Groups with All Subgroups Subnormal

Total Page:16

File Type:pdf, Size:1020Kb

Groups with All Subgroups Subnormal Groups with all subgroups subnormal Carlo Casolo Dipartimento di Matematica “Ulisse Dini”, Universit`adi Firenze, I-50134 Firenze Italy e-mail: [email protected]fi.it Otranto, 4 - 8 giugno 2007 2 Contents 1 Locally nilpotent groups 5 1.1 Commutators and related subgroups . 5 1.2 Subnormal subgroups and generalizations . 11 1.3 Classes of groups . 15 1.4 Nilpotent groups and their generalizations . 23 1.5 Classes of locally nilpotent groups . 29 1.6 Preliminaries on N1 ......................... 39 2 Torsion-free Groups 43 2.1 Locally nilpotent torsion–free groups . 43 2.2 Isolators . 45 2.3 Torsion–free N1-groups . 49 3 Groups of Heineken and Mohamed 55 3.1 General remarks . 55 3.2 Basic construction . 57 3.3 Developements . 62 3.4 Minimal non-N groups . 67 4 Bounded defects 71 4.1 n-Baer groups . 71 4.2 Roseblade’s Theorem . 74 4.3 First applications . 81 5 Periodic N1-groups 83 5.1 N1-groups of finite exponent . 83 5.2 Extensions by groups of finite exponent . 97 5.3 Periodic hypercentral N1-groups . 101 6 The structure of N1-groups 105 6.1 Solubility of N1-groups . 105 6.2 Fitting Groups . 107 6.3 Hypercentral and Smith’s groups . 112 6.4 The structure of periodic N1-groups . 119 3 4 CONTENTS 7 Beyond N1 125 7.1 Generalizing subnormality . 125 7.2 Groups with many subnormal subgroups . 129 7.3 The subnormal intersection property. 137 7.4 Other classes of locally nilpotent groups . 139 Chapter 1 Locally nilpotent groups In this chapter we review part of the basic theory of locally nilpotent groups. This will mainly serve to fix the notations and recall some definitions, together with some important results whose proofs will not be included in these notes. Also, we hope to provide some motivation for the study of groups with all subgroups subnormal (for short N1-groups) by setting them into a wider frame. In fact, we will perhaps include more material then what strictly needed to understand N1-groups. Thus, the first sections of this chapter may be intended both as an unfaithful list of prerequisites and a quick reference: as such, most of the readers might well skip them. As said, we will not give those proofs that are too complicate or, conversely, may be found in any introductory text on groups which includes some infinite groups (e.g. [97] or [52], for nilpotent groups we may suggest, among many, [56]). For the theory of generalized nilpotent groups and that of subnormal subgroups, our standard references will be, respectively, D. Robinson’s classical monography [96] and the book by Lennox and Stonehewer [64]. In the last section we begin the study of N1-groups, starting with the first basic facts, which are not diffucult but are fundamental to understand the rest of these notes. 1.1 Commutators and related subgroups Let x, y be elements of a group G. As customary, we denote by xy = y−1xy the conjugate of x by y. The commutator of x and y is defined in the usual way as [x, y] = x−1y−1xy = x−1xy. Then, for n ∈ N, the iterated commutator [x,n y] is recursively defined as follows [x,0 y] = x, [x,1 y] = [x, y] and, for 1 ≤ i ∈ N, [x,i+1 y] = [[x,i y], y]. 