbareequaltothoseintheVmtransientstothose statesinpanela. GlisnotthedominantconductanceandVmisnottoodepolarized,thussuchacellwouldinreality probably be acceptable for the study of Gk or Gna, though a smaller Gl would be better. One cannotconcludefromtherecordsinFig.3.7whetherGlisamembraneconductanceoraleakyseal. Thebehaviorofthecircuitinfigureacanserveasamodelforeffectsofopeningandclosingof single ion channels on Vm of a cell with only a few channels, but also for effects of abrupt activationofaconductanceconsistingofalargecollectionofchannels.Usually,activationofa conductanceinvolvessuccessiveactivationofchannelswithcertainkinetics,butitisgoodtorealize thateveninthatcasesufficienttimeresolutionofsuchrecordsshould,inprinciple,revealeffectsof eachchannelopeningonVmasillustratedinFig.3.7foracellwithonly3(big!)channels. 3.5. Conclusion Afterthepracticalexercisesofthepresentchapterontheelectricalequivalentcircuitmodel,you mayhaveexperiencedthatitisnotalwayseasytorecognize the simple theoretical concepts ofthe previouschapterinthemeasurementconfigurationandthemodelcellproperties.Inarealpatch clampexperimentthisisevenmorecomplex.First,thecellismuchmorecomplex,i.e.hasmany more“hardware”components(ionchanneltypes,ionpumpsandexchangers).Second,onecannot see and easily remove or substitute these components. Third, the cell components are usually unknown. Finally, the electrical properties of a cell are often changed during an experiment. Therefore,theexperiencegainedinthepresentexerciseswillhelptorecognizecellpropertiesfrom artifactsandthenewandunusualelectricalpropertiesofacellfromitsstandardproperties. One complication seen in the simulation experiments was the deformation of the fast capacity current transient by the amplifier .Thefilterinsidetheamplifierreducedthepeakandincreased the duration of the transient compared to estimated peak and timeconstant values for a simple

50 ERCcircuit of the voltageclamp condition. To understand this we need to add an extra capacitance,Cvc(Fig.3.1),tothesimpleERCcircuitsofvoltageclampstimulationexplainedin Chapter2.ThisisfurtherexplainedinPlenumBTOL. Theeffectsof stray capacitance werestriking.Thewaytheyaffectedthefastcapacitortransient (peakincrease)couldalsobeunderstoodfromanERCcircuitincludingCvc.Theseobservations indicatedtheimportanceofminimizingstraycapacitancewhentryingtoobtainthebestpossible timeresolutionforstudyingultrafastconductancechangesuponvoltagesteps. The establishment of the various patch-clamp configurations couldberecognizedfromelectrical changesduringthemanipulations,exceptfortheIOP.CAPformationwaseasilyfollowedfromthe disappearance ofthe pipette currentduring gigasealing. WC andppWCformation are evident fromthesuddenandthegradualappearance,respectively,oftheslowcapacitorcurrenttransient. OOPformation has occurred when the slow capacitor transient suddenly shortens or when a cancelledtransientsuddenlybecomesstronglyovercancelled.IOPformationcannotbeconcluded from simple electrical changes, but is signaled by electrophysiological changes, e.g. the disappearanceorchangeofCAPchannelactivityortheappearanceofnewchannelactivity.The four other configurations are also to be confirmed by electrophysiological changes, e.g. the appearanceoftypicalWCcurrentsuponvoltagestimulation.Analysisofslowcapacitytransient cancellationresultedinaprescriptionforasimpleandquickcancellationprocedure. The current-clamp measurements in the CAP and the WC wereinstructive,sincetheyshowed howimportantitistominimizeamplifieroffsetcurrenteffectsforreliablepotentialmeasurements from highresistance sources. Of special and practical interest were the measurements of the membranepotential,Vm,ofacellthroughacellattachedpatchoroffractionsofVmdependingon voltagedivisionoverRcapandRseal.TheWCcurrentclampexperimentsillustratedthestandard properties of a membrane with linear ion conductances, consistent with the parallel conductance equation.Simple,singleexponentialRCresponsebehaviorwasseenuponcurrentstepstimulation. We did not touch all practical procedures and problems of importance for patchclampers. For example, series resistance compensation wasnotdiscussed,thoughmostpatchclampamplifiers havethiscompensationasanoption.However,wehaveseentheimportanceofminimizingRser to improve voltageclamp quality. One may, for example, use patch pipettes with larger tip diameterstogetlowerpipetteresistances(andthereforelowerRser).Nevertheless,minimizedRser values may still be too large for large and fast currents such as Na currents. Engineers have thereforedevelopedatechniquetolowerRserbyelectronicmeansinsidetheamplifier.ThisRser compensation procedure is not merely cosmetic (as it was for Ics cancellation!), but it actually improvesvoltageclampasifRserhasreallybeenreduced.AfterthisERCcourseyoumaynow understandthatthispointcanbeverifiedbycheckingsharpeningupoftheIcstransient! Alastproblemtobementionedisthatintracellularvoltageclampmaybepoorforotherreasons thanaRser.Cmtimeconstantthatistoolarge.Ifthecellisnotasimplespherebuthascomplex morphology(e.g.aneuronwithaxonanddendrites),orifitiscoupledtoothercellsthroughgap junctions(Harksetal.,2003),thenthevoltageisonlyclampedinthemembraneneartheelectrode andnotmoredistally.Thisconditioniscalled“lackofspaceclamp”.Electrophysiologically,poor

