Initiation of Plate Tectonics in the Hadean: Eclogitization Triggered by the ABEL Bombardment

Total Page:16

File Type:pdf, Size:1020Kb

Initiation of Plate Tectonics in the Hadean: Eclogitization Triggered by the ABEL Bombardment Accepted Manuscript Initiation of plate tectonics in the Hadean: Eclogitization triggered by the ABEL Bombardment S. Maruyama, M. Santosh, S. Azuma PII: S1674-9871(16)30207-9 DOI: 10.1016/j.gsf.2016.11.009 Reference: GSF 514 To appear in: Geoscience Frontiers Received Date: 9 May 2016 Revised Date: 13 November 2016 Accepted Date: 25 November 2016 Please cite this article as: Maruyama, S., Santosh, M., Azuma, S., Initiation of plate tectonics in the Hadean: Eclogitization triggered by the ABEL Bombardment, Geoscience Frontiers (2017), doi: 10.1016/ j.gsf.2016.11.009. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT MANUSCRIPT ACCEPTED P a g e ‐|‐1111‐‐‐‐ ACCEPTED MANUSCRIPT ‐ 1‐ Initiation of plate tectonics in the Hadean: 2‐ Eclogitization triggered by the ABEL 3‐ Bombardment 4‐ 5‐ S. Maruyama a,b,*, M. Santosh c,d,e , S. Azuma a 6‐ a Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1, 7‐ Ookayama-Meguro-ku, Tokyo 152-8550, Japan 8‐ b Institute for Study of the Earth’s Interior, Okayama University, 827 Yamada, 9‐ Misasa, Tottori 682-0193, Japan 10‐ c Centre for Tectonics, Resources and Exploration, Department of Earth 11‐ Sciences, University of Adelaide, SA 5005, Australia 12‐ d School of Earth Sciences and Resources, China University of Geosciences 13‐ Beijing, 29 Xueyuan Road, Beijing 100083, China 14‐ e Faculty of Science, Kochi University, KochiMANUSCRIPT 780-8520, Japan 15‐ *Corresponding author. E-mail address: [email protected] 16‐ 17‐ Abstract 18‐ When plate tectonics began on the Earth has been long debated and 19‐ here we argue this topic based on the records of Earth-Moon geology and 20‐ asteroid beltACCEPTED to conclude that the onset of plate tectonics was during the middle 21‐ Hadean (between 4.37–4.20 Ga). The trigger of the initiation of plate tectonics is 22‐ the ABEL Bombardment, which delivered oceanic and atmospheric components 23‐ on a completely dry reductive Earth, originally comprised of enstatite 1‐ ‐ P a g e ‐|‐2222‐‐‐‐ ACCEPTED MANUSCRIPT ‐ 24‐ chondrite-like materials. Through the accretion of volatiles, shock metamorphism 25‐ processed with vaporization of both CI chondrite and supracrustal rocks at the 26‐ bombarded location, and significant recrystallization went through under wet 27‐ conditions, caused considerable eclogitization in the primordial continents 28‐ composed of felsic upper crust of 21 km thick anorthosite, and 50 km or even 29‐ thicker KREEP lower crust. Eclogitization must have yielded a powerful slab-pull 30‐ force to initiate plate tectonics in the middle Hadean. Another important factor is 31‐ the size of the bombardment. By creating Pacific Ocean class crater by 1000 km 32‐ across impactor, rigid plate operating stagnant lid tectonics since the early 33‐ Hadean was severely destroyed, and oceanicMANUSCRIPT lithosphere was generated to 34‐ have bi-modal lithosphere on the Earth to enable the operation of plate tectonics. 35‐ Considering the importance of the ABEL Bombardment event which initiated 36‐ plate tectonics including the appearance of ocean and atmosphere, we propose 37‐ that the Hadean Eon can be subdivided into three periods: (1) early Hadean 38‐ (4.57–4.37 Ga), (2) middle Hadean (4.37–4.20 Ga), and (3) late Hadean ACCEPTED 39‐ (4.20–4.00 Ga). 