5 6 CHAPTER 1. LOCALLY NILPOTENT GROUPS Similarly, if x1, x2, . xn are elements of G, the simple commutator of weight n is defined recursively by [x1, x2, . , xn] = [[x1, . , xn−1], xn]. We list some elementary but important facts of commutator manipulations. They all follow easily from the definitons, and can be found in any introductory text in group theory. Lemma 1.1 Let G be a group, and x, y, z ∈ G. Then (1) [x, y]−1 = [y, x]; (2) [xy, z] = [x, z]y[y, z] = [x, z][x, z, y][y, z]; (3) [x, yz] = [x, z][x, y]z = [x, z][x, y][x, y, z]; (4) (Hall-Witt identity) [x, y−1, z]y[y, z−1, x]z[z, x−1, y]x = 1. Lemma 1.2 Let G be a group, x, y ∈ G, n ∈ N, and suppose that [x, y, y] = 1; then [x, y]n = [x, yn]. If further [x, y, x] = 1, then n n n n (xy) = x y [y, x](2). If X is a subset of a group G then hXi denotes the subgroup generated by X. If U and V are non-empty subsets of the group G, we set [U, V ] = h[x, y] | x ∈ U, y ∈ V i and define inductively in the obvious way [U,n V ], for n ∈ N. Finally, if A ≤ G, and x ∈ G, we let, for all n ∈ N,[A,n x] = h[a,n x] | a ∈ Ai. If H ≤ G, HG denotes the largest normal subgroup of G contained in H, and HG the normal closure of H in G, i.e. the smallest normal subgroup of G containing H. Clearly, \ g G g HG = H and H = hH | g ∈ Gi. g∈G More generally, if X and Y are non-empty subsets of the group G, we denote by XY the subgroup hxy | x ∈ X, y ∈ Y i. The following are easy consequences of the definitions. Lemma 1.3 Let H and K be subgroups of a group. Then [H, K] E hH, Ki. Lemma 1.4 Let X, Y be subsets of the group G. Then [hXi, hY i] = [X, Y ]hXihY i. If N E G, then [N, hXi] = [N, X]. The next, very useful Lemma follows from the Hall-Witt identity. 1.1. COMMUTATORS AND RELATED SUBGROUPS 7 Lemma 1.5 (Three Subgroup Lemma). Let A, B, C be subgroups of the group G, and let N be a normal subgroup such that [A, B, C] and [B, C, A] are con- tained in N. Then also [C, A, B] is contained in N. The rules in Lemma 1.1, as well as others derived from those, may be ap- plied to get sorts of handy analogues for subgroups. For instance, if A, B, C are subgroups of G and [A, C] is a normal, then [AB, C] = [A, C][B, C]. More generally, we have Lemma 1.6 Let N, H1,...,Hn be subgroups of the group G, with N E G, and put Y = hH1,...,Hni. Then [N, Y ] = [N, H1] ... [N, Hn]. The same commutator notation we adopt for groups actions: let the group G act on the group A. For all g ∈ G and a ∈ A, we set [a, g] = a−1ag, and [A, G] = h[a, g] | a ∈ A, g ∈ Gi. With the obvius interpretations, the properties listed above for standard group commutators continue to hold. For a group G, the subgroup G0 = [G, G] is called the derived subgroup of G, and is the smallest normal subgroup N of G such that the quotient G/N is abelian. The terms G(d) (1 ≤ d ∈ N) of the derived series of G are the characteristic subgroups defined by G(1) = G0 and, inductively , G(n+1) = (G(n))0 = [G(n),G(n)] (the second derived subgroup G(2) is often denote by G00). The group G is soluble if there exists an n such that G(n) = 1; in such a case the smallest integer n for which this occurs is called the derived length of the soluble group G. Of course, subgroups and homomorphic images of a soluble group of derived length d are soluble with derived length at most d. A group is said to be perfect if it has no non-trivial abelian quotiens; thus, G is perfect if and only if G = G0. By means of commutators are also defined the terms γd(G) of the lower central series of a group G: set γ1(G) = G, and inductively, for d ≥ 1, γd+1(G) = [γd(G),G] = [G,d G]. These are also characteristic subgroups of G. A group G is nilpotent if, for some c ∈ N, γc+1(G) = 1. The nilpotency class (or, simply, the class) of a nilpotent group G is the smallest integer c such that γc+1(G) = 1. Lemma 1.7 Let G be a group, and m, n ∈ N \{0}. Then (1) [γn(G), γm(G)] ≤ γn+m(G);. (2) γm(γn(G)) ≤ γmn(G); From (1), and induction on n, we have 8 CHAPTER 1. LOCALLY NILPOTENT GROUPS (n) Corollary 1.8 For any group G and any 1 ≤ n ∈ N, G ≤ γ2n (G). In par- ticular a nilpotent group of class c has derived length at most [log2 c] + 1. Also, by