An Example from Oncaeid Microcopepods of the Red Sea

Total Page:16

File Type:pdf, Size:1020Kb

An Example from Oncaeid Microcopepods of the Red Sea View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by OceanRep Marine Biology (2004) 144: 1127–1140 DOI 10.1007/s00227-003-1272-8 RESEARCH ARTICLE R. Bo¨ttger-Schnack Æ J. Lenz Æ H. Weikert Are taxonomic details of relevance to ecologists? An example from oncaeid microcopepods of the Red Sea Received: 31 March 2003 / Accepted: 18 November 2003 / Published online: 20 January 2004 Ó Springer-Verlag 2004 Abstract The marine microcopepod family Oncaeidae in abundance and vertical distribution of selected oncaeid the Red Sea has been the subject of comprehensive siblings obtained during a recent cruise in the northern ecological studies over the past 15 years, providing for Red Sea are provided to exemplify the changes in the the first time insights into their community structure, knowledge of oncaeid community structure attributable vertical distribution and feeding ecology. Owing to to the improved taxonomic resolution. The potential taxonomic problems in species identification, however, ecological importance of a more differentiated consid- many of the earlier ecological results were based on eration of oncaeid species in marine microcopepod provisionally named species or morphotypes. A recent, communities is discussed. ongoing taxonomic study of Red Sea Oncaeidae resulted in a considerable increase in the estimated numbers of species, since many of the species had not been described before. The present paper focuses on the potential sig- Introduction nificance of an improved taxonomic resolution of on- caeids with respect to various ecological aspects in this The classification of individuals into groups (species, area, such as indicator species, community analysis and form variants) with ecologically uniform reactions is a vertical distribution. The progress in our knowledge of fundamental requirement for the analysis of structures the diversity of Red Sea Oncaeidae is summarized, and functions of marine plankton communities and their including latest findings on the taxonomy and zooge- variation in space and time. Among marine planktonic ography of very small species (<0.5 mm), and the copepods, the taxonomy of larger species in the size importance of sibling species in the family is pointed out. range 1–3 mm (mostly calanoids) is much better known The south–north gradient in species diversity of On- than that of microcopepod species <1 mm in body caeidae within the Red Sea appears to be greater than length, most of which belong to non-calanoid taxa. Even previously assumed, since several of the newly described though an increasing consideration of small-sized species were restricted to the southern part. The number metazoans in marine zooplankton studies has led to the of endemic species among Red Sea oncaeids is very low, recognition of microcopepods as an important fraction however, most of the new species being also recorded of the plankton community (e.g. LeBrasseur and outside the Red Sea. New quantitative data on the Kennedy 1972; Judkins 1980; Cowles et al. 1987; Hopcroft et al. 2001), information on their community structure and vertical distribution is still limited (e.g. Communicated by O. Kinne, Oldendorf/Luhe Bo¨ ttger-Schnack 1990a, 1990b, 1995; Hopcroft et al. R. Bo¨ ttger-Schnack (&) 1998; Krsˇ inic´ 1998) and the few available biological data Moorsehdener Weg 8, 24211 Rastorf-Rosenfeld, (e.g. on grazing) are often based on higher taxonomic Germany categories, such as genera or even families (e.g. Arinardi E-mail: [email protected] et al. 1990; Sutton et al. 2001). J. Lenz The ecosystem of the Red Sea has been studied Institut fu¨ r Meereskunde an der Universita¨ t Kiel, intensively over the past 25 years (Head 1987; Beck- Du¨ sternbrooker Weg 20, 24105 Kiel, Germany mann 1996, and literature cited therein), providing fundamental insights into the vertical structure (e.g. H. Weikert Weikert 1982, 1987; Beckmann 1984, 1996; Bottger Institut fu¨ r Hydrobiologie und Fischereiwissenschaft, ¨ Universita¨ t Hamburg, Zeiseweg 9, 22765 Hamburg, 1987; Bo¨ ttger-Schnack 1994) and function (e.g. Lenz Germany et al. 1988; Schneider et al. 1991) of the pelagic 1128 communities. This unique environment is characterized abundant taxa, such as the conifera group of oncaeids, by constant and exceptionally high deep-sea tempera- which presently contains 11 species differing only in very tures of 21.7°C and salinities of 40.5 PSU between slight morphological details (Heron 1977; Heron and 200 m and the near-bottom layer at 2000 m depth Bradford-Grieve 1995; Heron and Frost 2000). The (Morcos 1970; Edwards 1987). Within the oceanic zoo- taxonomy of smaller oncaeid species (<0.5 mm body plankton community, small-sized organisms (size-frac- length) was insufficiently known until recently. Species tion 100–300 lm) are of particular importance, of this size spectrum have been found to represent one of exhibiting greater relative abundances and a higher the most abundant groups in the oceanic microcopepod respiration rate in the central Red Sea than in the communities of low latitudes (Bo¨ ttger-Schnack 1994, adjacent Gulf of Aden (Schneider and Lenz 1991; 1995; Krsˇ inic´ 1998). Schneider et al. 1994). Among the small metazoan To overcome the difficulties in species identification plankton of the open Red Sea, microcopepods of the and resulting problems in the interpretation of ecolog- poecilostomatoid family Oncaeidae, measuring between ical data on oncaeid copepods in the Red Sea, a de- 0.2 and 1.2 mm long as adults, represent one of the most tailed taxonomic study was started some years ago, abundant and diversified taxa in the lower epipelagic focusing on 26 Oncaea species and morphotypes known and the meso- and bathypelagic zones (Bo¨ ttger-Schnack at that time (Bo¨ ttger-Schnack 1994). The taxonomic 1990a, 1990b, 1994, 1995). results of larger and medium-sized Red Sea oncaeids The ecological data on the diversity and vertical (Bo¨ ttger-Schnack 1999, 2001; Bo¨ ttger-Schnack and distribution of oncaeid species in the past from the Red Huys 1997, 2001) and first data on the taxonomy of Sea included several uncertainties attributable to diffi- smaller species <0.5 mm in body length (Bo¨ ttger-Sch- culties in species identification. Some oncaeid species, nack 2002, 2003) were published and further studies are for instance, exhibited a conspicuous bimodal vertical in progress. Within the frame of a phylogenetic study, distribution, with peak abundances in the epi- and the diphyletic status of the family Oncaeidae sensu lato upper mesopelagic zone, not found in other Red Sea was recognized by Huys and Bo¨ ttger-Schnack (1996), zooplankton species (Bo¨ ttger-Schnack 1990a, 1990b). It who proposed the new family Lubbockiidae to remained uncertain, however, whether this pattern accommodate Lubbockia Claus, 1862 and related gen- could be related to vertical differences in hydrographic era, retaining only Oncaea Philippi, 1843, Conaea conditions, e.g. oxygen gradients, or reflect the different Giesbrecht, 1891 and Epicalymma Heron, 1977 in the depth distributions of two closely related species Oncaeidae. The large type genus Oncaea sensu lato was (Bo¨ ttger-Schnack 1990a). Another example was the recognized as a paraphyletic assemblage (Huys and latitudinal decrease in species numbers in the Red Sea, Bo¨ ttger-Schnack 1996) and preliminary results of an which was found to be much smaller for non-calanoids, ongoing phylogenetic study of the Oncaeidae sensu especially Oncaeidae (Bo¨ ttger-Schnack 1995), than had stricto at the species level identified about 20 mono- been reported for other zooplankton taxa (Halim 1969; phyletic lineages, each of which may deserve a generic Weikert 1987; Beckmann 1996). It was hypothesized status (Bo¨ ttger-Schnack and Huys 1998, 2001). In that oncaeid copepods may be less sensitive to the addition to the