40‐ 2‐ ‐ P a g e ‐|‐3333‐‐‐‐ ACCEPTED MANUSCRIPT ‐ 41‐ Keywords: Initiation of plate tectonics; ABEL Bombardment; Eclogitization; 42‐ Stagnant lid tectonics; Primordial continents 43‐ 44‐ 1. Introduction 45‐ The Earth is the only example among all planets in our solar system with 46‐ active plate tectonics (Fig. 1), and also life-bearing since Hadean (e.g. Turner et 47‐ al., 2014; Ebisuzaki and Maruyama, 2016). This rocky planet is characterized by 48‐ both H 2O ocean and wide-spread granitic continents covering its surface. The 49‐ appearance of ocean triggered the operation of plate tectonics, which promoted 50‐ subduction of oceanic plate at the MANUSCRIPTtrench and generation of TTG 51‐ (tonalite-trondhjemite-granodiorite) magmas at the continental region. As a 52‐ result, important nutrients are being continuously supplied for the survival for life, 53‐ together with CO 2, N 2, and H 2O as components of the building blocks of life. 54‐ Thus, the Habitable Trinity environment is sustained which is one of the basic 55‐ conditions for life. Plate tectonics, life, H 2O ocean, and granitic continents must ACCEPTED 56‐ genetically relate with each other (e.g. Dohm and Maruyama, 2015). 57‐ “When plate tectonics began on this planet” is one of the most heated 58‐ debates in Earth Sciences ever since the new paradigm of plate tectonics was 3‐ ‐ P a g e ‐|‐4444‐‐‐‐ ACCEPTED MANUSCRIPT ‐ 59‐ established in 1968 (e.g., Le Pichon, 1968; Morgan, 1968; McKenzie, 1969). 60‐ The major argument to demonstrate the operation of plate tectonics was based 61‐ on the presence or absence of ophiolites remaining as a thin and narrow belt 62‐ within orogenic belts as an index of the tectonic movement of the oceanic plates 63‐ which have already disappeared by collision of continents (e.g. Komiya et al., 64‐ 1999). However, definition of ophiolite depends on the rock assemblages 65‐ (Maruyama et al., 1989), and therefore when, where, and how plate tectonics 66‐ began to operate remains unsolved. To tackle these questions, we start from 67‐ clarifying what plate tectonics is from its most essential characters such as 68‐ rigidity, plate boundary processes, role ofMANUSCRIPT water as a driving force, mantle 69‐ potential temperature, and evaluate the multi-disciplinary aspects of the theory. 70‐ Finally, we propose a trigger to initiate plate tectonics on Hadean Earth. 71‐ 72‐ 2. What is plate tectonics? 73‐ ACCEPTED 74‐ 2.1. Definition of plate tectonics and three-dimensional structure of 75‐ lithosphere 4‐ ‐ P a g e ‐|‐5555‐‐‐‐ ACCEPTED MANUSCRIPT ‐ 76‐ Plate tectonics is basically defined as follows; The Earth’s surface is 77‐ covered by more than a dozen rigid lithospheres called plate. The movement of 78‐ these plates is rotational motion on the spherical body of the Earth. Hence both 79‐ the rotational pole and angular velocity of the rotation are given to all plates on 80‐ the globe. Thus, the motion at any point on the globe is determined, if both 81‐ direction of plate motion and speed are given on the globe. This is the core of the 82‐ theory of plate tectonics. 83‐ Another important factor of plate tectonics is the rigidity of the plate. The 84‐ Earth is characterized by rigid lithospheric plates, and the rigidity accompanies 85‐ brittle deformation. However, the deformationMANUSCRIPT mechanism of rocks changes with 86‐ increase in temperature from brittle to ductile, as seen in rock types from basalts, 87‐ gabbros and mantle peridotites which can be highly ductile above 800 °C (Arzi, 88‐ 1978; Kohlstedt et al.,1995). If volatiles such as H 2O and CO 2 are present, rocks 89‐ start melting at around this temperature. The presence of volatiles and melts are 90‐ imaged through velocity drop in geophysical studies (e.g. Nehlig, 1993). ACCEPTED 91‐ Furthermore, the ductility acts as a catalyzer to promote slippage at the bottom 92‐ of the lithosphere. 5‐ ‐ P a g e ‐|‐6666‐‐‐‐ ACCEPTED MANUSCRIPT ‐ 93‐ One of the major features of plate tectonics is the three-dimensional 94‐ subduction of lithosphere in the shape of plate. In the upper mantle, the platy 95‐ structure of lithosphere is preserved during the subduction process. However, 96‐ the lithosphere cannot keep the platy form in the lower mantle. Platy or 97‐ curtain-like structure of lithosphere seen above 410 km changes to blob-shaped 98‐ structure in the lower mantle through the mantle transition zone at 410–660 km 99‐ depth with the phase changes from olivine to wadsleyite at 410 km, wadsleyite to 100‐ ringwoodite at 520 km, and finally into perovskite and wüstite at 660 km depth. 