using (1) and induction, one easily proves the first point of the following Lemma, while the second one follows by induction and use of the commutator identities of 1.1, Lemma 1.9 Let G be a group, and 1 ≤ n ∈ N. Then (1) γn(G) = h[g1, g2, . , gn] | gi ∈ G, i = 1, 2, . , ni. (2) If S is a generating set for G, then γn(G) is generated by the simple commutators of weight at least n in the elemets of S ∪ S−1. The upper central series of a group G is the series whose terms ζi(G) are defined in the familiar way: ζ1(G) = Z(G) = {x ∈ G | xg = gx ∀g ∈ G} is the centre of G, and for all n ≥ 2, ζn(G) is defined by ζn(G)/ζn−1(G) = Z(G/ζn−1(G)).
Recommended publications
  • Finite Groups Whose «-Maximal Subgroups Are Subnormal
    FINITE GROUPS WHOSE «-MAXIMAL SUBGROUPS ARE SUBNORMAL BY AVINO'AM MANN Introduction. Dedekind has determined all groups whose subgroups are all normal (see, e.g., [5, Theorem 12.5.4]). Partially generalizing this, Wielandt showed that a finite group is nilpotent, if and only if all its subgroups are subnormal, and also if and only if all maximal subgroups are normal [5, Corollary 10.3.1, 10.3.4]. Huppert [7, Sätze 23, 24] has shown that if all 2nd-maximal subgroups of a finite group are normal, the group is supersolvable, while if all 3rd-maximal sub- groups are normal, the group is solvable of rank at most 2 (see below for the defi- nitions of the terms employed). Continuing this, Janko [8] has determined all nonsolvable finite groups, all of whose 4-maximal subgroups are normal, and also proved some results on the structure of solvable groups with the same property. Later, he has also determined all finite simple groups, all of whose 5-maximal subgroups are normal [9]. The present paper deals with similar problems. Our main concern is with the class of groups defined in the title. In §2, we derive some simple properties of these groups. For «^5, we extend the aforementioned results of Huppert and Janko to cover also our case (i.e., replacing normality by subnormality), and prove some results under slightly more general assumptions. In §3 we study solvable groups with subnormal «-maximal subgroups. If the order of the group in question has enough distinct prime divisors, the structure of the group is very limited.
    [Show full text]
  • Finite Groups with Pro-Normal Subgroups
    FINITE GROUPS WITH PRO-NORMAL SUBGROUPS T. A. PENG The purpose of this paper is to study a class of finite groups whose subgroups of prime power order are all pro-normal. Following P. Hall, we say that a subgroup H of a group G is pro-normal in G if and only if, for all x in G, H and 771 are conjugate in (77, 77x), the subgroup generated by 77 and 77*. We shall determine the structure of all finite groups whose subgroups of prime power order are pro-normal. It turns out that these groups are in fact soluble ¿-groups. A ¿-group is a group G whose subnormal subgroups are all normal in G. The struc- ture of finite soluble ¿-groups has been determined by Gaschiitz [l]. Are soluble ¿-groups precisely those groups whose subgroups of prime power order are all pro-normal? The answer is yes. Thus our study furnishes another characterization of soluble /-groups. Except for the definitions given above, our terminology and notation are standard (see, for example, M. Hall [2]). We first prove two general facts about pro-normal subgroups. Lemma 1. Let H be a pro-normal subgroup of a group G and let K be a subgroup of G containing 77. Then H is subnormal in K if and only if H is normal in K. Proof. Let H be subnormal in K. We may assume that there is a subgroup Loi G such that 77 is normal in L and L is normal in K. Let x be any element of K.
