A Jurassic Oceanic Core Complex in the High-Pressure Monviso Ophiolite (Western Alps, NW Italy)

Total Page:16

File Type:pdf, Size:1020Kb

A Jurassic Oceanic Core Complex in the High-Pressure Monviso Ophiolite (Western Alps, NW Italy) A Jurassic oceanic core complex in the high-pressure Monviso ophiolite (western Alps, NW Italy) Andrea Festa1, Gianni Balestro1,*, Yildirim Dilek2, and Paola Tartarotti3 1DIPARTIMENTO DI SCIENZE DELLA TERRA, UNIVERSITÀ DI TORINO, VIA VALPERGA CALUSO, 35, 10125 TORINO, ITALY 2DEPARTMENT OF GEOLOGY AND ENVIRONMENTAL EARTH SCIENCE, MIAMI UNIVERSITY, OXFORD, OHIO 45056, USA 3DIPARTIMENTO DI SCIENZE DELLA TERRA, UNIVERSITÀ DI MILANO, VIA MANGIAGALLI, 34, 20133 MILANO, ITALY ABSTRACT The eclogite-facies Monviso ophiolite in the western Alps displays a complex record of Jurassic rift-drift, subduction zone, and Cenozoic collision tectonics in its evolutionary history. Serpentinized lherzolites intruded by 163 ± 2 Ma gabbros are exposed in the footwall of a thick shear zone (Baracun shear zone) and are overlain by basaltic lava flows and synextensional sedimentary rocks in the hanging wall. Mylonitic serpentinites with sheared ophicarbonate veins and talc-and-chlorite schist rocks within the Baracun shear zone represent a rock assemblage that formed from seawater-derived hydrothermal fluids percolating through it during intra-oceanic extensional exhumation. A Lower Cretaceous calc-schist, marble, and quartz-schist metasedimentary assemblage unconformably overlies the footwall and hanging- wall units, representing a postextensional sequence. The Monviso ophiolite, Baracun shear zone, and the associated structures and mineral phases represent core complex formation in an embryonic ocean (i.e., the Ligurian-Piedmont Ocean). The heterogeneous lithostratigraphy and the structural architecture of the Monviso ophiolite documented here are the products of rift-drift processes that were subsequently overprinted by subduction zone tectonics, and they may also be recognized in other (ultra)high-pressure belts worldwide. LITHOSPHERE; v. 7; no. 6; p. 646–652 | Published online 24 August 2015 doi:10.1130/L458.1 INTRODUCTION subsequent continental collision–related exhu- REGIONAL GEOLOGY OF THE WESTERN mation. Yet, slivers of mafic-ultramafic rock as- ALPS AND THE MONVISO OPHIOLITE Submersible surveys, geophysical studies, semblages in collision zones have been widely and deep ocean drilling projects during the last used in numerous studies to document the oc- The western Alps (Fig. 1A) evolved between two decades have provided new insights into the currence of remnants of oceanic basins and to the colliding Adria microplate and the European mode and nature of magmatic, tectonic, and hy- reconstruct their paleogeographies in the geo- plate during the late Eocene–early Oligocene. drothermal processes that occur along slow- to logical past (Decandia and Elter, 1972; Lagabri- Eastward subduction of the Ligurian-Piedmont ultraslow-spreading ridges (e.g., Cannat, 1993; elle, 1994; Dilek and Thy, 1998; Manatschal et oceanic lithosphere during the Early Creta- Tucholke et al., 1998; Dilek, 2002; Karson et al., 2011; Balestro et al., 2014; Dilek and Furnes, ceous–middle Eocene resulted in ophiolite em- al., 2006). These studies have revealed the oc- 2014). However, results of such reconstructions placement (Rosenbaum and Lister, 2005, and currence on the seafloor of oceanic detachment may lead to misleading interpretations for the reference therein), underthrusting of the Euro- faults and associated shear zones with deformed tectonic settings of the investigated ophiolites pean continental margin beneath Adria (Platt mafic-ultramafic rocks. Detachment faults along and for the extent of the inferred ocean basins et al., 1989), and tectonic imbrication along nonvolcanic rifted margins and in young oceanic in which they formed, if the primary seafloor WNW-vergent thrust faults (Ricou and Siddans, lithosphere accommodate high-magnitude exten- structures of these ophiolites go undetected. 