51 spaceclampcanberecognizedfromthenonsingleexponentialshapeoftheslowcapacitycurrent transient(Torresetal.,2004). Finally,wehopethatwehaveprovidedthestudentwithtwovaluabletoolstodorealpatchclamp experiments.Thefirstis thinking in terms of simple electrical equivalent circuits of cells. The secondisexperimentingoncellsasiftheyactuallyhavetheseelectricalequivalentcircuitstohelp youansweryourresearchquestions. Goodluckwithyourexperiments!

52 Table 3.1. Component abbreviations, used or recommended component values (nominal or estimated) in the model cell experiments and full names of the components Thecomponentsarelistedingroupsand,withinthe groups,fromlefttorightandclockwiseinthecircuit.TheabbreviationsCAP,WC,OOPandIOPareexplainedin Fig.1.1.InsomeexperimentsmagnetoperatedreedcontactswereusedfortheswitchesS6,S11andS12. COMPONENT VALUE(S) NAME Rcc >>100G(amplif.specif.) currentclampResistance Rvc <<1M(amplif.specif) voltageclampResistance Rpip 2or2.2M pipetteResistance Rseal 10or20G sealResistance Rcapch 1or2G CAPchannelResistance Rmcap 10or20G CAPmembraneResistance Racc 2,2.2,5,10M accessResistance Roop 10or20G OOPResistance Rl 400M,1G leakResistance Rk 200M Resistance Rna 100M sodiumResistance Rser Rpip+Racc seriesResistance Gl 1/Rl leakConductance Gk 1/Rk potassiumConductance Gna 1/Rna sodiumConductance Cpc ~1pF(seeamplifierspecs) patchclampCapacitance Cpiphold ~1pF pipetteholderCapacitance Cpip 4.7pF pipetteCapacitance Ccap ~1pF(straycap.ofcircuit CAPCapacitance Coop 3.3pF OOPCapacitance Cm’ 47or94pF membrane’Capacitance Cm(=Cwc=Cm’+Coop) ~50or~100pF(excl.Ccap) WCmembraneCapacitance Cvc amplifierspecsInternalvcCapacitance Epc patchclampVoltagesource Evc 100to+100mV voltageclampPotential Ecc currentclampPotential Eoop 0or~60mV OOPmembranePotential El 0or~60mV leakreversalPotential Ek 60to–90mV potassiumNernstPotential Ena ~+60mV sodiumNernstPotential Scvc(S1) cctovcSwitch Spc(S2) patchclampSwitch Scpip(S3) pipettecapacitanceSwitch Srpip(S4) pipetteresistanceSwitch Sseal(S5) sealSwitch Scapch(S6) CAPchannelSwitch Sacc(S7) accessresistanceSwitch Siop(S8) IOPSwitch Soop(S9) OOPSwitch Sgl(S10) GlSwitch Sgk(S11) GkSwitch Sgna(S12) GnaSwitch