101‐ The recent observations, particularly derived from seismic tomographic data, 102‐ have revealed the architecture of subductingMANUSCRIPT plates at depth (Fukao, 1992; 103‐ Maruyama, 1994; Maruyama et al., 2007) including the total amount of 104‐ accumulated slabs. 105‐ Recent multidisciplinary research of the deep Earth including deep 106‐ mantle and even core have brought new insights into the dynamics of the Earth 107‐ combined with geologic history of the Earth, particularly back to 200 Ma, with ACCEPTED 108‐ information on the location of slab graveyards that have been well documented 109‐ in seismic tomographic images. A ca. 300 m topographic bulge over 3000 km 110‐ above the Pacific superplume has been identified where 5 independent hot 6‐ ‐ P a g e ‐|‐7777‐‐‐‐ ACCEPTED MANUSCRIPT ‐ 111‐ spots are concentrated beneath the southern Pacific region (e.g. Zhao, 2007). 112‐ These observations have led to the concept of a coupled tectonic system where 113‐ upper mantle is dominated by horizontal plate movement with curtain-like 114‐ upwelling beneath the mid-oceanic ridge down to the 400 km depth (Zhao, 2004, 115‐ 2009; Zhao et al., 2007). Curtain-like upwelling makes the platy lithosphere at 116‐ mid-oceanic ridge which then moves to the trench and subducts to a depth of 117‐ 660 km. At the mantle transition zone from 410 to 660 km, the platy structure 118‐ becomes unclear with stagnation. From this depth to the bottom of the 119‐ core-mantle boundary (CMB), the plates do not show a simple curtain-like 120‐ structure.
Recommended publications
  • Stagnant Lid Tectonics: Perspectives from Silicate Planets, Dwarf Planets, Large Moons, and Large Asteroids
    Geoscience Frontiers 9 (2018) 103e119 HOSTED BY Contents lists available at ScienceDirect China University of Geosciences (Beijing) Geoscience Frontiers journal homepage: www.elsevier.com/locate/gsf Research Paper Stagnant lid tectonics: Perspectives from silicate planets, dwarf planets, large moons, and large asteroids Robert J. Stern a,*, Taras Gerya b, Paul J. Tackley b a Geosciences Department, University of Texas at Dallas, Richardson, TX 75083-0688, USA b Department of Earth Sciences, ETH-Zurich, 8092 Zurich, Switzerland article info abstract Article history: To better understand Earth’s present tectonic styleeplate tectonicseand how it may have evolved from Received 7 November 2016 single plate (stagnant lid) tectonics, it is instructive to consider how common it is among similar bodies Received in revised form in the Solar System. Plate tectonics is a style of convection for an active planetoid where lid fragment 22 May 2017 (plate) motions reflect sinking of dense lithosphere in subduction zones, causing upwelling of Accepted 16 June 2017 asthenosphere at divergent plate boundaries and accompanied by focused upwellings, or mantle plumes; Available online 1 July 2017 any other tectonic style is usefully called “stagnant lid” or “fragmented lid”. In 2015 humanity completed a50þ year effort to survey the 30 largest planets, asteroids, satellites, and inner Kuiper Belt objects, Keywords: “ ” Stagnant lid which we informally call planetoids and use especially images of these bodies to infer their tectonic Solar system activity. The four largest planetoids are enveloped in gas and ice (Jupiter, Saturn, Uranus, and Neptune) Plate tectonics and are not considered. The other 26 planetoids range in mass over 5 orders of magnitude and in Planets diameter over 2 orders of magnitude, from massive Earth down to tiny Proteus; these bodies also range Moons widely in density, from 1000 to 5500 kg/m3.
