Lone Pair Electron Discriminate Hybridization with Aromatic and Anti Aromatic Behavior of Heterocyclic Compounds - Innovative Mnemonics

Total Page:16

File Type:pdf, Size:1020Kb

Lone Pair Electron Discriminate Hybridization with Aromatic and Anti Aromatic Behavior of Heterocyclic Compounds - Innovative Mnemonics World Journal of Chemical Education, 2018, Vol. 6, No. 2, 95-101 Available online at http://pubs.sciepub.com/wjce/6/2/4 ©Science and Education Publishing DOI:10.12691/wjce-6-2-4 Lone Pair Electron Discriminate Hybridization with Aromatic and Anti Aromatic behavior of Heterocyclic Compounds - Innovative Mnemonics Arijit Das* Department of Chemistry, Ramthakur College, Agartala -799003, Tripura West, Tripura, India *Corresponding author: [email protected], [email protected] Abstract In this approach, formulae based mnemonics by counting lone pair of electrons (localized or delocalized) have been highlighted by innovative and time economic way to enhance interest of students’ who belong to paranoia zone of chemistry for the prediction of Hybridization state of hetero atom and Aromatic, Anti aromatic, non aromatic behavior of different heterocyclic compounds. Here, I have tried to hub three (03) time economic mnemonics by including three (03) formulae for the prediction of hybridization of hetero atom, aromatic and anti aromatic behavior of heterocyclic compounds. This article encourages students to solve multiple choice type questions (MCQs) on ‘Aromaticity of Heterocyclic compounds’ at different competitive examinations in a time economic ground. Keywords: high school, under graduate student, graduate student, post graduate student, chemical education research, heterocyclic compound, DLP, LLP, hybridization, aromatic, anti aromatic and non aromatic Cite This Article: Arijit Das, “Lone Pair Electron Discriminate Hybridization with Aromatic and Anti Aromatic behavior of Heterocyclic Compounds - Innovative Mnemonics.” World Journal of Chemical Education, vol. 6, no. 2 (2018): 95-101. doi: 10.12691/wjce-6-2-4. through conjugation then it is to be treated as delocalized lone pair of electron (DLP). Hetero atom (atom containing 1. Introduction lone pair of electron) which is directly attached with single bonds only from all ends is to be considered as DLP The conventional methods [1-7] for determination of containing hetero atom and its lone pair is to be treated as hybridization state of hetero atom, prediction of aromatic DLP. and anti aromatic nature of heterocyclic compound is time consuming. Keeping this in mind, in this article, I have introduced three time economic innovative mnemonics by N using three formulae for the prediction of hybridization state of hetero atom, aromatic and anti aromatic nature of Eg. In Pyrrole H lone pair of N atom is to be heterocyclic compounds containing one, two or more treated as DLP because it is directly attached with three number of hetero atoms to make heterocyclic chemistry single bonds only. metabolic and interesting for students. This study also shows ii) Localized lone pair of electron (LLP): When lone how LP electrons discriminate prediction of hybridization pair of electron of hetero atom does not undergo state of hetero atom with identification of its Aromatic and delocalization through conjugation then it is to be treated Anti Aromatic nature of heterocyclic compounds. as Localized lone pair of electron (LLP). Hetero atom (atom containing lone pair of electron) which is directly attached with single and double bonds with the ring 2. Time Economic Innovative Mnemonics system is to be considered as LLP containing hetero atom in Heterocyclic Chemistry and its lone pair is to be treated as localized lone pair of electron (LLP). 