Design Considerations for Residential Solar Heating and Cooling Systems Utilizing Evacuated Tube Solar Collectors

Total Page:16

File Type:pdf, Size:1020Kb

Design Considerations for Residential Solar Heating and Cooling Systems Utilizing Evacuated Tube Solar Collectors DESIGN CONSIDERATIONS FOR RESIDENTIAL SOLAR HEATING AND COOLING SYSTEMS UTILIZING EVACUATED TUBE SOLAR COLLECTORS Dan S. Ward and John C. Ward Assistant Professor of Civil Professor of Civil Engineering and Physics ~ngineering ·Solar Energy Applications Laboratory Colorado State University Fort Collins, Colorado 80523 ABSTRACT As solar heating systems become a commercial real- auxiliary use}, and 60 to 80 percent auxiliary on ity, greater efforts are now being employed to in- 20 to 30 days during the heating season . [2] In corporate solar cooling components in order to addition, sizing of DHW, space heating, and space obtain a complete solar heating and cooling system, cooling systems will vary considerably. (See, for and thus take advantage of the cost-effectiveness example, reference 3.) of year-round use of the solar equipment. The solar heating and cooling system design presented in this The perfonnance of solar heating ana cooling sys- paper incorporates design considerations which have tems is strongly dependent upon the operating been obtained from previous experimental efforts characteristics of the various subsystems and, in utilizing evacuated tube solar collectors. These particular, upon the characteristics of the cooling advanced collectors are capable of significantly method. At present, most residential solar cooling higher efficiencies, even at the higher tempera- systems utilize absorption cooling units (usually tures required for solar cooling operation. Most lithium-bromide}. Other possibilities include: of the considerations presented here are based on (l} the use of night air cooled to the wet bulb the experience gained in the design and perfonnance temperature to chill a pebble-bed rock storage unit of the so1ar heating and coo1ing systems for CSU for daytime use (generally limited to arid and So1ar Houses I through IV. semi-arid regions}; (2) radiative-evaporative cooling; (3) solar assisted desiccant dehumidifica- tion; (4) Rankine-vapor compression (these are INTRODUCTION generally only available in very large units}; (5) solar assisted heat pumps; (6) solar Rankine The addition of a solar cooling capability to a heat pumps; (7) heat pump cooling of rock ·beds at solar space and domestic hot water (DHW} heating night; and (8) roof water ponds. However, because system al1ows for a substantia1ly improved usage of the corrmercial availability of lithium-bromide of the so1ar collector array and the associated absorption cooling units, these cooling systems components of the solar system. Year-round usage and their operating characteristics will be used gives greater cost-effectiveness of the solar as the basis for discussion of incorporating eva- equipment because of greater cost savings on con- cuated tube solar collectors into solar heating and ventional fuels in return for a re1ative1y small cooling systems. additional initial capital investment. An inte- grated so1ar heating and cooling system (including The particular characteristics of the evacuated DHW heating} is expected to achieve a much lower tube solar collectors also play an important part cost per unit energy than a so1ar space and DHW in overall system design. For example, because of heating system in most areas of the continental the geometrical shape of evacuated glass tube solar United States. [l] There is, however, the possi- collectors, snow removal can be expected to require bility of technical complications which must be longer melting periods than conventional flat-plate resolved before any cost advantages can be realized. solar collectors, because snow slide-off is gener- A simp1e example is the inability (without signifi- ally impeded by the tubular design. On the other cant and costly complications} to provide for an hand, wind and hail will be much less of a threat optimum ti1t of the collector for both surmier and to the structural integrity of an evacuated glass winter solar angles. (Generally, it is necessary tube . to choose either the winter heating or the surrmer cooling for optimum tilt of the collector, because a compromise angle between the two alternatives EVACUATED TUBE SOLAR COLLECTORS would actually optimize the co1lector for spring and fall solar radiation.