Vertical Distribution, Population Structure and Life Cycles of Four Oncaeid Copepods in the Oyashio Region, Western Subarctic Paciwc

Total Page:16

File Type:pdf, Size:1020Kb

Vertical Distribution, Population Structure and Life Cycles of Four Oncaeid Copepods in the Oyashio Region, Western Subarctic Paciwc Mar Biol (2007) 150:609–625 DOI 10.1007/s00227-006-0382-5 RESEARCH ARTICLE Vertical distribution, population structure and life cycles of four oncaeid copepods in the Oyashio region, western subarctic PaciWc Yuichiro Nishibe · Tsutomu Ikeda Received: 5 April 2006 / Accepted: 7 June 2006 / Published online: 28 June 2006 © Springer-Verlag 2006 Abstract Vertical distribution and population struc- T. borealis and O. parila copepodids, no clear seasonal ture of four dominant oncaeid copepods (Triconia succession was observed thus estimation of their gener- borealis, Triconia canadensis, Oncaea grossa and ation time was uncertain. The present comprehensive Oncaea parila) were investigated in the Oyashio results of vertical distribution and life cycle features for region, western subarctic PaciWc. Seasonal samples T. borealis, T. canadensis, O. grossa and O. parila are were collected with 0.06 mm mesh nets from Wve dis- compared with the few published data on oncaeid spe- crete layers between the surface and 2,000 m depth at cies distributing in high latitude seas. seven occasions (March, May, June, August and Octo- ber 2002, December 2003 and February 2004). The depth of occurrence of major populations of each spe- Introduction cies diVered by species; the surface–250 m for T. bore- alis, 250–1,000 m for T. canadensis, 250–500 m for The copepod family Oncaeidae is a diverse group of O. grossa and 500–1,000 m for O. parila. The ontogenetic marine pelagic cyclopoids (Böttger-Schnack and Huys vertical migration characterized by deeper occurrence 1998; Boxshall and Halsey 2004). They inhabit all parts of early and late copepodid stages, and shallower of the world oceans, ranging from coastal to oceanic occurrence of middle copepodid stages was observed in waters, from tropical to polar regions (Malt 1983; T. canadensis and O. parila. Of the four oncaeid cope- PaVenhöfer 1993) and from epi- to bathypelagic zones pods, almost all copepodid stages occurred throughout (e.g. Boxshall 1977; Deevey and Brooks 1977; Böttger- the study period, suggesting that their reproduction Schnack 1994; Richter 1994; Nishibe and Ikeda 2004). continues throughout the year in the region. Neverthe- While oncaeid copepods are abundant also in coastal less, a clear developmental sequence of stage-to-stage waters (PaVenhöfer 1983; Uye et al. 1992; Noda et al. was traced for T. canadensis and O. grossa copepodids, 1998), their relative importance in the copepod com- implying their generation time to be 1 year. For munities becomes more evident in oceanic waters, especially in the meso- and bathypelagic zones (Bött- ger-Schnack 1995, 1996, 1997; Webber and RoV 1995; Satapoomin et al. 2004; Hopcroft et al. 2005). In these Communicated by S. Nishida, Tokyo depth layers, oncaeid copepods usually account for more than 50% and up to 90% of total copepod num- Y. Nishibe · T. Ikeda bers based on the sampling with Wne mesh nets (e.g. Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate 041-8611, Japan Böttger-Schnack 1994; KrniniT 1998; KrniniT and Grbec 2002; Yamaguchi et al. 2002). Present Address: Despite their ubiquitous distribution and high Y. Nishibe (&) abundances, our knowledge on the ecology of oncaeid Center for Marine Environmental Studies, Ehime University, W V 3 Bunkyo-cho, Matsuyama 790-8577, Japan copepods is still de cient (Pa enhöfer 1993; Böttger- e-mail: [email protected] Schnack et al. 2004; Turner 2004). In particular, there 123 610 Mar Biol (2007) 150:609–625 is little information available about the population referred to as Site H; Fig. 1), in 10 March, 30 May, 18 dynamics and life cycle strategies of oncaeid copepod June, 9 August and 9 October 2002 (Table 1). Addi- species. Metz (1996) examined the vertical distribution tional sampling was made aboard the T. S. ‘Oshoro and population structure of three dominant oncaeid Maru’ in 17 December 2003 and 9 February 2004 at species, Oncaea curvata, Oncaea parila and Triconia Site H, to complete the seasonal cycle. During the sur- antarctica, in the Bellingshausen Sea during two sea- vey in 2002, zooplankton samples were collected with a sons and extrapolated their life cycle patterns. Some closing type net (60 cm mouth diameter, 0.06 mm mesh fragmentary information on the life cycles of Triconia size, Kawamura 1989) equipped with a Xowmeter (Rhi- borealis was provided by Pavshtiks (1975) and Richter gosha) inside the mouth of the net and a RMD depth (1994) from the Davis Strait and the Greenland Sea, meter (Rhigosha) on its suspension cable to read the respectively. Recently, Böttger-Schnack and Schnack depths the net reached. The net was hauled vertically (2005) studied the population structure and fecundity at speeds of 0.5–1.0 m s¡1 from Wve discrete layers: sur- of the warm-water species Oncaea bispinosa in the Red face to the bottom of the thermocline (Th), Th–250, Sea and discussed their reproduction traits. 250–500, 500–1,000 and 1,000–2,000 m (Table 1). For While a total of 40 oncaeid copepod species have the sampling on 17 December 2003 and 9 February been recorded in the Oyashio region, western subarctic 2004, a vertical multiple plankton sampler (VMPS; PaciWc, the four species T. borealis (Sars), Triconia 50 cm £ 50 cm mouth-opening, 0.06 mm mesh size; canadensis (Heron and Frost), Oncaea grossa Heron Terazaki and Tomatsu 1997) was employed. The and Frost, and O. parila Heron are most abundant in VMPS was hauled at a speed of 1.0 m s¡1 from the terms of both numbers and biomass (Nishibe and same depth stratum as described above. Average Wltra- Ikeda 2004; Nishibe 2005). T. borealis has been tion eYciencies for the closing type net and VMPS recorded from high latitude seas in the northern hemi- were 71 and 79%, respectively. Because the thermo- sphere such as the subarctic Atlantic (Malt 1983; cline was not recognized in 10 March 2002, the Th was Heron et al. 1984), the subarctic PaciWc (Heron and assumed arbitrarily as 100 m depth (Table 1). To inves- Frost 2000), and the Arctic Ocean (Heron et al. 1984), tigate the diel vertical migration pattern, day and night and thus is considered to be a genuine arctic/subarctic sampling was conducted on 9 October 2002 (Table 1). species. Conversely, O. parila occurs in high latitude After collection, samples were preserved immediately seas of both hemispheres such as the subarctic PaciWc on board ship in a 2% formaldehyde-seawater solution (Heron and Frost 2000), the Arctic Ocean (Heron buVered with borax. At each zooplankton sampling et al. 1984) and the Southern Ocean (Heron 1977). For date, vertical proWles of temperature and salinity were T. canadensis and O. grossa, previous records outside determined by using a CTD rosette system (SBE-9 the Oyashio region has been restricted to the eastern plus, Sea Bird Electronics). subarctic PaciWc (Heron and Frost 2000). In the present study, we investigated the vertical distribution, abundance and population structure of T. borealis, T. canadensis, O. grossa and O. parila in W the Oyashio region, western subarctic Paci c by analy- Okhotsk Sea sing seasonal samples collected from the surface to 2,000 m depth. We compare the present results with those from the other high latitude seas, and discuss life cycle features, such as ontogenetic