    [Show full text]
  • On the Residual of a Factorized Group with Widely Supersoluble
    On the residual of a factorized group with widely supersoluble factors Victor S. Monakhov and Alexander A. Trofimuk Department of Mathematics and Programming Technologies, Francisk Skorina Gomel State University, Gomel 246019, Belarus e-mail: [email protected] e-mail: alexander.trofi[email protected]† Abstract. Let P be the set of all primes. A subgroup H of a group G is called P-subnormal in G, if either H = G, or there exists a chain of subgroups H = H0 ≤ H1 ≤ ... ≤ Hn = G, |Hi : Hi−1| ∈ P, ∀i. A group G is called widely supersoluble, w-supersoluble for short, if every Sylow subgroup of G is P-subnormal in G. A group G = AB with P-subnormal w-supersoluble subgroups A and B is studied. The structure of its w-supersoluble resid- ual is obtained. In particular, it coincides with the nilpotent residual of the A-residual of G. Here A is the formation of all groups with abelian Sylow sub- groups. Besides, we obtain new sufficient conditions for the w-supersolubility of such group G. Keywords. widely supersoluble groups, mutually sn-permutable sub- groups, P-subnormal subgroup, the X-residual. Mathematics Subject Classification. 20D10, 20D20. arXiv:2002.06355v2 [math.GR] 3 Mar 2020 Introduction Throughout this paper, all groups are finite and G always denotes a finite group. We use the standard notations and terminology of [6]. The formations of all nilpotent, supersoluble groups and groups with abelian Sylow subgroups are denoted by N, U and A, respectively. The notation Y ≤ X means that Y is a subgroup of a group X and P be the set of all primes.
    [Show full text]
  • Subgroup Growth: an Introduction
    Subgroup growth: An introduction Ashok Rajaraman 301121276 [email protected] November 30, 2011 Abstract A major topic in geometric group theory is the counting the number of subgroups of finite index in a group. This ties into the classification of finite simple groups, as well as classical geometric group theory, to culminate in a theorem similar in spirit to Gromov's theorem on polynomial growth of finitely generated groups. This short paper captures some of the elementary results in this field. 1 Introduction Let us associate the following function with a group G: n 7! an (G) ; where an (G) is a natural number which denotes the number of subgroups of index n in G. This is the subgroup growth function of G [1]. This function is well defined if the value of an (G) is finite for all values of n 2 N. The study of the behaviour of this function was motivated by the need to classify infinite groups by some invariant. Infinite groups with the same `type' of subgroup growth are expected to show similar properties, as we shall see later on. In turn, subgroup growth has been the motivation for some major fields in group theory, such as strong approximation and linearity conditions for linear groups. The completion of the classification of finite simple groups proved a major turning point in the field, and a comprehensive theory of subgroup growth has been formulated by the works of Lubotzky, Segal, Mann [2], Larsen [3] and Ilani [4], to name a few. However, the tools used to analyze subgroup growth date much farther into the past.
