Basic Research Needs for Superconductivity
Total Page:16
File Type:pdf, Size:1020Kb
On the Cover: Superconductivity is one of nature's most exotic phenomenon; the complete loss of electrical resistance in certain materials when they are cooled to a low temperature. The loss-free circulation of superconducting currents also underlies key technological applications. For instance, intense magnetic fields are generated by coils of superconducting wires for medical magnetic resonance imaging. Only when cooled close to absolute zero of temperature (−273°C) do such metals and alloys become superconducting. A revolution took place 20 years ago when entirely new families of superconductors based on ceramic oxides were discovered. These work at much higher temperatures. The current high-temperature superconductor HgBa2Ca2Cu3O8 is the record holder. It operates at temperatures as high as 164 K (−109°C). The crystal structure (on the front cover) of this complex oxide allows the electrical current to travel easily along certain crystal planes, which leads to superconductivity at these remarkably high temperatures. Grand Challenges include the discovery of a room-temperature superconductor and unraveling its mechanism. Diagram courtesy of Professor Peter P. Edwards and Dr. Martin O. Jones, Inorganic Chemistry Laboratory, Oxford University, England. http://www.chem.ox.ac.uk/researchguide/ppedwards.html BASIC RESEARCH NEEDS FOR SUPERCONDUCTIVITY Report on the Basic Energy Sciences Workshop on Superconductivity Chair: John Sarrao, Los Alamos National Laboratory Co-chair: Wai-Kwong Kwok, Argonne National Laboratory Panel Chairs: Materials Ivan Bozovic, Brookhaven National Laboratory Theory Igor Mazin, Naval Research Laboratory Phenomena J.C. Seamus Davis, Cornell University Leonardo Civale, Los Alamos National Laboratory Applications David Christen, Oak Ridge National Laboratory Office of Basic Energy Sciences Contact: James Horwitz, Basic Energy Sciences, U.S. Department of Energy Special Assistance Technical: Gary Kellogg, Sandia National Laboratories Douglas Finnemore, Ames Laboratory George Crabtree, Argonne National Laboratory Ulrich Welp, Argonne National Laboratory Administrative: Christie Ashton, Basic Energy Sciences, U.S. Department of Energy Brian Herndon, Oak Ridge Institute for Science and Education Leslie Shapard, Oak Ridge Institute for Science and Education Publication: Renée M. Nault, Argonne National Laboratory This report is available on the web at http://www.sc.doe.gov/bes/reports/files/SC_rpt.pdf. ii CONTENTS Notation .................................................................................................................................................. v Executive Summary................................................................................................................................ ix Introduction............................................................................................................................................. 1 Broader Impact of Superconductivity..................................................................................................... 11 Grand Challenges.................................................................................................................................... 17 Reports of the Panels on Basic Research Needs for Superconductivity ................................................. 25 Basic Research Challenges for Applications ............................................................................. 27 Basic Research Challenges for Vortex Matter........................................................................... 43 Basic Research Challenges for Superconductivity Theory........................................................ 61 Basic Research Challenges for New Phenomena ...................................................................... 69 Basic Research Challenges in Superconducting Materials ........................................................ 85 Priority Research Directions ................................................................................................................... 97 Pursue Directed Search and Discovery of New Superconductors ............................................. 99 Control Structure and Properties of Superconductors Down to the Atomic Scale ............................................................................................................. 103 Maximize Current-carrying Ability of Superconductors with Scalable Fabrication Techniques....................................................................................................... 109 Understand and Exploit Competing Electronic Phases.............................................................. 117 Develop a Comprehensive and Predictive Theory of Superconductivity and Superconductors........................................................................................................... 121 Identify the Essential Interactions that Give Rise to High Tc Superconductivity ...................... 125 Advance the Science of Vortex Matter...................................................................................... 129 Cross-Cutting Research Directions......................................................................................................... 135 New Tools to Integrate Synthesis, Characterization, and Theory.............................................. 137 Enabling Materials for Superconductor Utilization ................................................................... 141 Conclusion .............................................................................................................................................. 145 Appendix 1: Current State of Research................................................................................................... 151 Introduction and Overview ........................................................................................................ 157 Superconducting Materials ........................................................................................................ 160 Phenomenology of High Temperature & Exotic Superconductivity ......................................... 171 Vortex Phenomena..................................................................................................................... 183 Theory........................................................................................................................................ 193 Energy Related Applications for Superconductors.................................................................... 212 Appendix 2: Workshop Participants ....................................................................................................... 221 Appendix 3: Workshop Program ............................................................................................................ 227 iii iv NOTATION ACRONYMS AND ABBREVIATIONS 1G first generation 2-D two-dimensional 2G second generation 3-D three-dimensional AAO anodic aluminum oxide ac alternating current AFM antiferromagnetic Argonne Argonne National Laboratory ARPES angle-resolved photoemission spectroscopy BCS Bardeen, Cooper, and Schrieffer BES Basic Energy Sciences BSCCO bismuth strontium calcium copper oxide BZO barium zirconate CC coated conductors CNT carbon nanotube COBRA coherent Bragg rod analysis dc direct current DOE U.S. Department of Energy EIA Energy Information Administration EMF electromagnetic field F field fcc face-centered cubic FCL fault current limiter FIB focused ion beam FM ferromagnetic FWHM full width at half maximum GB grain boundary GDP gross domestic product GTO gate-turnoff thyristor Hc2 upper critical field of type II superconductor HHV higher heating value HLPE hybrid liquid phase epitaxy HTEM high-resolution transmission electron microscopy HTS high-temperature superconductor IBAD ion-beam-assisted deposition IGBT insulated-gate bipolar transistor INS inelastic neutron scattering ISD inclined-substrate deposition v J current density Jc critical current density Je engineering current density LANL Los Alamos National Laboratory LBCO lanthanum barium copper oxide LNG liquefied natural gas LTS low-temperature superconductor LPE liquid-phase epitaxy MBE molecular beam epitaxy MFM magnetic force microscopy ML monolayer MOCVD metal-organic chemical vapor deposition MOD metal-organic deposition MOSFET metal-oxide semiconductor field-effect transistor MRI magnetic resonance imaging μSR muon-spin relaxation, rotation, or resonance NAE National Academy of Engineering NIETC National Interest Electric Transmission Corridor NIST National Institute of Standards and Technology NMR nuclear magnetic resonance NQR nuclear quadrupole resonance NRC National Research Council NS neutron scattering O&M operation and maintenance OPIT oxide-powder-in-tube ORNL Oak Ridge National Laboratory PLD pulsed laser deposition PRD priority research direction PVD physical vapor deposition RABiTS rolling-assisted biaxially textured substrate R&D research and development RVB resonating valence bond SC superconducting SEM scanning electron microscopy SG spin-glass S-I-S superconductor-insulator-superconductor SI-STM spectroscopic imaging-scanning tunneling microscopy SNS Spallation Neutron Source SPI Superconductivity Partnership Initiative SQUID superconducting quantum interference device STM scanning tunneling microscopy STS scanning tunneling spectroscopy vi TAFF thermally assisted flux flow T temperature Tc critical transition temperature TEM transmission electron microscopy TMO transition metal oxide