1986). In the central part of the belt, eclogite- sion, causing the exhumation of lower-crustal In this paper, we document the internal facies ophiolite units (e.g., Zermatt-Saas zone gabbros and upper-mantle peridotites on the sea- structure of the eclogite-facies Monviso ophio- Auctorum) and blueschist-facies metasedimen- floor, forming oceanic core complexes (Cannat et lite in the western Alps (Fig. 1), and we show tary units (Combin zone and “Schistes Lustrés” al., 2006; Karson et al., 2006; Smith et al., 2014). that despite the overprint of high-pressure sub- Auctorum) are tectonically sandwiched between These rocks display mineral assemblages and duction-zone metamorphism and deformation European and Adriatic continental margin units structural fabrics developed during the interplay of its lithological units, this ophiolite displays (Fig. 1A; Dal Piaz et al., 2003). of ductile and brittle deformation episodes, fluid- a well-preserved record of the intra-oceanic The Monviso ophiolite is exposed in the rock interactions, and metasomatism associated extensional tectonics that affected it during the southern part of the western Alps (Fig. 1), with their exhumation (Boschi et al., 2006). opening of the Ligurian-Piedmont Ocean. We where it rests tectonically on the Dora Maira Recognition of detachment faults and core further discuss the crustal architecture and the unit, which was part of the European continen- complex structures in fragments of ancient oce- occurrence of a talc-and-chlorite schist shear tal margin (Dal Piaz et al., 2003), and below the anic lithosphere is often difficult because of the zone (i.e., Baracun shear zone of Balestro et al., Queyras Schistes Lustrés unit, which consists multistage, intense deformation and metamor- 2015) in Monviso, which represent evidence of of carbonaceous metasedimentary rocks with phism they experienced during subduction and Jurassic oceanic core complex development, meta-ophiolite bodies (Lombardo et al., 1978; documented for the first time in the eclogitized Tricart and Lemoine, 1991). The Monviso ophi- *Corresponding author: [email protected]. ophiolite units in the western Alps. olite includes lherzolitic mantle rocks intruded 646 © 2015 Geological Society of Americawww.gsapubs.org | For permission | toVolume copy, contact7 | Number [email protected] 6 | LITHOSPHERE Downloaded from http://pubs.geoscienceworld.org/gsa/lithosphere/article-pdf/7/6/646/3040038/646.pdf by guest on 02 October 2021 A Jurassic oceanic core complex in the high-pressure Monviso ophiolite (western Alps) | SHORT RESEARCH (Figs. 1A and 2), where it is marked by up to Alps Dinarides N 7°E N tens-of-meters-thick talc-and-chlorite schist Apennin A Adria paleomargin units d r ia rocks, separating metaperidotites and 163 tic Se Adria a ± 2 Ma metagabbros (Rubatto and Hermann, es crust Ty rrhenian lt European paleomargin 2003) in the footwall from metabasalt and Sea e Ionian b units (DM: Dora Maira) calc-schist with ophiolite-derived detrital inter- Sea e in calations in the hanging wall (Figs. 2, 3A, and 250 km p B l Ophiolite Units 3B). Both the hanging-wall and footwall assem- A n Blueschist-facies units blages and the Baracun shear zone (Figs. 2 and N 45° r e e (Q: Queyras Schistes 3A–G) are unconformably overlain by a Lower t Fig.2 Lustrés) Cretaceous (Lagabrielle, 1994) metasedimen- s s e Neogen Eclogite-facies units tary sequence (i.e., postextensional succession), W basin (MO: Monviso ophiolite which is metamorphosed along with the rest of P the assemblage (i.e., high-pressure eclogitic- Po valley 1: Upper tectonic units H Q 2: Lower tectonic units) facies metamorphism). 