    [Show full text]
  • Is Plate Tectonics Needed to Evolve Technological Species on Exoplanets?
    Geoscience Frontiers 7 (2016) 573e580 HOSTED BY Contents lists available at ScienceDirect China University of Geosciences (Beijing) Geoscience Frontiers journal homepage: www.elsevier.com/locate/gsf Research paper Is plate tectonics needed to evolve technological species on exoplanets? Robert J. Stern Geoscience Department, University of Texas at Dallas, Richardson, TX 75080, USA article info abstract Article history: As we continue searching for exoplanets, we wonder if life and technological species capable of Received 23 September 2015 communicating with us exists on any of them. As geoscientists, we can also wonder how important is the Received in revised form presence or absence of plate tectonics for the evolution of technological species. This essay considers this 18 November 2015 question, focusing on tectonically active rocky (silicate) planets, like Earth, Venus, and Mars. The Accepted 4 December 2015 development of technological species on Earth provides key insights for understanding evolution on Available online 29 December 2015 exoplanets, including the likely role that plate tectonics may play. An Earth-sized silicate planet is likely Keywords: to experience several tectonic styles over its lifetime, as it cools and its lithosphere thickens, strengthens, Plate tectonics and becomes denser. These include magma ocean, various styles of stagnant lid, and perhaps plate Exoplanets tectonics. Abundant liquid water favors both life and plate tectonics. Ocean is required for early evolution Planetary science of diverse single-celled organisms, then colonies of cells which specialized further to form guts, ap- Intelligent life pendages, and sensory organisms up to the complexity of fish (central nervous system, appendages, eyes). Large expanses of dry land also begin in the ocean, today produced above subduction zones in juvenile arcs and by their coalescence to form continents, although it is not clear that plate tectonics was required to create continental crust on Earth.
    [Show full text]
  • Geologic Extremes of the NW Himalaya
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2016 Geologic Extremes of the NW Himalaya: Investigations of the Himalayan Ultra-high Pressure and Low Temperature Deformation Histories Dennis Girard Donaldson Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Earth Sciences Commons Recommended Citation Donaldson, Dennis Girard, "Geologic Extremes of the NW Himalaya: Investigations of the Himalayan Ultra-high Pressure and Low Temperature Deformation Histories" (2016). LSU Doctoral Dissertations. 3295. https://digitalcommons.lsu.edu/gradschool_dissertations/3295 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. GEOLOGIC EXTREMES OF THE NW HIMALAYA: INVESTIGATIONS OF THE HIMALAYAN ULTRA-HIGH PRESSURE AND LOW TEMPERATURE DEFORMATION HISTORIES A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Geology and Geophysics by Dennis G. Donaldson Jr. B.S., Virginia State University, 2009 August 2016 Dedicated to Jaime, Eliya, Noah, my siblings and parents. ii ACKNOWLEDGEMENTS I am very pleased that I have had a rewarding journey during this chapter of my life with the Department of Geology and Geophysical at Louisiana State University. I would not be here right now if it wasn’t for Dr. Alex Webb, Dr.