three genera retained in the revised strong horizontal gradients in environmental conditions family Oncaeidae s.str., four new oncaeid genera have (especially the increasing salinity) in the Red Sea and been established to date: Archioncaea Bo¨ ttger-Schnack do not follow the latitudinal trend of a reduced species & Huys, 1997, Triconia Bo¨ ttger-Schnack, 1999, Mono- richness from south to north in this area. However, thula Bo¨ ttger-Schnack & Huys, 2001, and Spinoncaea within the Oncaea species a number of form or size Bo¨ ttger-Schnack, 2003. variants were found in the southern parts, which The present paper focuses on the potential sig- seemed to be rare or absent in the central area (Bo¨ ttger- nificance of an improved taxonomic resolution of on- Schnack 1995). Since most of these variants have not caeids with respect to various ecological aspects of the yet been described in the literature, their taxonomic Red Sea, such as indicator species, community analysis status had to be ascertained. and vertical distribution. The progress in our knowledge Species of Oncaeidae are difficult to identify, owing to of the diversity of Red Sea Oncaeidae is summarized, the small size of the species, a very high species diversity, including latest findings on the taxonomy and zoogeo- and the lack of fundamental taxonomic knowledge. The graphy of the smaller species (<0.5 mm) many of which morphology of medium-sized and larger oncaeid species have been defined as new sibling species. New data on between 0.5 and 1.0 mm in length has been studied in the abundance and vertical distribution of selected on- more detail during the past two decades (e.g. Heron caeid siblings obtained during a recent cruise in the 1977; Heron et al. 1984; Boxshall and Bo¨ ttger 1987; northernmost Red Sea and the Gulf of Aqaba are pre- Heron and Bradford-Grieve 1995; Heron and Frost sented to exemplify the changes in the knowledge of 2000), and many new species have been described. The oncaeid community structure attributable to the im- number of known species has risen from about 70 (Malt proved taxonomic resolution.
Recommended publications
  • Bioluminescence of the Poecilostomatoid Copepod Oncaea Conifera
    l MARINE ECOLOGY PROGRESS SERIES Published April 22 Mar. Ecol. Prog. Ser. Bioluminescence of the poecilostomatoid copepod Oncaea conifera Peter J. Herring1, M. I. ~atz~,N. J. ~annister~,E. A. widder4 ' Institute of Oceanographic Sciences, Deacon Laboratory, Brook Road Wormley, Surrey GU8 5UB, United Kingdom 'Marine Biology Research Division 0202, Scripps Institution of Oceanography, La Jolla, California 92093, USA School of Biological Sciences, University of Birmingham, Edgbaston. Birmingham B15 2TT, United Kingdom Harbor Branch Oceanographic Institution, 5600 Old Dixie Highway, Fort Pierce, Florida 34946, USA ABSTRACT: The small poecilostomatoid copepod Oncaea conifera Giesbrecht bears a large number of epidermal luminous glands, distributed primarily over the dorsal cephalosome and urosome. Bio- luminescence is produced in the form of short (80 to 200 ms duration) flashes from withrn each gland and there IS no visible secretory component. Nevertheless each gland opens to the exterior by a simple valved pore. Intact copepods can produce several hundred flashes before the luminescent system is exhausted. Individual flashes had a maximum measured flux of 7.5 X 10" quanta s ', and the flash rate follows the stimulus frequency up to 30 S" Video observations show that ind~vidualglands flash repeatedly and the flash propagates along their length. The gland gross morphology is highly variable although each gland appears to be unicellular. The cytoplasm contains an extensive endoplasmic reticulum. 0. conifera swims at Reynolds numbers of 10 to 50, and is normally associated with surfaces (e.g. marine snow). We suggest that the unique anatomical and physiological characteristics of the luminescent system arc related to the specialised ecological niche occupied by this species.