2.1. Classification of Lone Pair of Electrons Loan Pair of electrons can be generally classified into two types as Delocalized lone pair of electron (DLP) and N Localized lone pair of electron (LLP) as follows: Eg. In Pyridine lone pair of N atom is to be i)Delocalized lone pair of electron (DLP): When lone treated as LLP because it is directly attached with double pair of electron of hetero atom undergo delocalization and single bonds with the ring system. World Journal of Chemical Education 96 2.2. Hybridization State Theory Innovative Mnemonics for the prediction of hybridization state of hetero atom in the heterocyclic compounds Prof. Linus Pauling (1931) first developed the with LLP: Hybridization state theory in order to explain the structure Formula used for the determination of hybridization of molecules such as methane (CH4). This concept was state: developed for simple chemical systems but this one Power on the Hybridization state of the hetero atom = applied more widely later on and from today’s point of (Total no of σ bonds around each hetero atom - 1). view it is considered an operative empirical for excusing This formula should be applicable up to 4 σ bonds. the structures of organic and inorganic compounds along If the power of the hybridization state will be 03, 02 with their related problems. and 01 then the hybridization state will be sp3, sp2 and sp Conventional method for prediction of hybridization state: respectively. All single (-) bonds are σ bond, in double Hybridization state for a molecule can be calculated by bond (=) there is one σ and one π. In addition to these each the formula 0.5 (V+H−C+A), Where, V = Number of localized lone pair of electron (LLP) can be treated as one valance electrons in central atom, H = Number of σ bond. Hybridization state of hetero atom with the help surrounding monovalent atoms, C = Cationic charge, A = of LLP in heterocyclic compounds are shown in Table 1 Anionic charge. below. Table 1. (Hybridization state of Hetero atom in Heterocyclic Compounds with the help of LLP) Power of the Number of σ bonds Total Number of σ bonds Hybridization state around hetero atom LLP around hetero atom of the hetero atom Heterocyclic Compounds (from single and double (localized Lone Pair of e-s) (A+B) (Corresponding bonds) (B) Hybridization state) = (A) (A+B)-1 02 0 (sp2 N) 03 (lone pair of electron N 03 undergo delocalization,DLP with the ring system) H Pyrrole 01 (out of two lone pair of electrons, one undergo 02 O 02 delocalization,DLP and other 03 (sp2 O) remain as LLP) Furan 01 (out of two lone pair of 02 02 electrons, one undergo 03 (sp2 S) S delocalization,DLP and other Thiophene remain as LLP) 02 01 02 03 (sp2 N) N Pyridine 02 03 0 N 03 (sp2 N) H Indole 02 01 02 03 (sp2 N) N Quinoline 5 4 10 6 3 02 2 7 N 02 01 03 (sp N) 9 2 8 1 Isoquinoline 97 World Journal of Chemical Education Power of the Number of σ bonds Total Number of σ bonds Hybridization state around hetero atom LLP around hetero atom of the hetero atom Heterocyclic Compounds (from single and double (localized Lone Pair of e-s) (A+B) (Corresponding bonds) (B) Hybridization state) = (A) (A+B)-1 3 4 N 02 03 0 5 03 (sp2 N1) (N1) (N1) 2 N 1 02 02 01 03 (sp2 N3) (N3) (N3) H Imidazole 4 3 02 5 N 02 01 (sp2 N1) 03 (N1) (N1) 6 2 02 N 02 01 (sp2 N3) 03 1 (N3) (N3) Pyrimidine 02 01 02 7 2 6 (N1) (N1) 03 (sp N1) N 1 5 02 01 02 N 2 8 (N3) (N3) 03 (sp N3) 2 4 N N9 02 01 02 (N7) (N7) 03 (sp2 N7) 3 H Purine 03 0 02 (N9) (N9) 03 (sp2 N9) 01 (N) 02 N 02 (sp2 N) 03 (N) 01 (S) 02 S 02 (out of two lone pair of (sp2 S) 03 Thiazole (S) electrons on S, one undergo delocalization, DLP and other