    [Show full text]
  • The Types of Natural Resources on Terrestrial Planets And
    OPEN ACCESS Freely available online Jounal of Astrobiology &Outreach Review Article The Types of Natural Resources on Terrestrial Planets and Extraterrestrial Civilizations * Hadi Veysi Department of Agroecology, University of Shahid Beheshti, Tehran, Iran ABSTRACT In addition to energy resources, natural resources such as metals, metalloids, non-metals, hydrocarbons, etc. are among the elements needed for the creation of a civilization. One of the important debates about intelligent life is to know how extraterrestrial civilizations provide the energy and natural resources needed for their development. Previous studies have not discussed much about the ways which intelligent civilizations can access their energy and natural resources. This study discussed the types of natural resources on terrestrial planets and the types of extraterrestrial civilizations that could use them. The results showed that the type of natural resources in terrestrial planets depends on the amount of liquid water, crust lithology, tectonics style, and the presence of microorganisms on the surface of these planets. Among all types of terrestrial planets, plate tectonics style silicate planets have the most complete natural resources. So these planets can be good targets for the natural resources supply of hominid and superhuman extraterrestrial civilizations. Other terrestrial planets such as carbon planets, coreless planets, iron planets, moons and icy dwarf planets, and even gaseous giant planets, although not be civilizable, but have large natural resources that can be used by superhuman civilizations. Keywords: Kardashev scale; Terrestrial planets; Natural resources ABBREVIATION elements, hydrocarbons, etc. to the manufacturing of tools and machines. These resources are found abundantly in terrestrial Li: Lithium, Be: Beryllium, Na: Sodium, Mg: Magnesium, planets, and natural resources very easier extracted from terrestrial Al: Aluminium, K: Potassium, Ca: Calcium, Sc: Scandium, planets than the other cosmic bodies, such as the stars.
    [Show full text]
  • The High Pressure Belt in the Grenville Province: 75 Architecture, Timing, and Exhumation1
    100 867 100 95 95 75 The High Pressure belt in the Grenville Province: 75 architecture, timing, and exhumation1 25 25 Toby Rivers, John Ketchum, Aphrodite Indares, and Andrew Hynes 5 5 0 0 Abstract: We propose that the Grenvillian allochthonous terranes may be grouped into High Pressure (HP) and Low Pressure (LP) belts and examine the HP belt in detail in the western and central Grenville Province. The HP belt is developed in Paleo- and Mesoproterozoic rocks of the pre-Grenvillian Laurentian margin and characterized by Grenvillian eclogite and co-facial HP granulite in mafic rocks. Pressure–temperature (P–T) estimates for eclogite-facies conditions in well-preserved assemblages are about 1800 MPa and 850°C. In the central Grenville Province, HP rocks formed at -1060–1040 Ma and underwent a single stage of unroofing with transport into the upper crust by -1020 Ma, whereas farther west they underwent two stages of unroofing separated by penetrative mid-crustal recrystallization before transport to the upper crust at -1020 Ma. Unroofing processes were comparable in the two areas, involving both thrusting and extensional faulting in an orogen propagating into its foreland by understacking. In detail, thrusting episodes preceded extension in the western Grenville Province, whereas in the central Grenville Province, they were coeval, resulting in unroofing by tectonic extrusion. In the central Grenville Province, the footwall ramp is well preserved, but any former ramp in the western Grenville Province was obliterated by later lower crustal extensional flow. Continuation of the HP belt into the eastern Grenville Province is not established, but likely on geological grounds.