53 REFERENCES Buisman HP,DeVosA,YpeyDL.Apipetteholderforuseinpatchclampexperiments.JNeurosc Meth31,8991,1990. Gaspar R, Weidema AF, Krasznai Z, Nijweide PJ, Ypey DL. Tetrodotoxinsensitive fast Na + currentinembryonicchickenosteoclasts.PfluegersArch(EurJPhysiol)430,596598,1995. Hamill OP,MartyA,NeherE,SakmannB,SigworthFJ.Improvedpatchclamptechniquesforhigh resolution current recording from cells and cell free membrane patches. Pfluegers Arch. (Eur. J. Physiol.)391,85100,1981.(AppendixinSakmannandNeher,1995). Harks EGA,DeRoosADG,PetersPHJ,DeHaanLH,BrouwerA,YpeyDL,VanZoelenEJJ, TheuvenetAPR.Fenamates:Anovelclassofreversablegapjunctionblockers.JPharmacolExper Therapeut298,10331041,2001. Hille B.IonicChannelsofExcitableMembranes.SinauerAssociates,Sunderland,MA,2001. Hines M,andCarnevaleNT.TheNEURONsimulationenvironment.NeuralComputat9,1179 1209,1997. Hirsch MW, Smale S. Differential equations, dynamical systems, and linear algebra. Academic Press,SanDiego,NewYork,1974. Horn R,MartyA.Muscarinicactivationofioniccurrentsmeasuredbyanewwholecellrecording method.JGenPhysiol.92,145159,1988. Horowitz P, Hill W. The Art of Electronics. Second edition. Cambridge University Press, Cambridge,UK,1990. Ince C, VanBavel E, VanDuijn B, Donkersloot K, Coremans A, Ypey DL, Verveen AA. Intracellularmicroelectrodemeasurementsinsmallcellsevaluatedwiththepatchclamptechnique. BiophysJ50,12031209,1986. Kandel ER, Schwartz JH, Jessell TM. Essentials of Neural Science and Behavior. International Edition,PrenticeHallInternational,London,1995. Neher E,SakmannB.Singlechannelcurrentrecordedfrommembraneofdenervatedfrogmuscle fibers.Nature260,799802,1976. Neher E,SakmannB.Thepatchclamptechnique.SciAm266,2833,1992. Neher E.Ionchannelsforcommunicationbetweenandwithincells.Science256,498502,1992. Ravesloot JH,VanPuttenMJAM,JalinkK,YpeyDL.Analysisofdecayingunitarycurrentsinon cellpatchesofcellswithahighmembraneresistance.AmJPhysiol266(CellPhysiol35),C853 C869,1994. Sakmann B. Elementary steps in synaptic transmission revealed by currents through single channels.Science256,503512,1992. Sakmann B,NeherE.SingleChannelRecording.PlenumPress,NewYorkandLondon,1995. Sherman-Gold R (editor). The Axon Guide for Electrophysiology & Biophysics Techniques.AxonInstruments,Inc.,FosterCity,CA94404,USA,1993. Torres JJ,CornelisseLN,HarksEGA,VanMeerwijkWPM,TheuvenetAPR,YpeyDL.Modeling actionpotentialgenerationandpropagationinNRKfibroblasts.AmJPhysiolC287,851865,2004. Van Wijk van Brievingh RP,MıllerDPF(editors).BiomedicalModelingandSimulationonaPC. AWorkbenchforPhysiologyandBiomedicalEngineering.Volume6ofAdvancesinSimulation, LukerPA,SchmidtB(editors).SpringerVerlag,1993. Weidema AF,RaveslootJH,PanyiG,NijweidePJ,YpeyDL:ACa 2+ dependentK +channelin freshlyisolatedandculturedchickosteoclasts.BiochimBiophysActa1149,6372,1993.

54 Wiltink A, Nijweide PJ, Scheenen WJJM, Ypey DL, VanDuijn B. Cell membrane stretch inosteoclasts triggers a selfreinforcing Ca 2+ entry pathway. Pfluegers Arch Eur J Physiol 429, 663671,1995. Ypey DL.Practicalintroductiontopatchclampingbysimulationexperimentswithsimpleelectrical circuits.Chapter7in:SignalTransductionSingleCellTechniques.BVanDuijnandAWiltink (editors).SpringerVerlag,BerlinHeidelbergNewYork,5287,1998.

55