remain as LLP) 01 (N) 02 N 02 (sp2 N) 01 03 (N) (S) 02 (out of two lone pair of 02 (sp2 S) S electrons on S, one undergo 03 (S) delocalization, DLP and Benzothiazole other remain as LLP) 4 N 02 5 3 02 01 03 (sp2 N1) (N1) (N1) 6 2 N 02 02 01 1 03 (sp2 N4) (N1) (N1) Pyrazine (p-diazine) N 02 02 01 (sp2 N1,N3,N5) N N 03 (N1,N3 and N5) (N1,N3 and N5) Cyanidine 0 H (N) N 01 03 02 (S) (N) 03 (sp2 N) (out of two lone pair of electrons on S, one undergo S 02 03 02 delocalization, DLP and (S) (sp2 S) Phenothiazine other remain as LLP) World Journal of Chemical Education 98 Power of the Number of σ bonds Total Number of σ bonds Hybridization state around hetero atom LLP around hetero atom of the hetero atom Heterocyclic Compounds (from single and double (localized Lone Pair of e-s) (A+B) (Corresponding bonds) (B) Hybridization state) = (A) (A+B)-1 N 02 02 01 03 (sp2 both N) N (both N) (both N) Phenazine N N 02 02 01 (sp2 All N) N 03 N (N1,N2,N3,N4) (N1,N2,N3,N4) 1,2,3,4-tetrazine N 02 01 02 03 (sp2 N) Azocine N 01 02 02 03 2 Azetine (sp N) H N 03 01 03 04 (sp3 N) Aziridine O 02 03 02 04 3 Oxetan (sp O) 2.3. Aromaticity The present study will be an innovative mnemonic involving calculation of ‘A’ value by just manipulating It was first devised by Hückel in 1931. the no of π bonds within the ring system and delocalized Conventional method for prediction of Aromatic nature lone pair of electron (DLP) with one (01). of organic compound: The heterocyclic compound having cyclic, planar, 1. Cyclic molecule, conjugated (i.e. all the carbon atoms having same state of 2. Planer molecule in which all bonded atoms lie in hybridization, sp2) with even number of ‘A’ value will be 2 same plane (having sp hybridized) treated as aromatic in nature and with odd number of ‘A’ 3. Conjugated molecule with conjugated π-electron value will be treated as anti aromatic in nature.
Recommended publications
  • A New Synthesis of 1-Benzyl-1,2,3,4-Tetrahydroisoquinoline
    A NEW SYNTHESIS OF 1-BENZYL-1,2,3,4-TETRAHYDROISOQUINOLINE By L. W. DEADY,*N, H. PIRZADA,*R. D. TOPSOM,"and J. M. BOBBITT~ [Manuscript received 5 March 19731 Abstract The synthesis of N-(2-bromoethy1)-N-(1,2-diphenylethy1)ammoniumbromide and its aluminium chloride catalysed decomposition to 1-benzyl-1,2,3,4-tetrahydro- isoquinoline is described. We have recently reported convenient preparations of tetrahydroquinolinesl (m = 0, n = 3) and tetrahydroisoquinolines2 (m = 1, n = 2) by the cyclization of compounds of type (1). 1-Benzyl-1,2,3,4-tetrahydroisoquinolineis the parent compound of an impor- tant class of alkaloids3 and methods of synthesis of this system are of considerable interest. Normally, the system has been prepared by ring closure between C 1 of the incipient isoquinoline and the aromatic ring, the so-called Bischler-Napieralski rea~tion,~although several new methods have been described and ~ummarized.~In theory, the ring system can be prepared by closure of C4 (as an aldehyde or blocked aldehyde) to the aromatic ring by a variation of the Pomeranz-Fritsch synthe~is,~,~ but there are several difficulties with intramolecular ring closures6 and only one successful synthesis has been reported.' In any case, such a synthesis results in oxygenation at C4 or some type of unsaturation in the isoquinoline ring. In this paper, we report a synthesis which is an extension of our previous work2 and which gives the tetrahydroisoquinoline ring directly in reasonable yield. Deoxybenzoin was used as the starting material in the synthesis of the required intermediate (2). Though the synthesis of (2) involved three steps it was experi- * Organic Chemistry Department, La Trobe University, Bundoora, Vic.