    [Show full text]
  • Backarc Origin for Neoarchean Ultrahigh-Temperature Metamorphism, Eclogitization, and Orogenic Root Growth
    Backarc origin for Neoarchean ultrahigh-temperature metamorphism, eclogitization, and orogenic root growth Gregory Dumond1*, Michael L. Williams2, Julia A. Baldwin3, and Michael J. Jercinovic2 1Department of Geosciences, University of Arkansas, Fayetteville, Arkansas 72701, USA 2Department of Geosciences, University of Massachusetts, Amherst, Massachusetts 01003-9297, USA 3Department of Geosciences, University of Montana, Missoula, Montana 59812-1296, USA ABSTRACT modeling of Thompson et al. (2001) and provide evidence for crustal Contraction of continental crust during orogeny results in elevated root growth associated with high-P metamorphism of mid-oceanic ridge topography at the surface and a root at depth. Thermomechanical basalt (MORB)–like mafc intrusions. Intraplating of these intrusions models suggest that root growth is enhanced by thickening of ther- facilitated partial melting and UHT metamorphism of peraluminous supra- mally softened thin lithosphere. A >400 km2 region of Archean gneiss crustal host rocks (Dumond et al., 2015). We use Th–U–total Pb monazite in the Athabasca granulite terrane in the Canadian shield contains petrochronology to constrain the timing of high-P melting preserved in abundant mafc sills with mid-oceanic ridge basalt–like chemistry. felsic granulite paragneiss in contact with a previously dated eclogite Heat from the sills facilitated melting of supracrustal host rocks along sill that yielded U-Pb zircon dates of 2.54 Ga and 1.90 Ga (Baldwin et a prograde pressure-temperature (P-T) path culminating at P > 1.4 al., 2004). These results are combined with bulk-rock geochemistry for GPa and T > 950 °C in the Neoarchean. A basalt sill, converted to mafc granulites and eclogite near the base of the Upper Deck to infer a eclogite near the base of the domain, exhibits positive Eu anomalies backarc origin for a Neoarchean orogenic root.
    [Show full text]
  • Andean Flat-Slab Subduction Through Time
    Andean flat-slab subduction through time VICTOR A. RAMOS & ANDRE´ S FOLGUERA* Laboratorio de Tecto´nica Andina, Universidad de Buenos Aires – CONICET *Corresponding author (e-mail: [email protected]) Abstract: The analysis of magmatic distribution, basin formation, tectonic evolution and structural styles of different segments of the Andes shows that most of the Andes have experienced a stage of flat subduction. Evidence is presented here for a wide range of regions throughout the Andes, including the three present flat-slab segments (Pampean, Peruvian, Bucaramanga), three incipient flat-slab segments (‘Carnegie’, Guan˜acos, ‘Tehuantepec’), three older and no longer active Cenozoic flat-slab segments (Altiplano, Puna, Payenia), and an inferred Palaeozoic flat- slab segment (Early Permian ‘San Rafael’). Based on the present characteristics of the Pampean flat slab, combined with the Peruvian and Bucaramanga segments, a pattern of geological processes can be attributed to slab shallowing and steepening. This pattern permits recognition of other older Cenozoic subhorizontal subduction zones throughout the Andes. Based on crustal thickness, two different settings of slab steepening are proposed. Slab steepening under thick crust leads to dela- mination, basaltic underplating, lower crustal melting, extension and widespread rhyolitic volcan- ism, as seen in the caldera formation and huge ignimbritic fields of the Altiplano and Puna segments. On the other hand, when steepening affects thin crust, extension and extensive within-plate basaltic flows reach the surface, forming large volcanic provinces, such as Payenia in the southern Andes. This last case has very limited crustal melt along the axial part of the Andean roots, which shows incipient delamination.
