Fitting Sets in U-Groups Olivier Frécon

Total Page:16

File Type:pdf, Size:1020Kb

Fitting Sets in U-Groups Olivier Frécon Fitting sets in U-groups Olivier Frécon To cite this version: Olivier Frécon. Fitting sets in U-groups. 2013. hal-00912367 HAL Id: hal-00912367 https://hal.archives-ouvertes.fr/hal-00912367 Preprint submitted on 2 Dec 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. FITTING SETS IN U-GROUPS OLIVIER FRECON´ Abstract. We consider different natural definitions for Fitting sets, and we prove the existence and conjugacy of the associated injectors in the largest possible classes of locally finite groups. A Fitting set X of a finite group G is a non-empty set of subgroups which is closed under taking normal products, taking subnormal subgroups and conjugation in G. This concept of Anderson generalized the work of Fischer, Gasch¨utz and Hartley about Fitting classes [2, p.535–537], where a Fitting class is a class of finite groups closed under taking normal products and taking subnormal subgroups. The theory of Fitting sets concern the study of injectors: for a collection X of finite groups, a subgroup V of a finite group G is an X-injector of G if V ∩ A is a maximal X-subgroup of A for every subnormal subgroup A. The basic theorem provides the existence and conjugacy of X-injectors in any finite soluble group G for each Fitting set X [2, Theorem 2.9 p.539]. In this paper, we consider the natural generalizations of Fitting sets and injectors to locally finite groups. For each definition of a Fitting set, we prove the existence and conjugacy of associated injectors in a class of locally finite groups. It is shown in [3] that our classes of locally finite groups are the largest in which the results about injectors in finite soluble groups hold. Note that, thanks to our new approach, we generalize in the last section the theorem of Hartley and Tomkinson about the existence and conjugacy of injectors in U-groups [6] from Fitting classes to Fitting sets. 1. Normal Fitting sets In this section, we analyze the injectors associated to normal Fitting sets. Notation 1.1. Let X be a collection of groups. For each group G, we denote by GXn the join of its normal X-subgroups. Definition 1.2. Let G be a locally finite group. A nonempty set X of subgroups of G is a normal Fitting set of G if: (NF 1) every normal subgroup of an X-group belongs to X; (NF 2) when H is a subgroup of G then HXn is an X-subgroup of H; (NF 3) every conjugate of an X-group is an X-group. Definition 1.3. Let G be a locally finite group. If X is a set of subgroups of G, a subgroup V of G is an X-n-injector of G if, for every normal subgroup A of G, V ∩ A is a maximal X-subgroup of A. Date: November 10, 2013. 1991 Mathematics Subject Classification. Primary 20F17; Secondary 20D10. Key words and phrases. locally finite groups, Fitting sets, Injectors. 1 2 OLIVIER FRECON´ The main result of this section is the following. Theorem 1.4. Let G be a subsoluble U-group, and X a normal Fitting set of G. Then G has exactly one conjugacy class of X-n-injectors. It is likely that the class of subsoluble U-groups is the largest class of groups satisfying this result. A partial answer is obtained in [3]. We recall that a group is called a Baer group (resp. a Gruenberg group) if every cyclic subgroup is subnormal (resp. ascendant). A group G is said to be subsoluble (resp. an SN ∗-group) if it possesses an ascending series with each term subnormal (resp. ascendant) in G and each factor abelian. In any group G, there is a Baer radical β(G) which is a Baer subgroup containing all the subnormal Baer subgroups of G, and a Gruenberg radical γ(G) which is a Gruenberg subgroup containing all the ascendant Gruenberg subgroups of G. We refer to [7, §2.3] for more details. As in [1, p.15], we denote by ρ(G) the Hirsch-Plotkin radical of any group G, and ρ0(G) = 1 