    [Show full text]
  • Copepod Distribution and Production in a Mid-Atlantic Ridge Archipelago
    Anais da Academia Brasileira de Ciências (2014) 86(4): 1719-1733 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 http://dx.doi.org/10.1590/0001-3765201420130395 www.scielo.br/aabc Copepod distribution and production in a Mid-Atlantic Ridge archipelago PEDRO A.M.C. MELO1, MAURO DE MELO JÚNIOR2, SILVIO J. DE MACÊDO1, MOACYR ARAUJO1 and SIGRID NEUMANN-LEITÃO1 1Universidade Federal de Pernambuco, Departamento de Oceanografia, Av. Arquitetura, s/n, Cidade Universitária, 50670-901 Recife, PE, Brasil 2Universidade Federal Rural de Pernambuco, Unidade Acadêmica de Serra Talhada, Fazenda Saco, s/n, Zona Rural, 56903-970 Serra Talhada, PE, Brasil Manuscript received on October 3, 2013; accepted for publication on March 11, 2014 ABSTRACT The Saint Peter and Saint Paul Archipelago (SPSPA) are located close to the Equator in the Atlantic Ocean. The aim of this study was to assess the spatial variations in the copepod community abundance, and the biomass and production patterns of the three most abundant calanoid species in the SPSPA. Plankton samples were collected with a 300 µm mesh size net along four transects (north, east, south and west of the SPSPA), with four stations plotted in each transect. All transects exhibited a tendency toward a decrease in copepod density with increasing distance from the SPSPA, statistically proved in the North. Density varied from 3.33 to 182.18 ind.m-3, and differences were also found between the first perimeter (first circular distance band) and the others. The total biomass varied from 15.25 to 524.50 10-3 mg C m-3 and production from 1.19 to 22.04 10-3 mg C m-3d-1.
    [Show full text]
  • Fatty Acid and Alcohol Composition of the Small Polar Copepods, Oithona and Oncaea : Indication on Feeding Modes
    Polar Biol (2003) 26: 666–671 DOI 10.1007/s00300-003-0540-x ORIGINAL PAPER G. Kattner Æ C. Albers Æ M. Graeve S. B. Schnack-Schiel Fatty acid and alcohol composition of the small polar copepods, Oithona and Oncaea : indication on feeding modes Received: 2 April 2003 / Accepted: 28 July 2003 / Published online: 27 August 2003 Ó Springer-Verlag 2003 Abstract The fatty acid and alcohol compositions of the (Paffenho¨ fer 1993). They occur from the polar seas to Antarctic copepods Oithona similis, Oncaea curvata, tropical regions at both hemispheres. Species of both Oncaea antarctica and the Arctic Oncaea borealis were genera can reach high concentrations, exceeding 5,000 determined to provide the first data on their lipid bio- individuals m)3 (Dagg et al. 1980; Koga 1986; chemistry and to expand the present knowledge on their Paffenho¨ fer 1993; Metz 1996). The high abundance of feeding modes and life-cycle strategies. All these tiny these tiny species compensates for the low biomass and, species contained high amounts of wax esters (on average thus, the populations can reach biomass levels of the 51.4–86.3% of total lipid), except females of Oithona same order as dominant calanoid species (Metz 1996). In similis (15.2%). The fatty-acid composition was clearly the Southern Ocean, Oithonidae and Oncaeidae can dominated by 18:1(n-9), especially in the wax-ester-rich account for between 20 and 24% of the total copepod Oncaea curvata (79.7% of total fatty acids). In all species, biomass (Schnack-Schiel et al. 1998). 16:0 and the polyunsaturated fatty acids 20:5(n-3) and The epipelagic species, Oithona similis, has been de- 22:6(n-3), which are structural components of all mem- scribed as the most numerous and widely distributed branes, occurred in significant proportions.