    [Show full text]
  • Heterocyclic Chemistry Updated
    1 | Page Heterocyclic Chemistry By Dr Vipul Kataria Definition: A heterocyclic compound or ring structure is a cyclic compound that has atoms of at least two different elements (N, O, S, P) as members of its ring. Introduction: Heterocyclic compounds may be defined as cyclic compounds having as ring members atoms of at least two different elements. It means the cyclic compound has one another atom different than carbon. Heterocyclic compounds have much importance in organic chemistry because of abundant presence of heterocyclic compounds in present pharmaceutical drugs. Like other organic compounds, there are several defined rules for naming heterocyclic compounds. IUPAC rules for nomenclature of heterocyclic systems (SPU 2012, 2 Marks) The system for nomenclature for heterocyclic systems was given by Hantzsch and Widman. The Hantzsch-Widman nomenclature is based on the type (Z) of the heteroatom; the ring size (n) and nature of the ring, whether it is saturated or unsaturated. This system of nomenclature applies to monocyclic 3-to-10-membered ring heterocycles. Type of the heteroatom: The type of heteroatom is indicated by a prefix as shown below for common hetreroatoms. Dr Vipul Kataria, Chemistry Department, V. P. & R. P. T. P. Science College, VV Nagar 2 | Pag e When two or more of the same heteroatoms are present, the prrefix di, tri, tetra… are used. e.g. dioxa, triaza, dithia. If the heteroatoms are different their atomic number in that grroup is considered. Thus order of numbering will be O, S, N, P, Si. Ring size: The ring size is indicated by a suffix according to Table I below.
    [Show full text]
  • Synthesis of Condensed 1,2,4-Triazolo-Heterocycles
    Chemistry SYNTHESIS OF CONDENSED 1,2,4-TRIAZOLO-HETEROCYCLES MOHAMMED A. E. SHABAN ADEL Z. NASR MAMDOUH A. M. TAHA SUMMARY: Cyclization of 2-hydrazino-1, 3-benzothiazole, 2-hydrozinoquioline, 2-hydrazinolepidine, and 2-hydrazino-pyridine with one-carbon cyclizing agents such as triethyl orthoformate, ethyl chlorofor- mate, urea, phenylthiourea, and carbon disulfide gave 3-substituted-1,2,4-triazolo (3,4, -b) 1, 3-benzothia- zoles, 3-substituted-1,2,4-triazolo (4,3-a) quinolines, 3-substituted-1,2,4-triazolo (4,3-a) quinolines, 3-substituted-1,2,4-triazolo (4,3-a) lepidines and 3-substituted-1,2,4-triazolo (4,3-a) pyridines respectively. Reactions with acetic acid and acetic anhydride gave the corresponding acetyl hydrazines which were cyclized to the 3-methyl 1,2,4-triazolo-heterocyles. Ring closure with phenyl isocyanate and phenyl isothio- cyanate, gave the intermediate 4-phenylsemicarbazides and 4-phenylthiosemicarbazides which, upon fusion, afforded the corresponding 3-oxo- and 3-thioxo-1,2,4-triazolo-heterocyles. The 3-oxo-compounds were also obtained when 2-chloroquinoloni or 2-chlorolepidine was fused with semicarbazide hydrochloride. Key Words: Synthesis, amidrazones, triazolo-heterocycles. INTRODUCTION The synthesis and biological activities of condensed In an attempt to prepare 3-methyl-1,2,4-triazolo (3,4-b) 1,2,4-triazolo (3,4-z) heterocyles have recently been 1,3-benzothiazole (5a) by heating 2-hydrazino-1, 3- reviewed (14). Several condendes 1,2,4-triazolo-hetero- benzothiazole (1a) with an excess of acetic acid or acetic cyles exhibit various biological activities such as fungicidal anhydride, 1,1,2-triacetyl-2-(1,3-benzothiazol-2-yl) hyd- (1,9) bactericidal (1,9) analgesic (4,7,10) anxiolytic (8) razine (3a) was obtained.