    [Show full text]
  • Subnormality, Ascendancy, and the Minimal Condition on Subgroups
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector JOURNAL OF ALGEBRA 41, 58-78 (1976) Subnormality, Ascendancy, and the Minimal Condition on Subgroups B. HARTLEY Mathematics Institute, University of Warwick, Coventry, England AND T. A. PENG Department of Mathematics, University of Singapore Communicated by J. E. Roseblade Received June 19, 1974 1. INTRODUCTION In his recent papers [l 1, 121, Wielandt has given a very elegant treatment of subnormality in finite groups, leading to a number of criteria for a subgroup of a finite group to be subnormal. The well-known fact, first proved by Baer, that every left Engel element of a finite group lies in the Fitting subgroup, appears as a special case of Wielandt’s results; this is because an element of finite group lies in the Fitting subgroup if and only if the cyclic subgroup it generates is subnormal. Wielandt has also extended some of his results to groups satisfying the maximal condition on subgroups; our concern here is to extend them to groups satisfying Min, the minimal condition on subgroups. As a by-product, we obtain some alternative proofs of known results about left Engel elements of groups satisfying Min. It is appropriate in infinite groups to consider not only subnormal sub- groups, but also subgroups belonging to series of a group other than finite ones. In particular we shall consider ascendant subgroups. A subgroup H of a group G is ascendant in G (written H asc G) if there is an ordinal p and subgroups {H,: 01 < p} of G such that H = HO, H, Q H,+,(a: < p), f-L = UacuHa if p < p is a limit ordinal, and H, = G.
    [Show full text]
  • On Groups with All Subgroups Almost Subnormal
    On groups with all subgroups almost subnormal. Eloisa Detomi Dipartimento di Matematica, Facolt`a di Ingegneria, Universit`a degli Studi di Brescia, via Valotti 9, 25133 Brescia, Italia. [email protected] Abstract In this paper we consider groups in which every subgroup has finite index in the nth term of its normal closure series, for a fixed integer n. We prove that such a group is the extension of a finite normal subgroup by a nilpotent group, whose class is bounded in terms of n only, provided it is either periodic or torsion-free. 2000 Mathematics subject classification: primary 20E15, 20F19 A subgroup H of a group G is said to be almost subnormal if it has finite index in some subnormal subgroup of G. This occurs when H has finite index in some term H G;n, G;n−1 n ≥ 0, of its normal closure series in G; recall that H G;0 = G and HG;n = HH . A finite-by-nilpotent group has every subgroup almost subnormal, and for finitely generated groups the converse holds (see [8, 6.3.3]). Note that, if a group G has a finite normal subgroup N such that G=N is nilpotent of class n, then each subgroup H of G has finite index in HG;n. For n = 1 the converse is settled by a well-known Theorem by B. Neumann [10]: a group G, in which every subgroup H has finite index in its normal closure HG, is finite-by-abelian. Later, Lennox [7] considered the case in which n is larger than 1 and there is also a bound on the indices.
    [Show full text]
  • On Groups in Which Subnormal Subgroups of Infinite Rank Are
    ON GROUPS IN WHICH SUBNORMAL SUBGROUPS OF INFINITE RANK ARE COMMENSURABLE WITH SOME NORMAL SUBGROUP ULDERICO DARDANO AND FAUSTO DE MARI Abstract. We study soluble groups G in which each subnormal subgroup H with infinite rank is commensurable with a normal subgroup, i.e. there exists a normal subgroup N such that H ∩ N has finite index in both H and N. We show that if such a G is periodic, then all subnormal subgroups are commensurable with a normal subgroup, provided either the Hirsch-Plotkin radical of G has infinite rank or G is nilpotent-by-abelian (and has infinite rank). 2020 Mathematics Subject Classification: Primary: 20F16, Secondary: 20E07, 20E15. Keywords: transitivity, core-finite, normal-by-finite, close to normal 1. Introduction and statement of results A group G is said to be a T -group if normality in G is a transitive relation, i.e. if all subnormal subgroups are normal. The structure of soluble T -groups was well described in the 1960s by Gasch¨utz, Zacher and Robinson (see [14]). Then, taking these results as a model, several authors have studied soluble groups in which subnormal subgroups have some embedding property which “approximates” normality. In particular, Casolo [2] considered T∗-groups, that is groups in which any subnormal subgroup H has the property nn (nearly normal), i.e. the index |HG : H| is finite. Then Franciosi, de Giovanni and Newell [11] considered T ∗-groups, that is groups in which any subnormal subgroup H has the property cf (core-finite, normal-by-finite), i.e. the index |H : HG| G is finite.