    [Show full text]
  • Tesis Estructura Comunitaria De Copepodos .Pdf
    Universidad de Concepción Dirección de Postgrado Facultad de Ciencias Naturales y Oceanográficas Programa de Magister en Ciencias mención Oceanografía Estructura comunitaria de copépodos pelágicos asociados a montes submarinos de la Dorsal Juan Fernández (32-34°S) en el Pacífico Sur Oriental Tesis para optar al grado de Magíster en Ciencias con mención en Oceanografía PAMELA ANDREA FIERRO GONZÁLEZ CONCEPCIÓN-CHILE 2019 Profesora Guía: Pamela Hidalgo Díaz Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas Universidad de Concepción Profesor Co-guía: Rubén Escribano Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas Universidad de Concepción La Tesis de “Magister en Ciencias con mención en Oceanografía” titulada “Estructura comunitaria de copépodos pelágicos asociados a montes submarinos de la Dorsal Juan Fernández (32-34°S) en el Pacífico sur oriental”, de la Srta. “PAMELA ANDREA FIERRO GONZÁLEZ” y realizada bajo la Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, ha sido aprobada por la siguiente Comisión de Evaluación: Dra. Pamela Hidalgo Díaz Profesora Guía Universidad de Concepción Dr. Rubén Escribano Profesor Co-Guía Universidad de Concepción Dr. Samuel Hormazábal Miembro de la Comisión Evaluadora Pontificia Universidad Católica de Valparaíso Dr. Fabián Tapia Director Programa de Magister en Oceanografía Universidad de Concepción ii A Juan Carlos y Sebastián iii AGRADECIMIENTOS Agradezco a quienes con su colaboración y apoyo hicieron posible el desarrollo y término de esta tesis. En primer lugar, agradezco a los miembros de mi comisión de tesis. A mi profesora guía, Dra. Pamela Hidalgo, por apoyarme y guiarme en este largo camino de formación académica, por su gran calidad humana, contención y apoyo personal.
    [Show full text]
  • REVISTA 2015-1 FINAL.Indb
    Artículo Científico López, R.H.; Mojica, L.H.: O. media & O. venusta Colombian Pacific DISTRIBUTION AND ABUNDANCE OF Oncaea media AND O. venusta (CRUSTACEA: COPEPODA) IN THE COLOMBIAN PACIFIC OCEAN DURING TWO PERIODS IN 2001 DISTRIBUCIÓN Y ABUNDANCIA DE Oncaea venusta Y O. media (CRUSTACEA: COPEPODA) EN EL PACÍFICO COLOMBIANO DURANTE DOS PERIODOS EN 2001 Raúl Hernando López1*, Luz Helena Mojica2 1 Marine Biologist, D. rer. nat., Assistant Profesor, Laboratorio de Hidrobiología, Facultad de Ciencias Básicas y Aplicadas, Programa de Biología Aplicada, Campus Nueva Granada, Universidad Militar Nueva Granada, km 2 vía Cajicá-Zipaquirá, Colombia, *Autor para correspondencia, e-mail: [email protected]; 2Marine Biologist, Research Assistant, Laboratorio de Hidrobiología, e-mail: [email protected] Rev. U.D.C.A Act. & Div. Cient. 18(1): 197-206, Enero-Junio, 2015 SUMMARY RESUMEN Zooplankton of the Colombian Pacific Ocean was investigated Se investigó el zooplancton del océano Pacífico colombiano during June-July (2001a) and August-September (2001b). durante junio-julio (2001a) y agosto-septiembre (2001b). Since Oncaea venusta and O. media predominated in the Puesto que Oncaea venusta y O. media predominaron en copepod community, their distribution and abundance la comunidad de copépodos, se evaluó su distribución y were evaluated. Organisms were extracted from surface abundancia. Los organismos se extrajeron de muestras de mesozooplankton samples taken with a conic net (50cm mesozooplancton, tomadas en la superficie, con una red opening, 363µm mesh). Both species were widely distributed cónica (50cm de apertura, malla 363μm). Ambas especies se with highest abundances mainly in neritic waters (3°-5°N). distribuyeron ampliamente con las mayores abundancias, en Factor analysis revealed negative and positive correlations especial, en aguas neríticas (3°-5°N).