    [Show full text]
  • Condensed Cyclic Compound, Composition Including The
    (19) TZZ¥_ _T (11) EP 3 184 522 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 28.06.2017 Bulletin 2017/26 C07D 403/14 (2006.01) H01L 51/00 (2006.01) (21) Application number: 16205894.5 (22) Date of filing: 21.12.2016 (84) Designated Contracting States: • INAYAMA, Satoshi AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Yokohama-city, Kanagawa 230-0027 (JP) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO • ISHII, Norihito PL PT RO RS SE SI SK SM TR Yokohama-city, Kanagawa 230-0027 (JP) Designated Extension States: • SHIBATA, Katsunori BA ME Yokohama-city, Kanagawa 230-0027 (JP) Designated Validation States: • ITO, Mitsunori MA MD Yokohama-city, Kanagawa 230-0027 (JP) (30) Priority: 22.12.2015 JP 2015250531 (74) Representative: Scheuermann, Erik Elkington and Fife LLP (71) Applicant: Samsung Electronics Co., Ltd. Prospect House Gyeonggi-do 16677 (KR) 8 Pembroke Road Sevenoaks, Kent TN13 1XR (GB) (72) Inventors: • KATO, Fumiaki Yokohama-city, Kanagawa 230-0027 (JP) (54) CONDENSED CYCLIC COMPOUND, COMPOSITION INCLUDING THE CONDENSED CYCLIC COMPOUND, ORGANIC LIGHT-EMITTING DEVICE INCLUDING THE CONDENSED CYCLIC COMPOUND, AND METHOD OF MANUFACTURING THE ORGANIC LIGHT-EMITTING DEVICE (57) A condensed cyclic compound, a composition including the condensed cyclic compound, an organic light-emit- ting device including the condensed cyclic compound, and a method of manufacturing the organic light-emitting device are provided. EP 3 184 522 A1 Printed by Jouve, 75001 PARIS (FR) EP 3 184 522 A1 Description FIELD OF THE INVENTION 5 [0001] One or more embodiments relate to a condensed cyclic compound, a composition including the condensed cyclic compound, an organic light-emitting device including the condensed cyclic compound, and a method of manufac- turing the organic light-emitting device.
    [Show full text]
  • Organic Chemistry PEIMS Code: N1120027 Abbreviation: ORGCHEM Number of Credits That May Be Earned: 1/2-1
    Course: Organic Chemistry PEIMS Code: N1120027 Abbreviation: ORGCHEM Number of credits that may be earned: 1/2-1 Brief description of the course (150 words or less): Organic chemistry is an introductory course that is designed for the student who intends to continue future study in the sciences. The student will learn the concepts and applications of organic chemistry. Topics covered include aliphatic and aromatic compounds, alcohols, aldehydes, ketones, acids, ethers, amines, spectra, and stereochemistry. A brief introduction into biochemistry is also provided. The laboratory experiments will familiarize the student with the important laboratory techniques, specifically spectroscopy. Traditional high school chemistry courses focus on the inorganic aspects of chemistry whereas organic chemistry introduces the student to organic compounds and their properties, mechanisms of formations, and introduces the student to laboratory techniques beyond the traditional high school chemistry curriculum. Essential Knowledge and Skills of the course: (a) General requirements. This course is recommended for students in Grades 11-12. The recommended prerequisite for this course is AP Chemistry. (b) Introduction. Organic chemistry is designed to introduce students to the fundamental concepts of organic chemistry and key experimental evidence and data, which support these concepts. Students will learn to apply these data and concepts to chemical problem solving. Additionally, students will learn that organic chemistry is still evolving by reading about current breakthroughs in the field. Finally, students will gain appreciation for role that organic chemistry plays in modern technological developments in diverse fields, ranging from biology to materials science. (c) Knowledge and skills. (1) The student will be able to write both common an IUPAC names for the hydrocarbon.