    [Show full text]
  • Foreland Uplift During Flat Subduction Insights from the Peruvian Andes
    Tectonophysics 731–732 (2018) 73–84 Contents lists available at ScienceDirect Tectonophysics journal homepage: www.elsevier.com/locate/tecto Foreland uplift during flat subduction: Insights from the Peruvian Andes and T Fitzcarrald Arch ⁎ Brandon T. Bishopa, , Susan L. Becka, George Zandta, Lara S. Wagnerb, Maureen D. Longc, Hernando Taverad a Department of Geosciences, University of Arizona, 1040 East 4th Street, Tucson, AZ 85721, USA b Department of Terrestrial Magnetism, Carnegie Institution for Science, 5241 Broad Branch Road NW, Washington, DC 20015, USA c Department of Geology and Geophysics, Yale University, 210 Whitney Avenue, New Haven, CT 06511, USA d Instituto Geofísico del Perú, Calle Badajoz 169, Lima 15012, Peru ARTICLE INFO ABSTRACT Keywords: Foreland deformation has long been associated with flat-slab subduction, but the precise mechanism linking Basal shear these two processes remains unclear. One example of foreland deformation corresponding in space and time to Flat slab flat subduction is the Fitzcarrald Arch, a broad NE-SW trending topographically high feature covering an area Andes of > 4 × 105 km2 in the Peruvian Andean foreland. Recent imaging of the southern segment of Peruvian flat slab Crustal thickening shows that the shallowest part of the slab, which corresponds to the subducted Nazca Ridge northeast of the Lithosphere present intersection of the ridge and the Peruvian trench, extends up to and partly under the southwestern edge Fitzcarrald Arch of the arch. Here, we evaluate models for the formation of this foreland arch and find that a basal-shear model is most consistent with observations. We calculate that ~5 km of lower crustal thickening would be sufficient to generate the arch's uplift since the late Miocene.
    [Show full text]
  • Eclogites and Other High-Pressure Rocks in the Himalaya: a Review
    Downloaded from http://sp.lyellcollection.org/ by guest on September 27, 2021 Eclogites and other high-pressure rocks in the Himalaya: a review PATRICK J. O’BRIEN Department of Earth and Environmental Sciences, University of Potsdam, Karl-Liebknecht-Strasse 24/25, 14469 Potsdam-Golm, Germany 0000-0003-0235-9116 [email protected] Abstract: Himalayan high-pressure metamorphic rocks are restricted to three environments: the suture zone; close to the suture zone; and (mostly) far (>100 km) from the suture zone. In the NW Himalaya and South Tibet, Cretaceous-age blueschists (glaucophane-, lawsonite- or carpholite-bearing schists) formed in the accretionary wedge of the subducting Neo-Tethys. Microdiamond and associated phases from suture-zone ophiolites (Luo- busa and Nidar) are, however, unrelated to Himalayan subduction–collision processes. Deeply subducted and rapidly exhumed Indian Plate basement and cover rocks directly adjacent to the suture zone enclose eclogites of Eocene age, some coesite-bearing (Kaghan/Neelum and Tso Morari), formed from Permian Panjal Trap, con- tinental-type, basaltic magmatic rocks. Eclogites with a granulite-facies overprint, yielding Oligocene–Miocene ages, occur in the anatectic cordierite ± sillimanite-grade Indian Plate mostly significantly south of the suture zone (Kharta/Ama Drime/Arun, north Sikkim and NW Bhutan) but also directly at the suture zone at Namche Barwa. The sequence carpholite-, coesite-, kyanite- and cordierite-bearing rocks of these different units dem- onstrates the transition from oceanic subduction to continental collision via continental subduction. The gran- ulitized eclogites in anatectic gneisses preserve evidence of former thick crust as in other wide hot orogens, such as the European Variscides.
    [Show full text]
  • Foundered Lithospheric Segments Dropped Into the Mantle Transition Zone Beneath Southern California, USA Youqiang Yu1, Stephen S
    https://doi.org/10.1130/G46889.1 Manuscript received 20 August 2019 Revised manuscript received 23 October 2019 Manuscript accepted 29 October 2019 © 2019 Geological Society of America. For permission to copy, contact [email protected]. Published online 9 December 2019 Foundered lithospheric segments dropped into the mantle transition zone beneath southern California, USA Youqiang Yu1, Stephen S. Gao2, Kelly H. Liu2 and Dapeng Zhao3 1 State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China 2 Geology and Geophysics Program, Missouri University of Science and Technology, Rolla, Missouri 65409, USA 3 Department of Geophysics, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan ABSTRACT most likely due to the low number of receiver The diverse range of active tectonics occurring in southern California, USA, offers an functions (RFs) used in the studies (Gurrola opportunity to explore processes of continental deformation and modification in response to and Minster, 1998; Ramesh et al., 2002; Lewis the instability of the Pacific and Farallon plates. Here, we present a high-resolution receiver- and Gurrola, 2004; Vinnik et al., 2010). On the function image of the mantle transition zone (MTZ). Our result reveals significant lateral other hand, more recent RF studies using USAr- heterogeneities in the deep mantle beneath southern California. Both seismic tomography ray data are focused on the western or the entire and MTZ discontinuity deflections reveal foundered lithospheric segments that have dropped United States with resolutions that are not high into the MTZ beneath the western Transverse Ranges, the Peninsular Ranges, and part of the enough for identifying finer MTZ features in southern Sierra Nevada.