} In addition, there are Evacuated tube solar collectors pennit the use of a substantially different operating characteristics vacuum of sufficient magnitude to virtually elimin- of the various systems. Solar cooling would ate convection and conduction heat transfer losses. typically provide about 80 percent of the summer In addition, these collectors generally require a cooling load on a daily basis (with auxiliary minimum amount of material per square foot of col- providing 20 percent each day}, whereas heating is lector and thus provide for the possibility of usually 100 percent solar on most days (no lower costs (under conditions of large scale 10-9 ., I manufacturing processes). Fina 11 y, the vacuum may fl at-plate solar collectors) under the same con- help to protect a selective surface used on the ditions of high outlet fluid temperatures (Tf). absorber (for reduction of long-wave radiation heat This is especially important because of the high losses) against perfonnance degradation over the temperature requirements of solar cooling equip- life of the collector. ment . The input temperature to the generator of a Li Br absorption unit should be (for cooling water The perfonnance of t~ese evacuated glass tube solar t empe ratures of 30°C) between BO and 100°C. For collectors can be represented (for steady-state lower cooling water temperatures (24°C), the range conditions) by an equation of the for:m: is 70 to 100°C. Under these conditions, the Co- efficient of Perfonnance (COP) is in the range of TrT n = n - U ( _ _a) (l) 0.65 to 0.70. While even lower generator inlet 0 5 temperatures can be tolerated for absorption units where n is the solar collector efficiency (dimen- equipped with an internal pump, the resulting de- crease in COP makes lower operating temperatures sionless), n0 is the solar collector efficiency when Tf-Ta = 0 (dimensionless), U is a function infeasible. of the various heat transfer coefficients applic- able to a particular collector (kj/[hr][m2][°C]), The temperatures required to effectively operate Tf is the outlet fluid temperature (°C), Ta is the absorption cooling units emphasize the necessity outdoor air temperature (°C), and S is the solar of using high performance co llectors, capable of radiation on the collector (kj/[hr][m2]). high efficiencies even under conditions of high collector fluid temperatures and high temperatures For comparison purposes, value of no and U are in thermal storage. For example, if the minimum given in Table l for several different kinds of realistic input temperature to the generator of the solar collectors. Equation (l) can also be used to absorption machine is B0 °C, the thermal storage estimate temperature that may be reached during temperature must exceed B0°C. If a heat exchanger stagnation conditions (no flow of coolant fluid is located between the collector and storage, then through collector loop). Under these conditions, the collector is operating at minimum temperatures n 0 and Equation (l) reduces to: of B5 to 90°C. For ambient temperatures of 30°C, = and good solar conditions of 900 W/m2, a typical ( 2) flat-plate collector may achieve peak efficiency of only 40 percent, whereas an evacuated tube solar collector could operate at a peak efficiency of 60 percent . For daily efficiencies the evacuated tube It will be noted that the values of n0 (column 5 of