1 2 DM Insubric fault Footwall and Hanging-Wall Units of the Baracun Shear Zone MO Penninic thrust European 20 km Trace of geological Lithological units in the footwall of the Bar- crust cross section acun shear zone include massive serpentinite A with poorly preserved relics of the original min- W E eral phases and textures. Metagabbroic intru- Monviso ophiolite sions are meters to tens of meters thick and are Upper tectonic units (480° C, 2.2 GPa) Lower tectonic units (550° C, 2.6 GPa) composed mainly of Mg-Al metagabbro charac- (i.e. Forciolline and Vallanta) (i.e. Viso Mozzo, Lago Superiore, Basal Serpentinite) terized by the occurrence of Cr-omphacite. Less metagabbro common Fe-Ti metagabbro intrusions occur as Queyras Fig. 4C meters-thick dikes and contain eclogitic assem- Schistes blages of garnet-omphacite-rutile. At the con- Lustrés Dora tacts with their host metaperidotites, all metagab- Maira bro intrusions are extensively rodingitized. The massive serpentinite immediately beneath the metasediments metabasalt Mg-Al and Fe-Ti metagabbros Baracun shear zone includes 50-cm- to 1-m- mylonitic serpentinite and talc-schist massive serpentinite tectonic contact thick mylonitic serpentinite with sheared ophi- C 500 m carbonate veins (Fig. 3H). These carbonate-rich veins, which also crosscut the talc-and-chlorite Figure 1. (A) Simplified tectonic map of the western Alps. HP—high pressure. (B) Location of map in A. (C) Representative structural cross section of the Monviso (modified from Angiboust schist of the Baracun shear zone (Figs. 3H–3I), et al., 2011; Balestro et al., 2013). are overprinted by S1 foliation and F2 folds, con- straining the timing of hydrothermal activities to a pre–eclogitic-facies metamorphic stage. by Middle–Upper Jurassic metagabbros (163 zone, during which S1 foliation was developed; The hanging-wall units above the Baracun ± 2 Ma; Rubatto and Hermann, 2003). Both the (2) late Eocene–early Oligocene continental shear zone consist mainly of calc-schist and metaperidotites and metagabbros are overlain collision stage, which caused W-vergent
Recommended publications
  • Initiation of Plate Tectonics in the Hadean: Eclogitization Triggered by the ABEL Bombardment
    Accepted Manuscript Initiation of plate tectonics in the Hadean: Eclogitization triggered by the ABEL Bombardment S. Maruyama, M. Santosh, S. Azuma PII: S1674-9871(16)30207-9 DOI: 10.1016/j.gsf.2016.11.009 Reference: GSF 514 To appear in: Geoscience Frontiers Received Date: 9 May 2016 Revised Date: 13 November 2016 Accepted Date: 25 November 2016 Please cite this article as: Maruyama, S., Santosh, M., Azuma, S., Initiation of plate tectonics in the Hadean: Eclogitization triggered by the ABEL Bombardment, Geoscience Frontiers (2017), doi: 10.1016/ j.gsf.2016.11.009. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT MANUSCRIPT ACCEPTED P a g e ‐|‐1111‐‐‐‐ ACCEPTED MANUSCRIPT ‐ 1‐ Initiation of plate tectonics in the Hadean: 2‐ Eclogitization triggered by the ABEL 3‐ Bombardment 4‐ 5‐ S. Maruyama a,b,*, M. Santosh c,d,e , S. Azuma a 6‐ a Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1, 7‐ Ookayama-Meguro-ku, Tokyo 152-8550, Japan 8‐ b Institute for Study of the Earth’s Interior, Okayama University, 827 Yamada, 9‐ Misasa, Tottori 682-0193, Japan 10‐ c Centre for Tectonics, Resources and Exploration, Department of Earth 11‐ Sciences, University of Adelaide, SA 5005, Australia 12‐ d School of Earth Sciences and Resources, China University of Geosciences 13‐ Beijing, 29 Xueyuan Road, Beijing 100083, China 14‐ e Faculty of Science, Kochi University, KochiMANUSCRIPT 780-8520, Japan 15‐ *Corresponding author.