    [Show full text]
  • Eclogite Formation and the Rheology, Buoyancy, Seismicity, and H2O
    Eclogite Formationand the Rheology,Buoyancy, Seismicity,and H20 Contentof OceanicCrust BradleyR. Hacker1 Departmentof Geologicaland EnvironmentalSciences, Stanford University, Stanford, California A broad spectrumof variably altered igneous rocks with a wide range of grain sizes are compressedand heated over a wide range of pressure-temperaturepaths in subductionzones. Although experimentalkinetic data cannotbe extrapolatedto predict the rates of blueschistand eclogite formation in nature, textural data from rocks indicate that transformationbelow temperaturesof 150øCis minimal. Completetransformation of volcanicrocks occurs by •-250øC, but incompletetransformation of gabbroicrocks heatedto 800øC has been observed.There are important consequencesto the rapid transformation of volcanic rocks and the metastable persistenceof gabbroicrocks into the blueschistand eclogite stability fields. Fast seismic velocities shouldbe evident first in the upper oceaniccrust and may be substantiallyretarded in the lower oceaniccrust. The upper oceaniccrust will be denserthan asthenospherebefore the lower oceanic crust.Early in the processof eclogiteformation, volcanic rocks will be placedin deviatorictension and the underlyingcoarser grained rocks in compression;with furtherreaction, the stateof stressin gabbroicrocks will changefrom compressiveto tensile.Earthquakes at shallowdepths should be extensional in basalt and contractionalin gabbro, changing at deeper levels to extensional throughoutthe crust. INTRODUCTION This paper summarizes the rates and
    [Show full text]
  • On the Evolution of Terrestrial Planets: Bi-Stability, Stochastic Effects, and the Non-Uniqueness of Tectonic States
    Geoscience Frontiers 9 (2018) 91e102 HOSTED BY Contents lists available at ScienceDirect China University of Geosciences (Beijing) Geoscience Frontiers journal homepage: www.elsevier.com/locate/gsf Research Paper On the evolution of terrestrial planets: Bi-stability, stochastic effects, and the non-uniqueness of tectonic states Matthew B. Weller a,b,*, Adrian Lenardic c a Institute for Geophysics, University of Texas at Austin, USA b Lunar and Planetary Institute, Houston, TX, USA c Department of Earth Science, Rice University, Houston, TX 77005, USA article info abstract Article history: The Earth is the only body in the solar system for which significant observational constraints are Received 14 October 2016 accessible to such a degree that they can be used to discriminate between competing models of Earth’s Received in revised form tectonic evolution. It is a natural tendency to use observations of the Earth to inform more general 25 February 2017 models of planetary evolution. However, our understating of Earth’s evolution is far from complete. In Accepted 9 March 2017 recent years, there has been growing geodynamic and geochemical evidence that suggests that plate Available online 22 March 2017 tectonics may not have operated on the early Earth, with both the timing of its onset and the length of its activity far from certain. Recently, the potential of tectonic bi-stability (multiple stable, energetically Keywords: Planetary interiors allowed solutions) has been shown to be dynamically viable, both from analytical analysis and through Mantle convection numeric experiments in two and three dimensions. This indicates that multiple tectonic modes may Lid-state operate on a single planetary body at different times within its temporal evolution.
    [Show full text]