Table l) are higher and the values of U (column 6 can be expected to collect twice as much useful of Table l) are lower for the evacuated glass tube energy as the flat-plate collector. This is due , solar collectors compared to the other more conven- in part, to the fact that the minimum intensity of tional (concentration= l) flat-plate solar collec- solar radiation necessary for the collection of tors listed, but their stagnation temperatures are useful heat is lower for an evacuated tube solar also much higher (column 7 of Table l ). For values collectors, and thus for a given system and identi- of (Tf- Ta)/S > 0.033 (hr)(m2)( °C)/kj, both evacua- cal climatic conditions, the evacuated glass tube ted glass tube solar collectors outperform concen- solar collectors will have longer daily operating trating (concentration= 10) solar collectors that intervals (i.e., they begin collecting useful track the sun. energy earlier in the day and continue longer in the afternoon before ceasing operation.) The superior perfonnance of evacuated glass tube The present major disadvantage of evacuated tubular solar collectors provides for substantially higher collectors is the high cost (ranging from 300 to efficiencies (as much as double that of convention~ 500 $/m2). However, the ma terial costs are only Table 1. Typical Values of n0 and U for Several Different Kinds of Collectors Concen- u, Tf-Ta, ere Manufacturer Type of Solar Collector Fluid tration no kj/(hr}(m2)(°C) for n = O* (l) (2) ( 3) ( 4) (5) (6) (7) Fresnel Lens (track mo model Liouid 10 0. B45 6. 16 466 Northrup Fresnel Lens (non-tracking mode) Liquid 4 O.B59 9.67 302 2 Lexan cover plates General Electric (Selective surface\ Liquid l 0.751 13. l 0 194 I) Observed ** 0. 66 l B.3 122 CSU (Solar House Theoretical Liquid l 0 73 12 0 ?O A Solaron (Solar Houses Observed 0.637 13.2 164 II and IV) Theoretical Air l 0.7 14 6 lh1 Selective surface, 2 glass Arretek cover olates Liqui d l 0. 77 12.9 20B Cornino I Solar House Il Evacuated olass tube Linuid l 0.Bl 5.10 540 Owens-Illinois (Solar Hnuse II J) Evacuated glass tube Liquid l 0. 791 3.59 750 *Calculated using equation (2) assuming that S = 3,406 kj/(hr)(m2) = 946 W/m2 **Based on an experimental test module whose sides were not insulated 10-10 'I.
Recommended publications
  • Dodge Cummins Coolant Bypass
    FPE-2018-06 SUBJECT: DODGE CUMMINS COOLANT BYPASS KIT November, 2020 Page 1 of 6 FITMENT: 2003–2007 Dodge Cummins Manual Transmission Only 2007.5-2018 Dodge Cummins Manual and Automatic Transmissions KIT P/N: FPE-CLNTBYPS-CUMMINS-MAN, FPE-CLNTBYPS-CUMMINS-6.7 ESTIMATED INSTALLATION TIME: 2-3 Hours TOOLS REQUIRED: 16mm ratcheting wrench, 10mm socket, 8mm socket, 6mm Allen, 1” wrench, hammer, 5-gallon clean drain pan, 36” pry bar, Scotch-Brite TM pad (included in kit). KIT CONTENTS: Item Description Qty 1 Coolant bypass hose 1 2 Coolant bypass thermostat housing 1 and O-ring 3 Thermostat riser block and O-ring 1 3 4 4 Coolant bypass hose riser bracket 2 2 5 M8 x 1.25, 20mm socket head cap 2 screw 7 6 6 M6 x 1.00 x 60mm flange head bolt 3 5 7 M12 x 1.75, 40mm flange head bolt 2 8 Scotch-Brite TM pad (not pictured) 1 1 WARNINGS: • Use of this product may void or nullify the vehicle’s factory warranty. • User assumes sole responsibility for the safe & proper use of the vehicle at all times. • The purchaser and end user releases, indemnifies, discharges, and holds harmless Fleece Performance Engineering, Inc. from any and all claims, damages, causes of action, injuries, or expenses resulting from or relating to the use or installation of this product that is in violation of the terms and conditions on this page, the product disclaimer, and/or the product installation instructions. Fleece Performance Engineering, Inc. will not be liable for any direct, indirect, consequential, exemplary, punitive, statutory, or incidental damages or fines cause by the use or installation of this product.