and ρn+1(G)/ρn(G)= ρ(G/ρn(G)) for each integer n. We recall that the class U was introduced as below in [4], and that by an Hartley’s Theorem [1, Theorem 4.4.7 p.163], the first condition is redundant. Definition 1.5. The class U is the largest subgroup-closed class of locally finite groups satisfying the conditions: (U1) if G ∈ U then G = ρn(G) for an integer n; (U2) if G ∈ U and π is any set of primes, then the Sylow π-subgroups of G are conjugate in G. Fact 1.6. [5, Theorem E] If G is a U-group, then G/ρ(G) is (2-step soluble)-by-finite. In particular G/ρ(G) is soluble. Moreover, G/ρ(G) is hyperfinite. We need to introduce normal∗ Fitting sets as the sets X of subgroups of a locally finite group G satisfying the conditions (NF 1), (NF 3) and ∗ (NF 2 ) if H is a subgroup of G such that H/HXn is locally nilpotent, then HXn is a maximal X-subgroup of H. Any normal∗ Fitting set of a locally finite group G is a normal Fitting set too. By the result below, the converse is true in subsoluble U-groups. Proposition 1.7. If X is a normal Fitting set of a subsoluble U-group G, then X is a normal∗ Fitting set. Proof. Let H be a subgroup of G such that H/HXn is locally nilpotent. We define δ0(H) = HXn, δi+1(H)/δi(H) = β(H/δi(H)) for every ordinal i, and δµ(H) = ∪i<µδi(H) for every limit ordinal µ. Since G is subsoluble, then H is subsoluble too, and there is an ordinal α such that δα(H)= H. Suppose toward a contradiction that HXn is not a maximal X-subgroup of H. Since it is an X-subgroup by (NF 2), there is a smallest ordinal γ such that HXn is strictly contained in an X-subgroup K of δγ (H). By (NF 1), we have K ∩ δi(H) = HXn for all i<γ, so there is an ordinal ν such that γ = ν + 1. Now K/HXn ≃ Kδν (H)/δν (H) is a Baer group. Hence, if g is an element of K, then hgiHXn is subnormal in K, and hgiHXn is an X-group by (NF 1). By the minimality of γ, it is a maximal X-subgroup of hgiδi(H) for all i<γ. For any element b of δν (H), the local nilpotence of H/HXn implies the nilpotence of hg,biHXn/HXn. Therefore hgiHXn is a subnormal X-subgroup of hg,biHXn. By FITTING SETS IN U-GROUPS 3 the maximality of hgiHXn in hgiδν (H), we have hgiHXn = (hg,biHXn)Xn and b normalizes hgiHXn, so hgiHXn =(hgiδν (H))Xn. Since δγ (H)/δν (H) is a Baer group, then hgiδν (H) is subnormal in δγ (H). Hence hgiHXn is a subnormal X-subgroup of δγ (H) and we have hgiHXn ≤ (δγ (H))Xn. As δγ (H) is a normal subgroup of H, we obtain hgiHXn ≤ HXn, contradicting the choice of g. This proves the proposition. For this section, we fix a normal∗ Fitting set F of a fixed U-group G. Lemma 1.8. Let A a subgroup of G containing G′. If A possesses a maximal F- subgroup W , then every F-subgroup of G containing W is contained in a maximal F-subgroup of G. Proof. Let (Vi)i<α be an increasing sequence of F-subgroups of G containing W , for an ordinal α. For each i<α, since A is normal in G, Vi ∩ A is an F-subgroup of A containing W and we have Vi ∩ A = W by the maximality of W . As A contains ′ ′ G , then W contains V where V = ∪i<αVi. So Vi is normal in V for all i<α. We ∗ obtain V = VFn and V is an F-group by (NF 2 ). A Carter subgroup of a group H is a locally nilpotent and self-serializing subgroup of H. The main result concerning these subgroups is the following: Fact 1.9. [4, Theorem 5.4] Let H be a U-group, and A a normal subgroup of H. Then H has a unique conjugacy class of Carter subgroups. Moreover, if C is a Carter subgroup of H, then CA/A is a Carter subgroup of H/A and each Carter subgroup of H/A has this form. Lemma 1.10. Let A be a subgroup of G containing G′. If A has a maximal F- subgroup W , then the maximal F-subgroups of G containing W are conjugate. Proof. By Lemma 1.8, G has a maximal F-subgroup V containing W , and W = V ∩ A is normal in V . Let U = NG(W ) and N/W = NU/W (V/W ). We show that there exists a Carter subgroup C/W of U/W such that V = CFn.