    [Show full text]
  • On the Lattice of S-Subnormal Subgroups*
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF ALGEBRA 148, 42-52 (1992) On the Lattice of S-Subnormal Subgroups* A. BALLESTER-BOLINCHES Departammt D’Algehm, Uniwrsitat de Val&cia, C/Doctor Moliner, 50, E-46100 Burjassot, Valencia, Spain K. DOERK Fachbereich Mnthematik, Johannes Gutenberg-linillersitiit, Postfach 3980, D-6500 Maim, Germmy AND M. D. PEREZ-RAMOS Departament D’AIgebra, Unioersitat de Val&ia, C/Doctor Moliner, 50, E-46100 Burjassot, Valencia, Spain Conmunicated by Gernot Stroth ReceivedMay 18, 1990 1. INTRODUCTION All groups considered are finite. It is well known that the set of all subnormal subgroups of a group G is a lattice. Now, assume that 5 is a subgroup-closed saturated formation containing the class of all nilpotent groups. It is known that the inter- section of two g-subnormal subgroups of a soluble group G is an S-subnormal subgroup of G (cf. [6, 5,2]). One might wonder if the set of all g-subnormal subgroups of a soluble group is a lattice. The answer is negative in general (see [2]), but there exist subgroup-closed saturated formations containing properly the class of all nilpotent groups for which the lattice property holds. In this paper, we obtain the exact description of the subgroup-closed saturated formations 5 of soluble groups such that the set of all g-subnormal subgroups is a lattice for every soluble group. 2. PRELIMINARIES In this section we collect some definitions and notations as well as some known results.
    [Show full text]
  • A CLASS of C-GROUPS
    A CLASS OF c-GROUPS A. R. CAMINA and T. M. GAGEN (Received 18 December 1967; revised 25 March 1968) In a paper by Polimeni [3] the concept of a c-group was introduced. A group is called a c-group if and only if every subnormal subgroup is characteristic. His paper claims to characterize finite soluble c-groups, which we will call /sc-groups. There are some errors in this paper; see the forthcoming review by K. W. Gruenberg in Mathematical Reviews. The following theorem is the correct characterization. We are indebted to the referee for his suggestions which led to this generalization of our original result. THEOREM. Let G be a finite soluble group and L its nilpotent residual {i.e. the smallest normal subgroup of G such that G\L is nilpotent). Then G is an fsc-group if and only if (i) G is a T-group (i.e. every subnormal subgroup is normal), (ii) the Fitting subgroup F of G is cyclic and F'D.L, (iii) for every prime divisor p of the order of F, the Sylow p-subgroup of G is cyclic or quaternion, (iv) if a Sylow 2-subgroup of G is quaternion, then G/<w> is a c-group, where u2 = 1, u e F. NOTE. Properties of T-groups will be used without comment, see Gaschiitz [1]. PROOF: SUFFICIENCY. Clearly every subnormal subgroup of G is normal, (i). Condition (iii) implies that the Sylow 2-subgroups of G are either abelian or quaternion of order 8. For if a Sylow 2-subgroup S of G is non-abelian then the derived subgroup S' has order 2 and is contained in F by [1] and so by (iii), S is quaternion.