    [Show full text]
  • Optimization of the Design of a Polymer Flat Plate Solar Collector A
    Optimization of the design of a polymer flat plate solar collector A. C. Mintsa Do Ango, Marc Médale, Chérifa Abid To cite this version: A. C. Mintsa Do Ango, Marc Médale, Chérifa Abid. Optimization of the design of a polymer flat plate solar collector. Solar Energy, Elsevier, 2013, 87, pp.64-75. 10.1016/j.solener.2012.10.006. hal- 01459491 HAL Id: hal-01459491 https://hal.archives-ouvertes.fr/hal-01459491 Submitted on 15 Mar 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Optimization of the design of a polymer flat plate solar collector A.C. Mintsa Do Ango ⇑, M. Medale, C. Abid Aix-Marseille Universite´, CNRS, IUSTI UMR 7343, 13453 Marseille, France This work presents numerical simulations aimed at optimizing the design of polymer flat plate solar collectors. Solar collectors’ absorbers are usually made of copper or aluminum and, although they offer good performance, they are consequently expensive. In com-parison, using polymer can improve solar collectors economic competitiveness. In this paper, we propose a numerical study of a new design for a solar collector to assess the influence of the design parameters (air gap thickness, collector’s length) and of the operating conditions (mass flow rate, incident solar radiation, inlet temperature) on efficiency.
    [Show full text]
  • Heat Transfer and Cooling Techniques at Low Temperature
    Heat Transfer and Cooling Techniques at Low Temperature B. Baudouy1 CEA Saclay, France Abstract The first part of this chapter gives an introduction to heat transfer and cooling techniques at low temperature. We review the fundamental laws of heat transfer (conduction, convection and radiation) and give useful data specific to cryogenic conditions (thermal contact resistance, total emissivity of materials and heat transfer correlation in forced or boiling flow for example) used in the design of cooling systems. In the second part, we review the main cooling techniques at low temperature, with or without cryogen, from the simplest ones (bath cooling) to the ones involving the use of cryocoolers without forgetting the cooling flow techniques. Keywords: heat-transfer, cooling techniques, low-temperature, cryogen. 1 Introduction Maintaining a system at a temperature much lower than room temperature implies that the design of your cooling system must ensure its thermal stability in the steady-state regime; that is, the temperature of your system must remain constant in the nominal working condition. It also requires a certain level of thermal protection against transient events; that is, your temperature system must stay below a certain value to avoid problematic situations such as extra mechanical constraints due to the thermal expansion of materials with temperature. The ultimate goal is to minimize the heat load from the surroundings and to maximize the heat transfer with a cooling device. To be able to achieve this objective, identification of the different heat loads on the system is required, as well as knowledge of the fundamental laws of heat transfer, the thermo-physical properties of materials and fluids such as the density (kg·m–3) and heat capacity (J·kg–1·K –1), and thermal conductivity (W·m–1·K–1) and the cooling techniques such as conduction, radiation or forced flow based techniques.
    [Show full text]
  • COOLANT CATALOG We Are Committed to Keeping Trucks on the Road and Moving Forward by Providing Quality Parts to All Who Repair Heavy-Duty Vehicles
    COOLANT CATALOG We are committed to keeping trucks on the road and moving forward by providing quality parts to all who repair heavy-duty vehicles. CONFIDENCE. COVERAGE. COMMITMENT. TABLE OF CONTENTS EXTENDED LIFE COOLANTS . 4 CONVENTIONAL COOLANTS . 