Recommended publications
  • Finite Groups Whose «-Maximal Subgroups Are Subnormal
    FINITE GROUPS WHOSE «-MAXIMAL SUBGROUPS ARE SUBNORMAL BY AVINO'AM MANN Introduction. Dedekind has determined all groups whose subgroups are all normal (see, e.g., [5, Theorem 12.5.4]). Partially generalizing this, Wielandt showed that a finite group is nilpotent, if and only if all its subgroups are subnormal, and also if and only if all maximal subgroups are normal [5, Corollary 10.3.1, 10.3.4]. Huppert [7, Sätze 23, 24] has shown that if all 2nd-maximal subgroups of a finite group are normal, the group is supersolvable, while if all 3rd-maximal sub- groups are normal, the group is solvable of rank at most 2 (see below for the defi- nitions of the terms employed). Continuing this, Janko [8] has determined all nonsolvable finite groups, all of whose 4-maximal subgroups are normal, and also proved some results on the structure of solvable groups with the same property. Later, he has also determined all finite simple groups, all of whose 5-maximal subgroups are normal [9]. The present paper deals with similar problems. Our main concern is with the class of groups defined in the title. In §2, we derive some simple properties of these groups. For «^5, we extend the aforementioned results of Huppert and Janko to cover also our case (i.e., replacing normality by subnormality), and prove some results under slightly more general assumptions. In §3 we study solvable groups with subnormal «-maximal subgroups. If the order of the group in question has enough distinct prime divisors, the structure of the group is very limited.
    [Show full text]
  • Finite Groups with Pro-Normal Subgroups
    FINITE GROUPS WITH PRO-NORMAL SUBGROUPS T. A. PENG The purpose of this paper is to study a class of finite groups whose subgroups of prime power order are all pro-normal. Following P. Hall, we say that a subgroup H of a group G is pro-normal in G if and only if, for all x in G, H and 771 are conjugate in (77, 77x), the subgroup generated by 77 and 77*. We shall determine the structure of all finite groups whose subgroups of prime power order are pro-normal. It turns out that these groups are in fact soluble ¿-groups. A ¿-group is a group G whose subnormal subgroups are all normal in G. The struc- ture of finite soluble ¿-groups has been determined by Gaschiitz [l]. Are soluble ¿-groups precisely those groups whose subgroups of prime power order are all pro-normal? The answer is yes. Thus our study furnishes another characterization of soluble /-groups. Except for the definitions given above, our terminology and notation are standard (see, for example, M. Hall [2]). We first prove two general facts about pro-normal subgroups. Lemma 1. Let H be a pro-normal subgroup of a group G and let K be a subgroup of G containing 77. Then H is subnormal in K if and only if H is normal in K. Proof. Let H be subnormal in K. We may assume that there is a subgroup Loi G such that 77 is normal in L and L is normal in K. Let x be any element of K.