    [Show full text]
  • AROMATIC COMPOUNDS Aromaticity
    AROMATICITY AROMATIC COMPOUNDS Aromaticity Benzene - C6H6 H H H H H H H H H H H H Kekulé and the Structure of Benzene Kekule benzene: two forms are in rapid equilibrium 154 pm 134 pm • All bonds are 140 pm (intermediate between C-C and C=C) • C–C–C bond angles are 120° • Structure is planar, hexagonal A Resonance Picture of Bonding in Benzene resonance hybrid 6 -electron delocalized over 6 carbon atoms The Stability of Benzene Aromaticity: cyclic conjugated organic compounds such as benzene, exhibit special stability due to resonance delocalization of -electrons. Heats of hydrogenation + H2 + 120 KJ/mol + 2 H2 + 230 KJ/mol calc'd value= 240 KJ/mol 10 KJ/mol added stability + 3 H 2 + 208 KJ/mol calc'd value= 360 KJ/mol 152 KJ/mol added stability + 3 H2 + 337 KJ/mol 1,3,5-Hexatriene - conjugated but not cyclic Resonance energy of benzene is 129 - 152 KJ/mol An Orbital Hybridization View of Bonding in Benzene • Benzene is a planar, hexagonal cyclic hydrocarbon • The C–C–C bond angles are 120° = sp2 hybridized • Each carbon possesses an unhybridized p-orbital, which makes up the conjugated -system. • The six -electrons are delocalized through the -system The Molecular Orbitals of Benzene - the aromatic system of benzene consists of six p-orbitals (atomic orbitals). Benzene must have six molecular orbitals. Y6 Y4 Y5 six p-orbitals Y2 Y3 Y1 Degenerate orbitals: Y : zero nodes orbitals that have the 1 Bonding same energy Y2 and Y3: one node Y and Y : two nodes 4 5 Anti-bonding Y6: three node Substituted Derivatives of Benzene and Their Nomenclature
    [Show full text]
  • Structure of Benzene, Orbital Picture, Resonance in Benzene, Aromatic Characters, Huckel’S Rule B
    Dr.Mrityunjay Banerjee, IPT, Salipur B PHARM 3rd SEMESTER BP301T PHARMACEUTICAL ORGANIC CHEMISTRY –II UNIT I UNIT I Benzene and its derivatives 10 Hours A. Analytical, synthetic and other evidences in the derivation of structure of benzene, Orbital picture, resonance in benzene, aromatic characters, Huckel’s rule B. Reactions of benzene - nitration, sulphonation, halogenationreactivity, Friedelcrafts alkylation- reactivity, limitations, Friedelcrafts acylation. C. Substituents, effect of substituents on reactivity and orientation of mono substituted benzene compounds towards electrophilic substitution reaction D. Structure and uses of DDT, Saccharin, BHC and Chloramine Benzene and its Derivatives Chemists have found it useful to divide all organic compounds into two broad classes: aliphatic compounds and aromatic compounds. The original meanings of the words "aliphatic" (fatty) and "aromatic" (fragrant/ pleasant smell). Aromatic compounds are benzene and compounds that resemble benzene in chemical behavior. Aromatic properties are those properties of benzene that distinguish it from aliphatic hydrocarbons. Benzene: A liquid that smells like gasoline Boils at 80°C & Freezes at 5.5°C It was formerly used to decaffeinate coffee and component of many consumer products, such as paint strippers, rubber cements, and home dry-cleaning spot removers. A precursor in the production of plastics (such as Styrofoam and nylon), drugs, detergents, synthetic rubber, pesticides, and dyes. It is used as a solvent in cleaning and maintaining printing equipment and for adhesives such as those used to attach soles to shoes. Benzene is a natural constituent of petroleum products, but because it is a known carcinogen, its use as an additive in gasoline is now limited. In 1970s it was associated with leukemia deaths.
    [Show full text]
  • Biomoleculesbiomolecules
    1414Unit Objectives BiomoleculesBiomolecules After studying this Unit, you will be able to • explain the characteristics of “It is the harmonious and synchronous progress of chemical biomolecules like carbohydrates, reactions in body which leads to life”. proteins and nucleic acids and hormones; • classify carbohydrates, proteins, A living system grows, sustains and reproduces itself. nucleic acids and vitamins on the The most amazing thing about a living system is that it basis of their structures; is composed of non-living atoms and molecules. The • explain the difference between pursuit of knowledge of what goes on chemically within DNA and RNA; a living system falls in the domain of biochemistry. Living • describe the role of biomolecules systems are made up of various complex biomolecules in biosystem. like carbohydrates, proteins, nucleic acids, lipids, etc. Proteins and carbohydrates are essential constituents of our food. These biomolecules interact with each other and constitute the molecular logic of life processes. In addition, some simple molecules like vitamins and mineral salts also play an important role in the functions of organisms. Structures and functions of some of these biomolecules are discussed in this Unit. 14.114.114.1 Carbohydrates Carbohydrates are primarily produced by plants and form a very large group of naturally occurring organic compounds. Some common examples of carbohydrates are cane sugar, glucose, starch, etc. Most of them have a general formula, Cx(H2O)y, and were considered as hydrates of carbon from where the name carbohydrate was derived. For example, the molecular formula of glucose (C6H12O6) fits into this general formula, C6(H2O)6. But all the compounds which fit into this formula may not be classified as carbohydrates.