    [Show full text]
  • Geologic Extremes of the NW Himalaya
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2016 Geologic Extremes of the NW Himalaya: Investigations of the Himalayan Ultra-high Pressure and Low Temperature Deformation Histories Dennis Girard Donaldson Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Earth Sciences Commons Recommended Citation Donaldson, Dennis Girard, "Geologic Extremes of the NW Himalaya: Investigations of the Himalayan Ultra-high Pressure and Low Temperature Deformation Histories" (2016). LSU Doctoral Dissertations. 3295. https://digitalcommons.lsu.edu/gradschool_dissertations/3295 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. GEOLOGIC EXTREMES OF THE NW HIMALAYA: INVESTIGATIONS OF THE HIMALAYAN ULTRA-HIGH PRESSURE AND LOW TEMPERATURE DEFORMATION HISTORIES A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Geology and Geophysics by Dennis G. Donaldson Jr. B.S., Virginia State University, 2009 August 2016 Dedicated to Jaime, Eliya, Noah, my siblings and parents. ii ACKNOWLEDGEMENTS I am very pleased that I have had a rewarding journey during this chapter of my life with the Department of Geology and Geophysical at Louisiana State University. I would not be here right now if it wasn’t for Dr. Alex Webb, Dr.
    [Show full text]
  • Dipartimento Rischi Naturali E Ambientali – ARPA Piemonte
    Dipartimento Rischi Naturali e Ambientali – ARPA Piemonte SiFraP - SISTEMA INFORMATIVO FRANE IN PIEMONTE Scheda descrittiva di approfondimento - III livello (Ultimo aggiornamento della scheda Marzo 2021) Provincia di Cuneo Comune di Crissolo Frana del Torrione Sucai, parete NE del Monviso Vista frontale della frana sulla parete NE del Monviso attivatasi il 26 dicembre 2019. Foto Arpa Piemonte scattata l’8 gennaio 2020 in occasione del primo sopralluogo Dipartimento Rischi Naturali e Ambientali Via Pio VII, 9 - 10135 Torino - Tel. 011 19680568 - fax 011 19681341 [email protected] - [email protected] - www.arpa.piemonte.it INDICE Premessa .............................................................................................................................................. 3 Introduzione ......................................................................................................................................... 4 1. Informazioni e dati disponibili ........................................................................................................ 5 1.1. Documentazione disponibile .................................................................................................. 5 1.2. Quadro relativo a vincoli ed aspetti normativi ....................................................................... 7 1.3. Voli aerei e ortofoto disponibili .............................................................................................. 7 1.4. Dati interferometrici ..............................................................................................................