    [Show full text]
  • On the Residual of a Factorized Group with Widely Supersoluble
    On the residual of a factorized group with widely supersoluble factors Victor S. Monakhov and Alexander A. Trofimuk Department of Mathematics and Programming Technologies, Francisk Skorina Gomel State University, Gomel 246019, Belarus e-mail: [email protected] e-mail: alexander.trofi[email protected]† Abstract. Let P be the set of all primes. A subgroup H of a group G is called P-subnormal in G, if either H = G, or there exists a chain of subgroups H = H0 ≤ H1 ≤ ... ≤ Hn = G, |Hi : Hi−1| ∈ P, ∀i. A group G is called widely supersoluble, w-supersoluble for short, if every Sylow subgroup of G is P-subnormal in G. A group G = AB with P-subnormal w-supersoluble subgroups A and B is studied. The structure of its w-supersoluble resid- ual is obtained. In particular, it coincides with the nilpotent residual of the A-residual of G. Here A is the formation of all groups with abelian Sylow sub- groups. Besides, we obtain new sufficient conditions for the w-supersolubility of such group G. Keywords. widely supersoluble groups, mutually sn-permutable sub- groups, P-subnormal subgroup, the X-residual. Mathematics Subject Classification. 20D10, 20D20. arXiv:2002.06355v2 [math.GR] 3 Mar 2020 Introduction Throughout this paper, all groups are finite and G always denotes a finite group. We use the standard notations and terminology of [6]. The formations of all nilpotent, supersoluble groups and groups with abelian Sylow subgroups are denoted by N, U and A, respectively. The notation Y ≤ X means that Y is a subgroup of a group X and P be the set of all primes.
    [Show full text]
  • Subgroup Growth: an Introduction
    Subgroup growth: An introduction Ashok Rajaraman 301121276 [email protected] November 30, 2011 Abstract A major topic in geometric group theory is the counting the number of subgroups of finite index in a group. This ties into the classification of finite simple groups, as well as classical geometric group theory, to culminate in a theorem similar in spirit to Gromov's theorem on polynomial growth of finitely generated groups. This short paper captures some of the elementary results in this field. 1 Introduction Let us associate the following function with a group G: n 7! an (G) ; where an (G) is a natural number which denotes the number of subgroups of index n in G. This is the subgroup growth function of G [1]. This function is well defined if the value of an (G) is finite for all values of n 2 N. The study of the behaviour of this function was motivated by the need to classify infinite groups by some invariant. Infinite groups with the same `type' of subgroup growth are expected to show similar properties, as we shall see later on. In turn, subgroup growth has been the motivation for some major fields in group theory, such as strong approximation and linearity conditions for linear groups. The completion of the classification of finite simple groups proved a major turning point in the field, and a comprehensive theory of subgroup growth has been formulated by the works of Lubotzky, Segal, Mann [2], Larsen [3] and Ilani [4], to name a few. However, the tools used to analyze subgroup growth date much farther into the past.
    [Show full text]
  • Groups with All Subgroups Subnormal
    Note di Matematica Note Mat. 28 (2008), suppl. n. 2, 1-149 ISSN 1123-2536, e-ISSN 1590-0932 NoteDOI 10 Mat..1285/i128590(2008)0932v28n suppl.2supplp1 n. 2, 1–149. doi:10.1285/i15900932v28n2supplp1http://siba-ese.unisalento.it, © 2008 Università del Salento Groups with all subgroups subnormal Carlo Casolo Dipartimento di Matematica “Ulisse Dini”, Universit`adi Firenze, I-50134 Firenze Italy [email protected] Abstract. An updated survey on the theory of groups with all subgroups subnormal, in- cluding a general introduction on locally nilpotent groups, full proofs of most results, and a review of the possible generalizations of the theory. Keywords: Subnormal subgroups, locally nilpotent groups. MSC 2000 classification: 20E15, 20F19 1 Locally nilpotent groups In this chapter we review part of the basic theory of locally nilpotent groups. This will mainly serve to fix the notations and recall some definitions, together with some important results whose proofs will not be included in these notes. Also, we hope to provide some motivation for the study of groups with all subgroups subnormal (for short N1-groups) by setting them into a wider frame. In fact, we will perhaps include more material then what strictly needed to understand N1-groups. Thus, the first sections of this chapter may be intended both as an unfaithful list of prerequisites and a quick reference: as such, most of the readers might well skip them. As said, we will not give those proofs that are too complicate or, conversely, may be found in any introductory text on groups which includes some infinite groups (e.g.