    [Show full text]
  • Heterocyclic Chemistrychemistry
    HeterocyclicHeterocyclic ChemistryChemistry Professor J. Stephen Clark Room C4-04 Email: [email protected] 2011 –2012 1 http://www.chem.gla.ac.uk/staff/stephenc/UndergraduateTeaching.html Recommended Reading • Heterocyclic Chemistry – J. A. Joule, K. Mills and G. F. Smith • Heterocyclic Chemistry (Oxford Primer Series) – T. Gilchrist • Aromatic Heterocyclic Chemistry – D. T. Davies 2 Course Summary Introduction • Definition of terms and classification of heterocycles • Functional group chemistry: imines, enamines, acetals, enols, and sulfur-containing groups Intermediates used for the construction of aromatic heterocycles • Synthesis of aromatic heterocycles • Carbon–heteroatom bond formation and choice of oxidation state • Examples of commonly used strategies for heterocycle synthesis Pyridines • General properties, electronic structure • Synthesis of pyridines • Electrophilic substitution of pyridines • Nucleophilic substitution of pyridines • Metallation of pyridines Pyridine derivatives • Structure and reactivity of oxy-pyridines, alkyl pyridines, pyridinium salts, and pyridine N-oxides Quinolines and isoquinolines • General properties and reactivity compared to pyridine • Electrophilic and nucleophilic substitution quinolines and isoquinolines 3 • General methods used for the synthesis of quinolines and isoquinolines Course Summary (cont) Five-membered aromatic heterocycles • General properties, structure and reactivity of pyrroles, furans and thiophenes • Methods and strategies for the synthesis of five-membered heteroaromatics
    [Show full text]
  • Progressive Insights Into the Pharmacological Importance of Isoquinoline Derivatives in Modern Therapeutics
    International Journal of Current Research and Review Review Article DOI: http://dx.doi.org/10.31782/IJCRR.2021.13421 Progressive Insights into the Pharmacological Importance of Isoquinoline Derivatives in Modern IJCRR Therapeutics Section: Healthcare ISI Impact Factor (2019-20): 1.628 1 1 1 IC Value (2019): 90.81 Kishor R. Danao , Pooja M. Malghade , Debarshi Kar Mahapatra , SJIF (2020) = 7.893 Meha N. Motiwala2, Ujwala N. Mahajan3 1 2 Copyright@IJCRR Department of Pharmaceutical Chemistry, Dadasaheb Balpande College of Pharmacy, Nagpur 440037, Maharashtra, India; Department of Pharmacognosy, Dadasaheb Balpande College of Pharmacy, Nagpur 440037, Maharashtra, India; 3Department of Quality Assurance, Dadasa- heb Balpande College of Pharmacy, Nagpur 440037, Maharashtra, India. ABSTRACT Isoquinoline (ISOQ) is a heterocyclic aromatic organic compound composed of a benzene ring fused to a pyridine ring, referred to as benzopyridines. The chemical formula is C9H7N with a molar mass of 129.162 g/mol. This ISOQ ring derives from the natural aromatic amino acid tyrosine. It is weak alkaline in nature but is more basic than quinoline. It appears as a yellowish oily liquid, having an unpleasant odour, hygroscopic when solid, has a density of 1.099 g/cm3, a melting point of 26°C to 28°C (79°F to 82°F), the boiling point of 242°C (468°F), and dipole moment of 2.49. In the preparation of this review article, a widespread examination of the published literature in varied pharmaceutical and medical databases such as PubMed, Google Scholar, etc. was fruitfully carried out and categorized consequently. The imperative review revealed the less known biological (anti-fungal, anti-Parkinsonism, anti-tubercular, anti-tumour, anti-glaucoma, anti-Alzheimer’s disease, anti-viral, anti-bacterial, anti-diabetic, anti-malarial, etc.) potentials of ISOQ (an important class of chemical compounds) and their synthetic derivatives.