    [Show full text]
  • Comparison of Seasonal Trends Between Reef and Offshore Zooplankton Communities in the Northern Gulf of Aqaba (Red Sea)
    Comparison of seasonal trends between reef and offshore zooplankton communities in the northern Gulf of Aqaba (Red Sea) Manuel Olivares Requena Master thesis Supervision by: Dr. Astrid Cornils (AWI, Germany) Prof. Dr. Stefanie M. H. Ismar (GEOMAR, Germany) Kiel, January 2016 Index Summary ……………….…………………………………………………………………………………………………3 Introduction…………….…………………………………………….…………………………………………………4 1. Introduction…………………………………………………………………………………………………….…………..4 2. Objectives…………………………………………………………………………………………………………….……..5 Material and Methods…………………………………………………………………………………… .….……6 1. Study area: The Gulf of Aqaba ……………………………………………………………………………………..6 2. Sample collection……………………………………………………………………………………………………..….8 3. Sample analysis………………………………………………………………………………………………..……….. 10 4. Data analysis………………………………………………………………………………………………………………12 Results…………………………………………………………………………………………………………………...14 A. Environmental parameters ………………………………………………………………………………………..14 B. Community patterns…………………………………………………………………………………………….…… 15 B1. Mesozooplankton ………………………………………………………………...………………………15 B2. Copepods……………………………………………………………………………………………………..20 C. Patterns of dominant taxa…………………………………………………………………………………. .……. 25 D. Carbon and nitrogen analysis……………………………………………………………………………………. 26 Discussion…………………………………………………………………………………………………….………..27 1. Mesozooplankton composition……………………………………………………………………….……..…. 27 2. Mesozooplankton abundance and biomass... ……………………………………………………….……29 3. Seasonal patterns ………………………………………………………………………………….…………..……..30 4. Spatial patterns: reef vs.
    [Show full text]
  • And Small Meso- Zooplankton in the Red Sea and Gulf of Aden, with Special Reference to Non-Calanoid Copepods
    MARINE ECOLOGY PROGRESS SERIES Vol. 118: 81-102,1995 Published March 9 Mar. Ecol. Prog. Ser. Summer distribution of micro- and small meso- zooplankton in the Red Sea and Gulf of Aden, with special reference to non-calanoid copepods Ruth Bottger-Schnack Institut fur Meereskunde an der Universitat Kiel, Dusternbrooker Weg 20, D-24105 Kiel, Germany ABSTRACT: From the Gulf of Aden along a transect to the central-northern Red Sea the abundance and taxonomic composition of metazoan plankton was studied during the southwest monsoon period (summer 1987).Samples were taken with 0.055 mm mesh nets down to a maximum depth of 1050 m. In the epipelagic zone, a distinct decrease in total plankton abundance was observed from south to north, which was much more pronounced in biomass (by a factor of up to 10) as compared to numbers (by a factor of 2). This could partly be explained by differences in the taxonomic and/or size composition of the planktonic fauna. Among non-calanoid copepods, 40 out of 75 species or taxa investigated decreased in abundance from south to north. Sixteen of these species were completely absent in the central-northern area Nineteen species or taxa, ho'ivever, showed the opposite feature of a higher abundance in the central-northern Red Sea. The stations were grouped according to sim~laritiesin the taxonomic composition of non-calanoid copepods in the epipelagic zone. The following 3 geographical regions could be separated: (1) Gulf of Aden and Strait of Bab a1 Mandab; (2) southern Red Sea, and (3) central-northern Red Sea.
    [Show full text]
  • Molecular Species Delimitation and Biogeography of Canadian Marine Planktonic Crustaceans
    Molecular Species Delimitation and Biogeography of Canadian Marine Planktonic Crustaceans by Robert George Young A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Philosophy in Integrative Biology Guelph, Ontario, Canada © Robert George Young, March, 2016 ABSTRACT MOLECULAR SPECIES DELIMITATION AND BIOGEOGRAPHY OF CANADIAN MARINE PLANKTONIC CRUSTACEANS Robert George Young Advisors: University of Guelph, 2016 Dr. Sarah Adamowicz Dr. Cathryn Abbott Zooplankton are a major component of the marine environment in both diversity and biomass and are a crucial source of nutrients for organisms at higher trophic levels. Unfortunately, marine zooplankton biodiversity is not well known because of difficult morphological identifications and lack of taxonomic experts for many groups. In addition, the large taxonomic diversity present in plankton and low sampling coverage pose challenges in obtaining a better understanding of true zooplankton diversity. Molecular identification tools, like DNA barcoding, have been successfully used to identify marine planktonic specimens to a species. However, the behaviour of methods for specimen identification and species delimitation remain untested for taxonomically diverse and widely-distributed marine zooplanktonic groups. Using Canadian marine planktonic crustacean collections, I generated a multi-gene data set including COI-5P and 18S-V4 molecular markers of morphologically-identified Copepoda and Thecostraca (Multicrustacea: Hexanauplia) species. I used this data set to assess generalities in the genetic divergence patterns and to determine if a barcode gap exists separating interspecific and intraspecific molecular divergences, which can reliably delimit specimens into species. I then used this information to evaluate the North Pacific, Arctic, and North Atlantic biogeography of marine Calanoida (Hexanauplia: Copepoda) plankton.