    [Show full text]
  • Geophysical Signatures of Oceanic Core Complexes
    Geophys. J. Int. (2009) 178, 593–613 doi: 10.1111/j.1365-246X.2009.04184.x REVIEW ARTICLE Geophysical signatures of oceanic core complexes Donna K. Blackman,1 J. Pablo Canales2 and Alistair Harding1 1Scripps Institution of Oceanography, UCSD La Jolla, CA, USA. E-mail: [email protected] 2Woods Hole Oceanographic Institution, Woods Hole, MA, USA Accepted 2009 March 16. Received 2009 February 15; in original form 2008 July 25 SUMMARY Oceanic core complexes (OCCs) provide access to intrusive and ultramafic sections of young lithosphere and their structure and evolution contain clues about how the balance between mag- matism and faulting controls the style of rifting that may dominate in a portion of a spreading centre for Myr timescales. Initial models of the development of OCCs depended strongly on insights available from continental core complexes and from seafloor mapping. While these frameworks have been useful in guiding a broader scope of studies and determining the extent GJI Geodesy, potential field and applied geophysics of OCC formation along slow spreading ridges, as we summarize herein, results from the past decade highlight the need to reassess the hypothesis that reduced magma supply is a driver of long-lived detachment faulting. The aim of this paper is to review the available geophysical constraints on OCC structure and to look at what aspects of current models are constrained or required by the data. We consider sonar data (morphology and backscatter), gravity, magnetics, borehole geophysics and seismic reflection. Additional emphasis is placed on seismic velocity results (refraction) since this is where deviations from normal crustal accretion should be most readily quantified.
    [Show full text]
  • The High Pressure Belt in the Grenville Province: 75 Architecture, Timing, and Exhumation1
    100 867 100 95 95 75 The High Pressure belt in the Grenville Province: 75 architecture, timing, and exhumation1 25 25 Toby Rivers, John Ketchum, Aphrodite Indares, and Andrew Hynes 5 5 0 0 Abstract: We propose that the Grenvillian allochthonous terranes may be grouped into High Pressure (HP) and Low Pressure (LP) belts and examine the HP belt in detail in the western and central Grenville Province. The HP belt is developed in Paleo- and Mesoproterozoic rocks of the pre-Grenvillian Laurentian margin and characterized by Grenvillian eclogite and co-facial HP granulite in mafic rocks. Pressure–temperature (P–T) estimates for eclogite-facies conditions in well-preserved assemblages are about 1800 MPa and 850°C. In the central Grenville Province, HP rocks formed at -1060–1040 Ma and underwent a single stage of unroofing with transport into the upper crust by -1020 Ma, whereas farther west they underwent two stages of unroofing separated by penetrative mid-crustal recrystallization before transport to the upper crust at -1020 Ma. Unroofing processes were comparable in the two areas, involving both thrusting and extensional faulting in an orogen propagating into its foreland by understacking. In detail, thrusting episodes preceded extension in the western Grenville Province, whereas in the central Grenville Province, they were coeval, resulting in unroofing by tectonic extrusion. In the central Grenville Province, the footwall ramp is well preserved, but any former ramp in the western Grenville Province was obliterated by later lower crustal extensional flow. Continuation of the HP belt into the eastern Grenville Province is not established, but likely on geological grounds.
    [Show full text]
  • Enhanced Mantle Upwelling/Melting Caused Segment Propagation, Oceanic Across the Ridge Crest of the TAMMAR Segment
    PUBLICATIONS Journal of Geophysical Research: Solid Earth RESEARCH ARTICLE Enhanced Mantle Upwelling/Melting Caused Segment 10.1002/2017JB014273 Propagation, Oceanic Core Complex Die Off, Key Points: and the Death of a Transform Fault: • Seismic data confirm ridge propagation induced by increased The Mid-Atlantic Ridge at 21.5°N melt supply due to increased fertility or upwelling of the asthenosphere A. Dannowski1 , J. P. Morgan2, I. Grevemeyer1 , and C. R. Ranero3,4 • Source of melt supply is migrating, ended a transform fault, and possibly 1GEOMAR/Helmholtz-Centre for Ocean Research Kiel, Kiel, Germany, 2Earth Sciences Department, Royal Holloway stopped OCC formation 3 • The growth direction of the enhanced University of London, London, UK, Barcelona Centre for Subsurface Imaging, Institut de Ciencias del Mar, Barcelona, Spain, 4 melt supply region is influenced by ICREA, Barcelona, Spain the distance to “colder” mantle zones Abstract Crustal structure provides the key to understand the interplay of magmatism and tectonism, while oceanic crust is constructed at Mid-Ocean Ridges (MORs). At slow spreading rates, magmatic Correspondence to: A. Dannowski, processes dominate central areas of MOR segments, whereas segment ends are highly tectonized. The [email protected] TAMMAR segment at the Mid-Atlantic Ridge (MAR) between 21°250N and 22°N is a magmatically active segment. At ~4.5 Ma this segment started to propagate south, causing the termination of the transform fault Citation: at 21°400N. This stopped long-lived detachment faulting and caused the migration of the ridge offset to the Dannowski, A., Morgan, J. P., south. Here a segment center with a high magmatic budget has replaced a transform fault region with Grevemeyer, I., & Ranero, C.