vertical migration, generation time and reproduction of the four oncaeid 44°N copepod species. Hokkaido 1000 m 3000 m 5000 m 7000 m Materials and methods Site H Field samplings Pacific Ocean 40°N Seasonal zooplankton samples were collected on board 140°E 144°E 148°E the T. S. ‘Oshoro Maru’ and R.V. ‘Ushio Maru’ at a Ј Ј Fig. 1 Location of sampling site (Site H; circled star) in the Oy- station (41°30 N; 145°47 E, 6,670 m deep) in the ashio region, western subarctic PaciWc. Bathymetric counters Oyashio region oV southeastern Hokkaido (here after (1,000, 3,000, 5,000 and 7,000 m) are also shown 123 Mar Biol (2007) 150:609–625 611 Table 1 Summary of zoo- Sampling date Time (local time) Ship Sampling depth (m) plankton sampling data at Site Ј Ј H (41°30 N; 145°47 E) 10 March 2002 09:16–12:18 Os 0–100, 100–250, 250–500, 500–1,000, 1,000–2,000 30 May 2002 13:26–15:38 Os 0–50, 50–250, 250–500, 500–1,000, 1,000–2,000 18 June 2002 02:24–06:17 Os 0–50, 50–250, 250–500, 500–1,000, 1,000–2,000 9 August 2002 19:30–22:31 Us 0–70, 70–250, 250–500, 500–1,000, 1,000–2,000 9 October 2002 09:10–12:19 (D), Us 0–70, 70–250, 250–500, 500–1,000, 1,000–2,000 19:00–22:09 (N) D Day sampling, N night sam- 17 December 2003 04:15–06:33 Os 0–100, 100–250, 250–500, 500–1,000, 1,000–2,000 pling, Os TS ‘Oshoro Maru, 9 February 2004 17:54–20:29 Os 0–180, 180–250, 250–500, 500–1,000, 1,000–2,000 Us RV ‘Ushio Maru’ IdentiWcation and enumeration all developmental stages were quantitatively retained for T. canadensis, O. grossa and O. parila. Copepodid stages of T. borealis, T. canadensis, O. grossa As an index of breeding activity, C6 females carrying and O. parila were sorted from the entire sample or egg sacs or having spermatophores attached to the geni- aliquots taken by using a box type splitter (Motoda tal double-somite were counted separately for the four 1959) and enumerated under a dissecting microscope.
Recommended publications
  • Bioluminescence of the Poecilostomatoid Copepod Oncaea Conifera
    l MARINE ECOLOGY PROGRESS SERIES Published April 22 Mar. Ecol. Prog. Ser. Bioluminescence of the poecilostomatoid copepod Oncaea conifera Peter J. Herring1, M. I. ~atz~,N. J. ~annister~,E. A. widder4 ' Institute of Oceanographic Sciences, Deacon Laboratory, Brook Road Wormley, Surrey GU8 5UB, United Kingdom 'Marine Biology Research Division 0202, Scripps Institution of Oceanography, La Jolla, California 92093, USA School of Biological Sciences, University of Birmingham, Edgbaston. Birmingham B15 2TT, United Kingdom Harbor Branch Oceanographic Institution, 5600 Old Dixie Highway, Fort Pierce, Florida 34946, USA ABSTRACT: The small poecilostomatoid copepod Oncaea conifera Giesbrecht bears a large number of epidermal luminous glands, distributed primarily over the dorsal cephalosome and urosome. Bio- luminescence is produced in the form of short (80 to 200 ms duration) flashes from withrn each gland and there IS no visible secretory component. Nevertheless each gland opens to the exterior by a simple valved pore. Intact copepods can produce several hundred flashes before the luminescent system is exhausted. Individual flashes had a maximum measured flux of 7.5 X 10" quanta s ', and the flash rate follows the stimulus frequency up to 30 S" Video observations show that ind~vidualglands flash repeatedly and the flash propagates along their length. The gland gross morphology is highly variable although each gland appears to be unicellular. The cytoplasm contains an extensive endoplasmic reticulum. 0. conifera swims at Reynolds numbers of 10 to 50, and is normally associated with surfaces (e.g. marine snow). We suggest that the unique anatomical and physiological characteristics of the luminescent system arc related to the specialised ecological niche occupied by this species.