6 Parts that keep you moving. Quality that keeps you coming back. EXTENDED LIFE COOLANTS ROAD CHOICE® NOAT EXTENDED LIFE ANTIFREEZE & COOLANT Road Choice NOAT Extended Life Antifreeze & Coolant is formulated for heavy-duty diesel, gasoline and natural gas engine cooling systems . Road Choice NOAT Antifreeze & Coolant uses nitrite with organic additive inhibitors to provide long-term wet sleeve liner cavitation and corrosion protection for 750,000 miles of on-road or 15,000 hours of off-road use . PRODUCT HIGHLIGHTS: • Eliminates the need for SCAs and chemically charged filters • Improves heat transfer capability • Offers outstanding protection against corrosion and cavitation • Nonabrasive formula can improve water pump seal life • Eliminates drop-out and gel, and reduces scale • Provides exceptional long-term elastomer compatibility • Can be mixed with other coolants (to maintain corrosion protection, contamination levels should be kept below 25 percent) MEETS OR EXCEEDS THE NOAT EXTENDED LIFE FOLLOWING SPECIFICATIONS: ASTM D3306 ASTM D6210 TMC RP329 ASTM D4340 TMC RP351 (COLOR) RECOMMENDED FOR USE IN HEAVY-DUTY VEHICLES AND STATIONARY EQUIPMENT, REGARDLESS OF FUEL TYPE, INCLUDING: Caterpillar EC-1 Komatsu Cummins CES 14603 International John Deere H24A1, H24C1 GM Navistar Waukesha PACCAR
    [Show full text]
  • Environmental and Safety Considerations for Solar Heating and Cooling Applications
    IMBSIR 78-1532 Environmental and Safety Con- siderations for Solar Heating and Cooling Applications David Waksman John Holton Solar Criteria and Standards Program Building Economics and Regulatory Technology Division Center for Building Technology National Engineering Laboratory National Bureau of Standards Washington, D.C. 20234 September 1978 Prepared for Department of Energy Office of Conservation and Solar Applications Washington, D.C. and Department of Housing and Urban Development Division of Energy, Building Technology and Standards Washington, D.C. 20410 "OC — 1 100 . U56 tf78-1532 / m faWeffa! Sireal of Stansf&ri* MAY 1 4 1979 NBSIR 78-1532 * »r ENVIRONMENTAL AND SAFETY CON- SIDERATIONS FOR SOLAR HEATING AND COOLING APPLICATIONS David Waksman John Holton Solar Criteria and Standards Program Building Economics and Regulatory Technology Division Center for Building Technology National Engineering Laboratory National Bureau of Standards Washington, D.C. 20234 September 1978 Prepared for Department of Energy Office of Conservation and Solar Applications Washington, D.C. and Department of Housing and Urban Development Division of Energy, Building Technology and Standards Washington, D.C. 20410 ; ; . a.c,: u j\, i \ : V. - - ( X id'..' U.S. DEPARTMENT OF COMMERCE, Juanita M. Kreps, Secretary Dr. Sidney Harman, Under Secretary Jordan J. Baruch, Assistant Secretary for Science and Technology NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director TABLE OF CONTENTS Page 1. INTRODUCTION 1 2. GENERAL PROVISIONS 1 3. FIRE SAFETY PROVISIONS . 2 3.1 FLAMMABLE MATERIALS 2 3.2 FIRE RESISTANCE OF BUILDING ASSEMBLIES 6 3.3 EMERGENCY ACCESS AND EGRESS 7 A. PROTECTION OF AIR AND POTABLE WATER 8 A. 1 PROTECTION OF POTABLE WATER 9 A.
    [Show full text]
  • HEAT PIPE COOLING of TURBOSHAFT ENGINES William G
    E AMEICA SOCIEY O MECAICA EGIEES -G-220 y t 345 E. 47th St., New York, N.Y. 10017 C e Sociey sa o e esosie o saemes o oiios aace i ^7 papers or discussion at meetings of the Society or of its Divisions or Sections, m ® o ie i is uicaios iscussio is ie oy i e ae is u- ise i a ASME oua aes ae aaiae om ASME o mos ae e meeig ie i USA Copyright © 1993 by ASME EA IE COOIG O UOSA EGIES Downloaded from http://asmedigitalcollection.asme.org/GT/proceedings-pdf/GT1993/78903/V03AT15A071/2403426/v03at15a071-93-gt-220.pdf by guest on 27 September 2021 William G. Anderson Sandra Hoff Dave Winstanley Thermacore, Inc. Power Systems Division John Phillips Lancaster, PA U.S. Army Scott DelPorte Fort Eustis, Virginia Garrett Engine Division Allied Signal Aerospace Co. Phoenix, Arizona ASAC an effective thermal conductivity that is hundreds of times larger Reduction in turbine engine cooling flows is required to meet than copper. Because of their large effective thermal the IHPTET Phase II engine performance levels. Heat pipes, conductivity, most heat pipes are essentially isothermal, with which are devices with very high thermal conductance, can help temperature differences between the evaporator and condenser reduce the required cooling air. A survey was conducted to ends on the order of a degree celsius. The only significant identify potential applications for heat pipes in turboshaft engines. temperature drop is caused by heat conduction through the heat The applications for heat pipe cooling of turbine engine pipe envelope and wick.