    [Show full text]
  • Subnormality, Ascendancy, and the Minimal Condition on Subgroups
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector JOURNAL OF ALGEBRA 41, 58-78 (1976) Subnormality, Ascendancy, and the Minimal Condition on Subgroups B. HARTLEY Mathematics Institute, University of Warwick, Coventry, England AND T. A. PENG Department of Mathematics, University of Singapore Communicated by J. E. Roseblade Received June 19, 1974 1. INTRODUCTION In his recent papers [l 1, 121, Wielandt has given a very elegant treatment of subnormality in finite groups, leading to a number of criteria for a subgroup of a finite group to be subnormal. The well-known fact, first proved by Baer, that every left Engel element of a finite group lies in the Fitting subgroup, appears as a special case of Wielandt’s results; this is because an element of finite group lies in the Fitting subgroup if and only if the cyclic subgroup it generates is subnormal. Wielandt has also extended some of his results to groups satisfying the maximal condition on subgroups; our concern here is to extend them to groups satisfying Min, the minimal condition on subgroups. As a by-product, we obtain some alternative proofs of known results about left Engel elements of groups satisfying Min. It is appropriate in infinite groups to consider not only subnormal sub- groups, but also subgroups belonging to series of a group other than finite ones. In particular we shall consider ascendant subgroups. A subgroup H of a group G is ascendant in G (written H asc G) if there is an ordinal p and subgroups {H,: 01 < p} of G such that H = HO, H, Q H,+,(a: < p), f-L = UacuHa if p < p is a limit ordinal, and H, = G.
    [Show full text]
  • ENGEL ELEMENTS in GROUPS 2 Positive Integer N, a Group Is Called N-Engel If All of Whose Elements Are Left N-Engel Elements
    ENGEL ELEMENTS IN GROUPS ALIREZA ABDOLLAHIDepartment of Mathematics, University of Isfahan, Isfahan 81746-73441, IRAN. Email: [email protected] Abstract We give a survey of results on the structure of right and left Engel elements of a group. We also present some new results in this topic. 1 Introduction Let G be any group and x,y ∈ G. Define inductively the n-Engel left normed commutator [x,n y] = [x,y,...,y] n of the pair (x,y) for a given non-negative integer| {z }n, as follows: −1 −1 −1 y [x,0 y] := x, [x,1 y] := [x,y]= x y xy =: x x , and for all n> 0 [x,n y] = [[x,n−1 y],y]. An element a ∈ G is called left Engel whenever for every element g ∈ G there exists a non-negative integer n = n(g, a) possibly depending on the elements g and a such that [g,n a] = 1. For a positive integer k, an element a ∈ G is called a left k-Engel element of G whenever [g,k a] = 1 for all g ∈ G. An element a ∈ G is called arXiv:1002.0309v1 [math.GR] 1 Feb 2010 a bounded left Engel element if it is left k-Engel for some k. We denote by L(G), Lk(G) and L(G), the set of left Engel elements, left k-Engel elements, bounded left Engel elements of G, respectively. In definitions of various types of left Engel elements a of a group G, we observe that the variable element g appears on the left hand side of the element a.
    [Show full text]
  • Some Topics on Permutable Subgroups in Infinite Groups
    SOME TOPICS ON PERMUTABLE SUBGROUPS IN INFINITE GROUPS TESI DI DOTTORATO SCIENZE MATEMATICHE E INFORMATICHE - XXIX CICLO DIPARTIMENTO DI MATEMATICA E APPLICAZIONI RENATO CACCIOPPOLI ROBERTO IALENTI UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II CONTENTS Introduction 1 Preliminaries 1 1.1 Permutable subgroups . 1 1.2 Generalized permutable subgroups . 5 2 Permutability conditions on subgroups of infinite rank 9 2.1 S-permutable subgroups of infinite rank . 11 2.2 Semipermutable subgroups of infinite rank . 15 2.3 Nearly and almost permutable subgroups of infinite rank . 20 3 Some further problems on permutability 47 3.1 Polycyclic groups with permutability conditions on finite ho- momorphic images . 47 3.2 Groups with finite abelian section rank factorized by mutu- ally permutable subgroups . 54 INTRODUCTION A subgroup H of a group G is said to be permutable (or quasinormal) if HK = KH for every subgroup K of G. This concept has been introduced by Ore [54] and the condition HK = KH is equivalent to the requirement that the set HK is a subgroup. As a consequence, if H is a permutable subgroup of a group G, then for any subgroup K, hH, Ki is just the set of all elements hk, where h is in H and k is in K. With an easy argument based on set equality, it can be proved that if H is permutable, then HK \ L = (H \ L)K for any subgroups K and L such that K ≤ L. This property is known as Dedekind identity (or modular law) and note that, since K \ L = K, the equality HK \ L = (H \ L)(K \ L) is a form of associative law.