    [Show full text]
  • Backarc Origin for Neoarchean Ultrahigh-Temperature Metamorphism, Eclogitization, and Orogenic Root Growth
    Backarc origin for Neoarchean ultrahigh-temperature metamorphism, eclogitization, and orogenic root growth Gregory Dumond1*, Michael L. Williams2, Julia A. Baldwin3, and Michael J. Jercinovic2 1Department of Geosciences, University of Arkansas, Fayetteville, Arkansas 72701, USA 2Department of Geosciences, University of Massachusetts, Amherst, Massachusetts 01003-9297, USA 3Department of Geosciences, University of Montana, Missoula, Montana 59812-1296, USA ABSTRACT modeling of Thompson et al. (2001) and provide evidence for crustal Contraction of continental crust during orogeny results in elevated root growth associated with high-P metamorphism of mid-oceanic ridge topography at the surface and a root at depth. Thermomechanical basalt (MORB)–like mafc intrusions. Intraplating of these intrusions models suggest that root growth is enhanced by thickening of ther- facilitated partial melting and UHT metamorphism of peraluminous supra- mally softened thin lithosphere. A >400 km2 region of Archean gneiss crustal host rocks (Dumond et al., 2015). We use Th–U–total Pb monazite in the Athabasca granulite terrane in the Canadian shield contains petrochronology to constrain the timing of high-P melting preserved in abundant mafc sills with mid-oceanic ridge basalt–like chemistry. felsic granulite paragneiss in contact with a previously dated eclogite Heat from the sills facilitated melting of supracrustal host rocks along sill that yielded U-Pb zircon dates of 2.54 Ga and 1.90 Ga (Baldwin et a prograde pressure-temperature (P-T) path culminating at P > 1.4 al., 2004). These results are combined with bulk-rock geochemistry for GPa and T > 950 °C in the Neoarchean. A basalt sill, converted to mafc granulites and eclogite near the base of the Upper Deck to infer a eclogite near the base of the domain, exhibits positive Eu anomalies backarc origin for a Neoarchean orogenic root.
    [Show full text]
  • Andean Flat-Slab Subduction Through Time
    Andean flat-slab subduction through time VICTOR A. RAMOS & ANDRE´ S FOLGUERA* Laboratorio de Tecto´nica Andina, Universidad de Buenos Aires – CONICET *Corresponding author (e-mail: [email protected]) Abstract: The analysis of magmatic distribution, basin formation, tectonic evolution and structural styles of different segments of the Andes shows that most of the Andes have experienced a stage of flat subduction. Evidence is presented here for a wide range of regions throughout the Andes, including the three present flat-slab segments (Pampean, Peruvian, Bucaramanga), three incipient flat-slab segments (‘Carnegie’, Guan˜acos, ‘Tehuantepec’), three older and no longer active Cenozoic flat-slab segments (Altiplano, Puna, Payenia), and an inferred Palaeozoic flat- slab segment (Early Permian ‘San Rafael’). Based on the present characteristics of the Pampean flat slab, combined with the Peruvian and Bucaramanga segments, a pattern of geological processes can be attributed to slab shallowing and steepening. This pattern permits recognition of other older Cenozoic subhorizontal subduction zones throughout the Andes. Based on crustal thickness, two different settings of slab steepening are proposed. Slab steepening under thick crust leads to dela- mination, basaltic underplating, lower crustal melting, extension and widespread rhyolitic volcan- ism, as seen in the caldera formation and huge ignimbritic fields of the Altiplano and Puna segments. On the other hand, when steepening affects thin crust, extension and extensive within-plate basaltic flows reach the surface, forming large volcanic provinces, such as Payenia in the southern Andes. This last case has very limited crustal melt along the axial part of the Andean roots, which shows incipient delamination.