    [Show full text]
  • 2224840 Engine Coolant Thermostat Housing Replacement (LUW)
    Service Information 2012 Chevrolet Cruze | Document ID: 2224840 Engine Coolant Thermostat Housing Replacement (LUW) Removal Procedure Caution: Refer to Engine Coolant Thermostat Housing Caution . 1. Open the hood. 2. Raise and support the vehicle. Refer to Lifting and Jacking the Vehicle . 3. Place a drain pan below the vehicle. 4. Drain the cooling system. Refer to Cooling System Draining and Filling . 5. Loosen the radiator inlet hose clamp (2). 6. Remove the radiator inlet hose (3) from the engine coolant thermostat (1). 7. Remove the throttle body heater inlet hose (2) from the engine coolant thermostat (1). 8. Remove the heater outlet hose from the engine coolant thermostat housing. Refer to Heater Outlet Hose Replacement . 9. Remove the heater inlet hose from the engine coolant thermostat housing. Refer to Heater Inlet Hose Replacement . 10. Remove the thermostat housing bracket nut. 11. Remove the thermostat housing bracket. 12. Disconnect the engine coolant temperature sensor connector (1). 13. Remove the 2 engine oil cooler pipe bolts (6). Note: Pull the engine oil cooler pipe out of the engine oil cooler. 14. Remove the engine oil cooler pipe (5). 15. Remove the engine oil cooler pipe seals (4, 7). 16. Remove the 4 engine coolant thermostat housing bolts (3). 17. Remove the thermostat housing (2). 18. Remove the thermostat housing seal (8). Installation Procedure 1. Clean sealing surface. 2. Install a NEW engine coolant thermostat housing seal (8). 3. Install the engine coolant thermostat housing (2). Caution: Refer to Fastener Caution . Note: Partially install the 4 bolts until the engine coolant thermostat housing is in contact with the cylinder head.
    [Show full text]
  • Heat and Thermodynamics Course
    Heat and Thermodynamics Introduction Definitions ! Internal energy ! Kinetic and potential energy ! Joules ! Enthalpy and specific enthalpy ! H= U + p x V ! Reference to the triple point ! Engineering unit ! ∆H is the work done in a process ! J, J/kg More Definitions ! Work ! Standard definition W = f x d ! In a gas W = p x ∆V ! Heat ! At one time considered a unique form of energy ! Changes in heat are the same as changes in enthalpy Yet more definitions ! Temperature ! Measure of the heat in a body ! Heat flows from high to low temperature ! SI unit Kelvin ! Entropy and Specific Entropy ! Perhaps the strangest physics concept ! Notes define it as energy loss ! Symbol S ! Units kJ/K, kJ/(kg•k) ! Entropy increases mean less work can be done by the system Sensible and Latent Heat ! Heat transfers change kinetic or potential energy or both ! Temperature is a measure of kinetic energy ! Sensible heat changes kinetic (and maybe potential energy) ! Latent heat changes only the potential energy. Sensible Heat Q = m⋅c ⋅(t f − ti ) ! Q is positive for transfers in ! c is the specific heat capacity ! c has units kJ/(kg•C) Latent Heat Q = m⋅lv Q = m⋅lm ! Heat to cause a change of state (melting or vaporization) ! Temperature is constant Enthalpy Changes Q = m⋅∆h ! Enthalpy changes take into account both latent and sensible heat changes Thermodynamic Properties of H2O Temperature °C Sensible heat Latent heat Saturation temp 100°C Saturated Saturated liquid steam Superheated Steam Wet steam Subcooled liquid Specific enthalpy Pressure Effects Laws of Thermodynamics ! First Law ! Energy is conserved ! Second Law ! It is impossible to convert all of the heat supplied to a heat engine into work ! Heat will not naturally flow from cold to hot ! Disorder increases Heat Transfer Radiation Conduction • • A 4 Q = k ⋅ ⋅∆T QαA⋅T l A T2 T1 l More Heat Transfer Convection Condensation Latent heat transfer Mass Flow • from vapor Q = h⋅ A⋅∆T Dalton’s Law If we have more than one gas in a container the pressure is the sum of the pressures associated with an individual gas.