    [Show full text]
  • The Classification of Quasithin Groups I, II, by Michael Aschbacher And
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 43, Number 1, Pages 115–121 S 0273-0979(05)01071-2 Article electronically published on July 5, 2005 The classification of quasithin groups I, II, by Michael Aschbacher and Stephen D. Smith, Mathematical Surveys and Monographs, vols. 111–112, American Mathe- matical Society, Providence, RI, 2004, 1221 pp., US$228.00, ISBN 0-8218-3410-X (Vol. 111), 0-8218-3411-8 (Vol. 112) In 1983, Danny Gorenstein announced the completion of the Classification of the Finite Simple Groups. This announcement was somewhat premature. The Classification of the Finite Simple Groups was at last completed with the publica- tion in 2004 of the two monographs under review here. These volumes, classifying the quasithin finite simple groups of even characteristic, are a major milestone in the history of finite group theory. It is appropriate that the great classifica- tion endeavor, whose beginning may reasonably be dated to the publication of the monumental Odd Order Paper [FT] of Feit and Thompson in 1963, ends with the publication of a work whose size dwarfs even that massive work. 1. Placing quasithin groups in the classification scheme Let us first understand the place of quasithin groups in the overall scheme. Feit and Thompson proved that every nonabelian finite simple group has even order. This focussed attention on the prime 2 and, more specifically, on the centralizers of involutions (elements of order 2). Brauer and Fowler had proved that if H is the centralizer of an involution in a finite simple group G,then|G| < (|H|2)!.
    [Show full text]
  • Notes for Group Theory and Representation Theory
    Notes for Group Theory and Representation Theory Ting Gong Started Mar. 14, 2019. Last revision August 7, 2019 Contents 1 Review for Basic Terms 1 1.1 Basic Concepts of Groups and Morphisms . .1 1.2 Two Interesting Examples . .5 1.3 Commutators . .6 1.4 Products of Groups . .7 1.5 Minimal Normal Subgroups and Composition Series . .9 1.6 Study of Abelian Groups . 11 1.7 Group Action . 13 2 Sylow Theory 15 2.1 The Sylow Theorems . 15 2.2 Classification of Groups . 16 3 Normal and Subnormal Structure 17 4 Commutators 18 5 Transfer 19 i Chapter 1 Review for Basic Terms 1.1 Basic Concepts of Groups and Morphisms Definition 1.1.1. A nonempty set G with operation ∗ is a group if x; y 2 G, the following properties are satisfied: (i) Closure: x ∗ y 2 G (ii) Associativity: (x ∗ y) ∗ z = x ∗ (y ∗ z) (iii) Identity: 9e 2 G such that e ∗ x = x ∗ e = x (iv) Inverse: 9x−1 2 G such that xx−1 = x−1x A group is called Abelian if we have an extra property: (v) Commutativity: xy = yx Definition 1.1.2. Let b = axa−1, where x; a 2 G, we call b the conjugate of x by a Remark 1.1.3. One can prove the following statements easily: (i) inverses are unique in a group (ii) identity is unique in a group (iii) right and left cancellations holds in groups It is natural to consider we do the operation multiple times on the same element, say n.
    [Show full text]
  • Large Subgroups in Finite Groups
    LARGE SUBGROUPS IN FINITE GROUPS STEFANOS AIVAZIDISy AND THOMAS MULLER¨ ∗ Abstract. Following Isaacs (see [Isa08, p. 94]), we call a normal subgroup N of a finite group G large, if CG(N) 6 N, so that N has bounded index in G. Our principal aim here is to establish some general results for systematically producing large subgroups in finite groups (see Theorems A and C). We also consider the more specialised problems of finding large (non-abelian) nilpotent as well as abelian subgroups in soluble groups. 1. Introduction Let G be a finite group and suppose that N is a normal subgroup of G such that CG(N) 6 N. Then we call N a large subgroup of G. The motivation for naming such a subgroup \large" stems from the observation that if N ¢G, then the factor group G= CG(N) is isomorphically embedded in Aut(N), and so jG : CG(N)j 6 jAut(N)j. Thus, if N is large, it follows that jG : Nj 6 jAut(N)j, so that N has bounded index in G. There are a number of examples of large subgroups in the literature. For instance, if G is soluble then the (standard) Fitting subgroup F(G) of G is large. Also, if G is π-separable and Oπ0 (G) = 1, then Oπ(G) is large (this result is known as the Hall{Higman Lemma 1.2.3). Moreover, if G is any finite group, then the generalised Fitting subgroup F∗(G) of G is large. We briefly recall the definition of Bender's subgroup F∗(G).
    [Show full text]