    [Show full text]
  • Role of Late Jurassic Intra-Oceanic Structural Inheritance in the Alpine Tectonic Evolution of the Monviso Meta-Ophiolite Complex (Western Alps)
    Geol. Mag. 155 (2), 2018, pp. 233–249. c Cambridge University Press 2017 233 doi:10.1017/S0016756817000553 Role of Late Jurassic intra-oceanic structural inheritance in the Alpine tectonic evolution of the Monviso meta-ophiolite Complex (Western Alps) ∗ ∗ ∗ GIANNI BALESTRO , ANDREA FESTA †, ALESSANDRO BORGHI , ∗ ∗ DANIELE CASTELLI , MARCO GATTIGLIO & PAOLA TARTAROTTI‡ ∗ Dipartimento di Scienze della Terra, Università di Torino, Via Valperga Caluso, 35, 10125 – Torino, Italy ‡Dipartimento di Scienze della Terra, Università di Milano, Via Mangiagalli, 34, 20133 – Milano, Italy (Received 31 October 2016; accepted 2 June 2017; first published online 17 July 2017) Abstract – The eclogite-facies Monviso meta-ophiolite Complex in the Western Alps represents a well-preserved fragment of oceanic lithosphere and related Upper Jurassic – Lower Cretaceous sed- imentary covers. This meta-ophiolite sequence records the evolution of an oceanic core complex formed by mantle exhumation along an intra-oceanic detachment fault (the Baracun Shear Zone), re- lated to the opening of the Ligurian–Piedmont oceanic basin (Alpine Tethys). On the basis of detailed geological mapping, and structural, stratigraphic and petrological observations, we propose a new interpretation for the tectonostratigraphic architecture of the Monviso meta-ophiolite Complex, and discuss the role played by structural inheritance in its formation. We document that subduction- and exhumation-related Alpine tectonics were strongly influenced by the inherited Jurassic intra-oceanic tectonosedimentary physiography. The latter, although strongly deformed during a major Alpine stage of non-cylindrical W-verging folding and faulting along exhumation-related Alpine shear zones (i.e. the Granero–Casteldelfino and Villanova–Armoine shear zones), was not completely dismembered into different tectonic units or subduction-related mélanges as suggested in previous interpretations.
    [Show full text]
  • Foreland Uplift During Flat Subduction Insights from the Peruvian Andes
    Tectonophysics 731–732 (2018) 73–84 Contents lists available at ScienceDirect Tectonophysics journal homepage: www.elsevier.com/locate/tecto Foreland uplift during flat subduction: Insights from the Peruvian Andes and T Fitzcarrald Arch ⁎ Brandon T. Bishopa, , Susan L. Becka, George Zandta, Lara S. Wagnerb, Maureen D. Longc, Hernando Taverad a Department of Geosciences, University of Arizona, 1040 East 4th Street, Tucson, AZ 85721, USA b Department of Terrestrial Magnetism, Carnegie Institution for Science, 5241 Broad Branch Road NW, Washington, DC 20015, USA c Department of Geology and Geophysics, Yale University, 210 Whitney Avenue, New Haven, CT 06511, USA d Instituto Geofísico del Perú, Calle Badajoz 169, Lima 15012, Peru ARTICLE INFO ABSTRACT Keywords: Foreland deformation has long been associated with flat-slab subduction, but the precise mechanism linking Basal shear these two processes remains unclear. One example of foreland deformation corresponding in space and time to Flat slab flat subduction is the Fitzcarrald Arch, a broad NE-SW trending topographically high feature covering an area Andes of > 4 × 105 km2 in the Peruvian Andean foreland. Recent imaging of the southern segment of Peruvian flat slab Crustal thickening shows that the shallowest part of the slab, which corresponds to the subducted Nazca Ridge northeast of the Lithosphere present intersection of the ridge and the Peruvian trench, extends up to and partly under the southwestern edge Fitzcarrald Arch of the arch. Here, we evaluate models for the formation of this foreland arch and find that a basal-shear model is most consistent with observations. We calculate that ~5 km of lower crustal thickening would be sufficient to generate the arch's uplift since the late Miocene.