    [Show full text]
  • Indoor Air Quality Assessment
    INDOOR AIR QUALITY ASSESSMENT Barnstable United Elementary School 730 Osterville W. Barnstable Road Marstons Mills, Massachusetts Prepared by: Massachusetts Department of Public Health Bureau of Environmental Health Indoor Air Quality Program October 2019 BACKGROUND Building: Barnstable United Elementary School (BUES) formally the Horace Mann Charter School Address: 730 Osterville W. Barnstable Road Marstons Mills, Massachusetts Assessment Requested by: Barnstable Board of Health coordinated via Barnstable Public Schools (BPS) Reason for Request: Mold concerns prompted this recent request; however, over the past year the MDPH has been involved with a collaborative effort to perform general indoor air quality (IAQ) assessments throughout the Barnstable School District. Date of Assessment: September 12 and September 17, 2019 Massachusetts Department of Public Mike Feeney, Director and Cory Health/Bureau of Environmental Health Holmes, Environmental Analyst, (MDPH/BEH) Staff Conducting Assessment: MDPH/IAQ Program Building Description: The BUES is a two-story brick building completed in 1994. The building contains a centralized courtyard, general classrooms, science classrooms, art rooms, music rooms, kitchen, cafeteria, gymnasium, faculty workrooms and office space. Windows: Openable METHODS Please refer to the IAQ Manual and appendices for methods, sampling procedures, and interpretation of results (MDPH, 2015). Note that this building has been visited by the MDPH IAQ Program in June 2012 at the request of the BPS. The report from that visit can be found at: https://www.mass.gov/info-details/indoor-air-quality-reports-cities-and-towns-b (listed as Horace Mann). It is also important to note that the BPS has reportedly created IAQ committees in their school buildings, each with an IAQ liaison/teacher representative that conducts regular walk-throughs to identify on-going and/or potential environmental issues.
    [Show full text]
  • CKM Vacuum Veto System Vacuum Pumping System
    CKM Vacuum Veto System Vacuum Pumping System Technical Memorandum CKM-80 Del Allspach PPD/Mechanical/Process Systems March 2003 Fermilab Batavia, IL, USA TABLE OF CONTENTS 1.0 Introduction 3 2.0 VVS Outgassing Distribution 3 3.0 VVS High Vacuum Pumping System Solutions 4 3.1 Diffusion Pump System for the VVS 3.2 Turbo Molecular Pump System for the VVS 3.3 Turbo Molecular Pump System for the DMS Region 3.4 VVS Cryogenic Vacuum Pumping System 4.0 Roughing System 6 5.0 Summary 6 6.0 References 7 p. 2 1.0 Introduction This technical memorandum discusses two solutions for achieving the pressure specification of 1.0E-6 Torr for the CKM Vacuum Veto System (VVS). The first solution includes the use of Diffusion Pumps (DP’s) for the volume upstream of the Downstream Magnetic Spectrometer (DMS) regions. The second solution uses Turbo Molecular Pumps (TMP’s) for the upstream volume. In each solution, TMP’s are used for each of the four DMS regions. Cryogenic Vacuum Pumping is also considered to supplement the upstream portion of the VVS. The capacity of the Roughing System is reviewed as well. The distribution of the system outgassing is first examined. 2.0 VVS Outgassing Distribution There are several sources of outgassing in the VVS vacuum vessel. These sources are discussed in a previous note [1]. The distribution of the outgassing within the VVS is now considered. The VVS detector total outgassing rate was determined to be 1.0E-2 Torr-L/sec. The upstream portion accounts for 54% of this rate while the downstream side is 46% of the rate.