    [Show full text]
  • Groups with All Subgroups Subnormal
    Groups with all subgroups subnormal Carlo Casolo Dipartimento di Matematica “Ulisse Dini”, Universit`adi Firenze, I-50134 Firenze Italy e-mail: [email protected]fi.it Otranto, 4 - 8 giugno 2007 2 Contents 1 Locally nilpotent groups 5 1.1 Commutators and related subgroups . 5 1.2 Subnormal subgroups and generalizations . 11 1.3 Classes of groups . 15 1.4 Nilpotent groups and their generalizations . 23 1.5 Classes of locally nilpotent groups . 29 1.6 Preliminaries on N1 ......................... 39 2 Torsion-free Groups 43 2.1 Locally nilpotent torsion–free groups . 43 2.2 Isolators . 45 2.3 Torsion–free N1-groups . 49 3 Groups of Heineken and Mohamed 55 3.1 General remarks . 55 3.2 Basic construction . 57 3.3 Developements . 62 3.4 Minimal non-N groups . 67 4 Bounded defects 71 4.1 n-Baer groups . 71 4.2 Roseblade’s Theorem . 74 4.3 First applications . 81 5 Periodic N1-groups 83 5.1 N1-groups of finite exponent . 83 5.2 Extensions by groups of finite exponent . 97 5.3 Periodic hypercentral N1-groups . 101 6 The structure of N1-groups 105 6.1 Solubility of N1-groups . 105 6.2 Fitting Groups . 107 6.3 Hypercentral and Smith’s groups . 112 6.4 The structure of periodic N1-groups . 119 3 4 CONTENTS 7 Beyond N1 125 7.1 Generalizing subnormality . 125 7.2 Groups with many subnormal subgroups . 129 7.3 The subnormal intersection property. 137 7.4 Other classes of locally nilpotent groups . 139 Chapter 1 Locally nilpotent groups In this chapter we review part of the basic theory of locally nilpotent groups.
    [Show full text]
  • Groups St Andrews 2009 in Bath: Volume 2 (London Mathematical
    This page intentionally left blank LONDON MATHEMATICAL SOCIETY LECTURE NOTE SERIES Managing Editor: Professor M. Reid, Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom The titles below are available from booksellers, or from Cambridge University Press at www.cambridge.org/mathematics 234 Introduction to subfactors, V. JONES & V.S. SUNDER 235 Number theory: Seminaire´ de theorie´ des nombres de Paris 1993–94, S. DAVID (ed) 236 The James forest, H. FETTER & B. GAMBOA DE BUEN 237 Sieve methods, exponential sums, and their applications in number theory, G.R.H. GREAVES et al (eds) 238 Representation theory and algebraic geometry, A. MARTSINKOVSKY & G. TODOROV (eds) 240 Stable groups, F.O. WAGNER 241 Surveys in combinatorics, 1997, R.A. BAILEY (ed) 242 Geometric Galois actions I, L. SCHNEPS & P. LOCHAK (eds) 243 Geometric Galois actions II, L. SCHNEPS & P. LOCHAK (eds) 244 Model theory of groups and automorphism groups, D.M. EVANS (ed) 245 Geometry, combinatorial designs and related structures, J.W.P. HIRSCHFELD et al (eds) 246 p-Automorphisms of finite p-groups, E.I. KHUKHRO 247 Analytic number theory, Y. MOTOHASHI (ed) 248 Tame topology and O-minimal structures, L. VAN DEN DRIES 249 The atlas of finite groups - Ten years on, R.T. CURTIS & R.A. WILSON (eds) 250 Characters and blocks of finite groups, G. NAVARRO 251 Grobner¨ bases and applications, B. BUCHBERGER & F. WINKLER (eds) 252 Geometry and cohomology in group theory, P.H. KROPHOLLER, G.A. NIBLO & R. STOHR¨ (eds) 253 The q-Schur algebra, S. DONKIN 254 Galois representations in arithmetic algebraic geometry, A.J.