    [Show full text]
  • Orden POECILOSTOMATOIDA Manual
    Revista IDE@ - SEA, nº 97 (30-06-2015): 1-15. ISSN 2386-7183 1 Ibero Diversidad Entomológica @ccesible www.sea-entomologia.org/IDE@ Clase: Maxillopoda: Copepoda Orden POECILOSTOMATOIDA Manual CLASE MAXILLOPODA: SUBCLASE COPEPODA: Orden Poecilostomatoida Antonio Melic Sociedad Entomológica Aragonesa (SEA). Avda. Francisca Millán Serrano, 37; 50012 Zaragoza [email protected] 1. Breve definición del grupo y principales caracteres diagnósticos El orden Poecilostomatoida Thorell, 1859 tiene una posición sistemática discutida. Tradicionalmente ha sido considerado un orden independiente, dentro de los 10 que conforman la subclase Copepoda; no obstante, algunos autores consideran que no existen diferencias suficientes respeto al orden Cyclopoida, del que vendrían a ser un suborden (Stock, 1986 o Boxshall & Halsey, 2004, entre otros). No obstante, en el presente volumen se ha considerado un orden independiente y válido. Antes de entrar en las singularidades del orden es preciso tratar sucintamente la morfología, ecolo- gía y biología de Copepoda, lo que se realiza en los párrafos siguientes. 1.1. Introducción a Copepoda Los copépodos se encuentran entre los animales más abundantes en número de individuos del planeta. El plancton marino puede alcanzar proporciones de un 90 por ciento de copépodos respecto a la fauna total presente. Precisamente por su número y a pesar de su modesto tamaño (forman parte de la micro y meiofauna) los copépodos representan una papel fundamental en el funcionamiento de los ecosistemas marinos. En su mayor parte son especies herbívoras –u omnívoras– y por lo tanto transformadoras de fito- plancton en proteína animal que, a su vez, sirve de alimento a todo un ejército de especies animales, inclu- yendo gran número de larvas de peces.
    [Show full text]
  • Taxonomy of Oncaeidae (Copepoda, Cyclopoida S.L.) from the Red Sea
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE JOURNAL OF PLANKTON RESEARCH j VOLUME 31 j NUMBER 9 j PAGES 1027–1043 j 2009 provided by OceanRep Taxonomy of Oncaeidae (Copepoda, Cyclopoida s.l.) from the Red Sea. IX. Epicalymma bulbosa sp. nov., first record of the genus in the Red Sea RUTH BO¨ TTGER-SCHNACK†* LEIBNIZ-INSTITUTE FOR MARINE SCIENCES (IFM-GEOMAR), FB2 (BIOLOGICAL OCEANOGRAPHY), DU¨ STERNBROOKER WEG 20, D-24105 KIEL, GERMANY PRESENT ADDRESS: MOORSEHDENER WEG 8, D-24211 RASTORF-ROSENFELD, GERMANY. *CORRESPONDING AUTHOR: [email protected] Received April 3, 2009; accepted in principle June 1, 2009; accepted for publication June 3, 2009; published online 2 July, 2009 Corresponding editor: Mark J. Gibbons The oncaeid genus Epicalymma comprises small copepod species usually living at meso- and bath- ypelagic depth layers in oceanic areas. The genus had previously been assumed to be absent from the Red Sea, due to the unusually high deep-sea temperatures and salinities in this area. In the present account a new species, Epicalymma bulbosa, is described from the Red Sea, which appears to be the only representative of the genus in the region. The new species is the smallest Epicalymma species so far recorded, with a total body length of 0.32 and 0.29 mm in the female and male, respectively. Apart from its small size, it differs from all known Epicalymma species by an extremely long exopodal seta on P5 in both sexes, and by a free exopod segment of P5 and a very long and basally swollen spinule on the syncoxa of the maxilliped in the female.