    [Show full text]
  • Solar Cooling Used for Solar Air Conditioning - a Clean Solution for a Big Problem
    Solar Cooling Used for Solar Air Conditioning - A Clean Solution for a Big Problem Stefan Bader Editor Werner Lang Aurora McClain csd Center for Sustainable Development II-Strategies Technology 2 2.10 Solar Cooling for Solar Air Conditioning Solar Cooling Used for Solar Air Conditioning - A Clean Solution for a Big Problem Stefan Bader Based on a presentation by Dr. Jan Cremers Figure 1: Vacuum Tube Collectors Introduction taics convert the heat produced by solar energy into electrical power. This power can be “The global mission, these days, is an used to run a variety of devices which for extensive reduction in the consumption of example produce heat for domestic hot water, fossil energy without any loss in comfort or lighting or indoor temperature control. living standards. An important method to achieve this is the intelligent use of current and Photovoltaics produce electricity, which can be future solar technologies. With this in mind, we used to power other devices, such as are developing and optimizing systems for compression chillers for cooling buildings. architecture and industry to meet the high While using the heat of the sun to cool individual demands.” Philosophy of SolarNext buildings seems counter intuitive, a closer look AG, Germany.1 into solar cooling systems reveals that it might be an efficient way to use the energy received When sustainability is discussed, one of the from the sun. On the one hand, during the time first techniques mentioned is the use of solar that heat is needed the most - during the energy. There are many ways to utilize the winter months - there is a lack of solar energy.
    [Show full text]
  • Different Types of Heat Pipes
    TFAWS Active Thermal Paper Session Different Types of Heat Pipes William G. Anderson Advanced Cooling Technologies, Inc. Presented By William G. Anderson [email protected] Thermal & Fluids Analysis Workshop TFAWS 2014 August 4 - 8, 2014 NASA Glenn Research Center Cleveland, OH Motivation Most heat pipe books discuss standard heat pipes, vapor chambers, and thermosyphons – Most of the heat pipes in use are constant conductance heat pipes and thermosyphons (> 99%) Specialty books discuss VCHPs for precise temperature control, and diode heat pipes Information on non-standard heat pipes is buried in the technical literature This presentation is a brief survey of the different types of heat pipes ADVANCED COOLING TECHNOLOGIES, INC. Motivation ISO9001-2008 & AS9100-C Certified 2 Presentation Outline Constant Conductance Heat Pipes – Heat Pipes – Vapor Chambers Gas-Loaded Heat Pipes – Variable Conductance Heat Pipes (VCHPs) – Pressure Controlled Heat Pipes (PCHPs) – Gas Trap Diode Heat Pipes Interrupted Wick – Liquid Trap Diode Heat Pipes Heat Pipe and VCHP Heat Exchangers Alternate Means of Liquid Return – Thermosyphons – Rotating Heat Pipes ADVANCED COOLING TECHNOLOGIES, INC. Agenda ISO9001-2008 & AS9100-C Certified 3 Heat Pipe Basics Vapor Space Liquid Film Passive two-phase heat transfer device operating in a closed system – Heat/Power causes working fluid to vaporize – Vapor flows to cooler end where it condenses – Condensed liquid returns to evaporator by gravity or capillary force Typically a 2-5 °C ΔT across the length of the pipe keff ranges from 10,000 to 200,000 W/m-K Heat Pipes can operate with heat flux up to 50-75W/cm2 – Custom wicks to 500W/cm2 ADVANCED COOLING TECHNOLOGIES, INC.
    [Show full text]