    [Show full text]
  • On Groups with All Subgroups Almost Subnormal
    On groups with all subgroups almost subnormal. Eloisa Detomi Dipartimento di Matematica, Facolt`a di Ingegneria, Universit`a degli Studi di Brescia, via Valotti 9, 25133 Brescia, Italia. [email protected] Abstract In this paper we consider groups in which every subgroup has finite index in the nth term of its normal closure series, for a fixed integer n. We prove that such a group is the extension of a finite normal subgroup by a nilpotent group, whose class is bounded in terms of n only, provided it is either periodic or torsion-free. 2000 Mathematics subject classification: primary 20E15, 20F19 A subgroup H of a group G is said to be almost subnormal if it has finite index in some subnormal subgroup of G. This occurs when H has finite index in some term H G;n, G;n−1 n ≥ 0, of its normal closure series in G; recall that H G;0 = G and HG;n = HH . A finite-by-nilpotent group has every subgroup almost subnormal, and for finitely generated groups the converse holds (see [8, 6.3.3]). Note that, if a group G has a finite normal subgroup N such that G=N is nilpotent of class n, then each subgroup H of G has finite index in HG;n. For n = 1 the converse is settled by a well-known Theorem by B. Neumann [10]: a group G, in which every subgroup H has finite index in its normal closure HG, is finite-by-abelian. Later, Lennox [7] considered the case in which n is larger than 1 and there is also a bound on the indices.
    [Show full text]
  • On Groups in Which Subnormal Subgroups of Infinite Rank Are
    ON GROUPS IN WHICH SUBNORMAL SUBGROUPS OF INFINITE RANK ARE COMMENSURABLE WITH SOME NORMAL SUBGROUP ULDERICO DARDANO AND FAUSTO DE MARI Abstract. We study soluble groups G in which each subnormal subgroup H with infinite rank is commensurable with a normal subgroup, i.e. there exists a normal subgroup N such that H ∩ N has finite index in both H and N. We show that if such a G is periodic, then all subnormal subgroups are commensurable with a normal subgroup, provided either the Hirsch-Plotkin radical of G has infinite rank or G is nilpotent-by-abelian (and has infinite rank). 2020 Mathematics Subject Classification: Primary: 20F16, Secondary: 20E07, 20E15. Keywords: transitivity, core-finite, normal-by-finite, close to normal 1. Introduction and statement of results A group G is said to be a T -group if normality in G is a transitive relation, i.e. if all subnormal subgroups are normal. The structure of soluble T -groups was well described in the 1960s by Gasch¨utz, Zacher and Robinson (see [14]). Then, taking these results as a model, several authors have studied soluble groups in which subnormal subgroups have some embedding property which “approximates” normality. In particular, Casolo [2] considered T∗-groups, that is groups in which any subnormal subgroup H has the property nn (nearly normal), i.e. the index |HG : H| is finite. Then Franciosi, de Giovanni and Newell [11] considered T ∗-groups, that is groups in which any subnormal subgroup H has the property cf (core-finite, normal-by-finite), i.e. the index |H : HG| G is finite.
    [Show full text]