    [Show full text]
  • Ivanenko V.N. 2006. Copepoda (Introduction). In: D. DESBRYERES, M
    Ivanenko V.N. 2006. Copepoda (Introduction). In: D. DESBRYERES, M. SEGONZAC & M. BRIGHT (Eds.) Handbook of Deep-Sea Hydrothermal Vent Fauna. Second edition. DENISIA, 18: 316-317 Ivanenko V.N. & Defaye D. 2006. Copepoda. In: D. DESBRYERES, M. SEGONZAC & M. BRIGHT (Eds.) Handbook of Deep-Sea Hydrothermal Vent Fauna. Second edition. DENISIA, 18: 318-355 Viatcheslav N. IVANENKO, Ph.D. Department of Invertebrate Zoology Biological Faculty, Moscow State University Leninskie Gory, 1-12 Moscow 119992, Russia http://www.nature.ok.ru/invertebrates/cv.html Handbook of Deep-Sea Hydrothermal Vent Fauna D. DESBRYÈRES, M. SEGONZAC & M. BRIGHT (Eds.) Denisia 18, 544 pages (27 x 21 cm) ISSN: 1608-8700; ISBN: 10 3-85474-154-5 or ISBN: 13 978-3-85474-154-1 Ordering via e-mail: [email protected] Price: 49 € (excl. shipping) The second extensively expanded edition of the "Handbook of Deep-Sea Hydrothermal Vent Fauna" gives on overview of our current knowledge on the animals living at hydrothermal vents. The discovery of hydrothermal vents and progresses made during almost 30 years are outlined. A brief introduction is given on hydrothermal vent meiofauna and parasites. Geographic maps and a table of mid-ocean ridges and back-arc basins with the major known hydrothermal vent fields, their location and depth range and the most prominent vent sites are provided. Higher taxa are presented individually with information on the current taxonomic and biogeographic status, the number of species described, recommendations for fixation, and schematic drawings, which aim to help non-specialists to identify the animals. 86 authors contributed with their expertise to create a comprehensive database on animals living at hydrothermal vents, which contains information on the morphology, biology, and geographic distribution of more than 500 currently described species belonging to one protist and 12 animal phyla.
    [Show full text]
  • AGUIDE to Frle DEVELOPMENTAL STAGES of COMMON COASTAL
    A GUIDE TO frlE DEVELOPMENTAL STAGES OF COMMON COASTAL, GeORGES BANK AND GULF OF MAINE COPEPODS BY Janet A. Murphy and Rosalind E. Cohen National Marine Fisheries Service Northeast Fisheries Center Woods Hole Laboratory Woods Hole, MA 02543 Laboratory Reference No. 78-53 Table of Contents List of Plates i,,;i,i;i Introduction '. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1 Acarti a cl aus; .. 2 Aca rtia ton sa .. 3 Aca rtia danae .. 4 Acartia long; rem; s co e"" 5 Aetidi us artllatus .. 6 A1teutha depr-e-s-s-a· .. 7 Calanu5 finmarchicus .............•............................ 8 Calanus helgolandicus ~ 9 Calanus hyperboreus 10 Calanus tenuicornis .......................•................... 11 Cal oca 1anus pavo .....................•....•....•.............. 12 Candaci a armata Ii II .. .. .. .. .. .. .. .. .. .. 13 Centropages bradyi............................................ 14 Centropages hama tus .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 15 ~ Centropages typi cus " .. " 0 16 Clausocalanus arcuicornis ..............................•..•... 17 Clytemnestra rostra~ta ................................•.•........ 18 Corycaeus speciosus........................................... 19 Eucalanus elongatu5 20 Euchaeta mar; na " . 21 Euchaeta norveg; ca III co .. 22 Euchirel1a rostrata . 23 Eurytemora ameri cana .......................................•.. 24 Eurytemora herdmani , . 25 Eurytemora hi rundoi des . 26 Halithalestris croni ..................•......................
    [Show full text]