    [Show full text]
  • Organic and Biological Chemistry
    CHAPTER 23 Organic and Biological Chemistry CONTENTS HO H 23.1 ▶ Organic Molecules and Their C Structures: Alkanes H H C 23.2 ▶ Families of Organic Compounds: HO O O C C Functional Groups 23.3 ▶ Naming Organic Compounds H CC 23.4 ▶ Carbohydrates:HO A Biological Example HO OH of Isomers H 23.5 ▶ Valence Bond TCheory and Orbital OverlapH Pictures H C 23.6 ▶ Lipids:HO A Biological EOxample ofO Cis–Trans IsomerismC C 23.7 ▶ Formal Charge and Resonance in Organic CompoundsH CC 23.8 ▶ Conjugated SystemsHO OH 23.9 ▶ Proteins: A Biological Example of Conjugation 23.10 ▶ Aromatic Compounds and Molecular Ascorbic acid, also known as vitamin C, is an essential nutrient in the human diet Orbital Theory because it is not synthesized in our body. We can eat citrus fruits or take pills that contain vitamin C to maintain health. 23.11 ▶ Nucleic Acids: A Biological Example of Aromaticity ? Which Is Better, Natural or Synthetic? The answer to this question can be found in the INQUIRY ▶▶▶ on page 1021. STUDY GUIDE M23_MCMU3170_07_SE_C23.indd 978 27/11/14 2:11 AM f the ultimate goal of chemistry is to understand the world around us on a molecular level, then a knowledge of biochemistry—the chemistry of living organisms—is a central part Iof that goal. Biochemistry, in turn, is a branch of organic chemistry, a term originally used to mean the study of compounds from living organisms while inorganic chemistry was used for the study of compounds from nonliving sources. Today, however, we know that there are no fundamental differences between organic and inorganic compounds; the same principles apply to both.
    [Show full text]
  • Searching for New Biologically Active Compounds Derived from Isoquinoline Alkaloids †
    Proceeding Paper Searching for New Biologically Active Compounds Derived from Isoquinoline Alkaloids † Anna Kmieciak 1, Marta Ćwiklińska 1, Karolina Jeżak 1, Afef Shili 2 and Marek P. Krzemiński 1,* 1 Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Toruń, Poland; [email protected] (A.K.); [email protected] (M.Ć.); [email protected] (K.J.) 2 Chemistry Department, Faculty of Sciences of Sfax, University of Sfax, Sfax 3029, Tunisia; [email protected] * Correspondence: [email protected] † Presented at the 24th International Electronic Conference on Synthetic Organic Chemistry, 15 November–15 December 2020; Available online: https://ecsoc-24.sciforum.net/. Abstract: Many isoquinoline alkaloids are biologically active compounds and successfully used as pharmaceuticals. Compounds belonging to the isoquinolines and tetrahydroisoquinolines (TIQs) can be used as anesthetics, antihypertensive drugs, antiviral agents, and vasodilators. In the presented studies, the search for new compounds and synthesis of tetrahydroisoquinoline alkaloid derivatives was undertaken. Several dihydroisoquinolines were synthesized by Bishler–Napieralski reaction from the corresponding amides. Dihydroisoquinolines were reduced with sodium borohydride to obtain racemic tetrahydroisoquinolines. Asymmetric reduction of selected 3,4-dihydroisoquinolines was attempted with borane in the presence of chiral terpene spiroboranes. Keywords: isoquinoline; alkaloids; biologically active compound Citation: Kmieciak, A.; Ćwiklińska, M.; Jeżak, K.; Shili, A.; Krzemiński, M.P. Searching for New Biologically 1. Introduction Active Compounds Derived from Isoquinoline Alkaloids. Chem. Proc. Isoquinoline and its derivatives are used as starting materials in the synthesis of 2021, 3, 97. https://doi.org/10.3390/ dyes, insecticides, and pharmaceuticals. Tetrahydroisoquinoline (TIQ) is one of many ecsoc-24-08417 representatives of N-heterocyclic compounds.
    [Show full text]