    [Show full text]
  • Eclogites and Other High-Pressure Rocks in the Himalaya: a Review
    Downloaded from http://sp.lyellcollection.org/ by guest on September 27, 2021 Eclogites and other high-pressure rocks in the Himalaya: a review PATRICK J. O’BRIEN Department of Earth and Environmental Sciences, University of Potsdam, Karl-Liebknecht-Strasse 24/25, 14469 Potsdam-Golm, Germany 0000-0003-0235-9116 [email protected] Abstract: Himalayan high-pressure metamorphic rocks are restricted to three environments: the suture zone; close to the suture zone; and (mostly) far (>100 km) from the suture zone. In the NW Himalaya and South Tibet, Cretaceous-age blueschists (glaucophane-, lawsonite- or carpholite-bearing schists) formed in the accretionary wedge of the subducting Neo-Tethys. Microdiamond and associated phases from suture-zone ophiolites (Luo- busa and Nidar) are, however, unrelated to Himalayan subduction–collision processes. Deeply subducted and rapidly exhumed Indian Plate basement and cover rocks directly adjacent to the suture zone enclose eclogites of Eocene age, some coesite-bearing (Kaghan/Neelum and Tso Morari), formed from Permian Panjal Trap, con- tinental-type, basaltic magmatic rocks. Eclogites with a granulite-facies overprint, yielding Oligocene–Miocene ages, occur in the anatectic cordierite ± sillimanite-grade Indian Plate mostly significantly south of the suture zone (Kharta/Ama Drime/Arun, north Sikkim and NW Bhutan) but also directly at the suture zone at Namche Barwa. The sequence carpholite-, coesite-, kyanite- and cordierite-bearing rocks of these different units dem- onstrates the transition from oceanic subduction to continental collision via continental subduction. The gran- ulitized eclogites in anatectic gneisses preserve evidence of former thick crust as in other wide hot orogens, such as the European Variscides.
    [Show full text]
  • Fluid Evolution in an Oceanic Core Complex: a Fluid Inclusion Study from IODP Hole U1309 D - Atlantis Massif, 30°N, Mid-Atlantic Ridge
    This is a repository copy of Fluid evolution in an Oceanic Core Complex: a fluid inclusion study from IODP hole U1309 D - Atlantis Massif, 30°N, Mid-Atlantic Ridge. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/80181/ Version: Published Version Article: Castelain, T, McCaig, AM and Cliff, RA (2014) Fluid evolution in an Oceanic Core Complex: a fluid inclusion study from IODP hole U1309 D - Atlantis Massif, 30°N, Mid-Atlantic Ridge. Geochemistry, Geophysics, Geosystems, 15 (4). 1193 - 1214. ISSN 1525-2027 https://doi.org/10.1002/2013GC004975 Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ PUBLICATIONS Geochemistry, Geophysics, Geosystems RESEARCH ARTICLE Fluid evolution in an Oceanic Core Complex: A fluid inclusion 10.1002/2013GC004975 study from IODP hole U1309 D—Atlantis Massif, 30N, Key Points: Mid-Atlantic Ridge The TAG model is a good analog for fluid evolution at Atlantis Massif Teddy Castelain1, Andrew M.
    [Show full text]