    [Show full text]
  • Copepod Distribution and Production in a Mid-Atlantic Ridge Archipelago
    Anais da Academia Brasileira de Ciências (2014) 86(4): 1719-1733 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 http://dx.doi.org/10.1590/0001-3765201420130395 www.scielo.br/aabc Copepod distribution and production in a Mid-Atlantic Ridge archipelago PEDRO A.M.C. MELO1, MAURO DE MELO JÚNIOR2, SILVIO J. DE MACÊDO1, MOACYR ARAUJO1 and SIGRID NEUMANN-LEITÃO1 1Universidade Federal de Pernambuco, Departamento de Oceanografia, Av. Arquitetura, s/n, Cidade Universitária, 50670-901 Recife, PE, Brasil 2Universidade Federal Rural de Pernambuco, Unidade Acadêmica de Serra Talhada, Fazenda Saco, s/n, Zona Rural, 56903-970 Serra Talhada, PE, Brasil Manuscript received on October 3, 2013; accepted for publication on March 11, 2014 ABSTRACT The Saint Peter and Saint Paul Archipelago (SPSPA) are located close to the Equator in the Atlantic Ocean. The aim of this study was to assess the spatial variations in the copepod community abundance, and the biomass and production patterns of the three most abundant calanoid species in the SPSPA. Plankton samples were collected with a 300 µm mesh size net along four transects (north, east, south and west of the SPSPA), with four stations plotted in each transect. All transects exhibited a tendency toward a decrease in copepod density with increasing distance from the SPSPA, statistically proved in the North. Density varied from 3.33 to 182.18 ind.m-3, and differences were also found between the first perimeter (first circular distance band) and the others. The total biomass varied from 15.25 to 524.50 10-3 mg C m-3 and production from 1.19 to 22.04 10-3 mg C m-3d-1.
    [Show full text]
  • Marine Biological Association Occasional Publications No. 21
    Identification of the copepodite developmental stages of twenty-six North Atlantic copepods David V.P. Conway Marine Biological Association Occasional Publications No. 21 (revised edition) 1 Identification of the copepodite developmental stages of twenty-six North Atlantic copepods David V.P. Conway Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth, PL1 2PB Marine Biological Association of the United Kingdom Occasional Publications No. 21 (revised edition) Cover picture: Nauplii and copepodite developmental stages of Centropages hamatus (from Oberg, 1906). 2 Citation Conway, D.V.P. (2012). Identification of the copepodite developmental stages of twenty-six North Atlantic copepods. Occasional Publications. Marine Biological Association of the United Kingdom, No. 21 (revised edition), Plymouth, United Kingdom, 35 pp. Electronic copies This guide is available for free download, from the National Marine Biological Library website - http://www.mba.ac.uk/nmbl/ from the “Download Occasional Publications of the MBA” section. © 2012 Marine Biological Association of the United Kingdom, Plymouth, UK. ISSN 02602784 This publication has been compiled as accurately as possible, but corrections that could be included in any revisions would be gratefully received. email: [email protected] 3 Contents Preface Page 4 Introduction 5 Copepod classification 5 Copepod body divisions 5 Copepod appendages 6 Copepod moulting and development 8 Sex determination in late gymnoplean copepodite stages 9 Superorder Gymnoplea: Order Calanoida
    [Show full text]
  • Fatty Acid and Alcohol Composition of the Small Polar Copepods, Oithona and Oncaea : Indication on Feeding Modes
    Polar Biol (2003) 26: 666–671 DOI 10.1007/s00300-003-0540-x ORIGINAL PAPER G. Kattner Æ C. Albers Æ M. Graeve S. B. Schnack-Schiel Fatty acid and alcohol composition of the small polar copepods, Oithona and Oncaea : indication on feeding modes Received: 2 April 2003 / Accepted: 28 July 2003 / Published online: 27 August 2003 Ó Springer-Verlag 2003 Abstract The fatty acid and alcohol compositions of the (Paffenho¨ fer 1993). They occur from the polar seas to Antarctic copepods Oithona similis, Oncaea curvata, tropical regions at both hemispheres. Species of both Oncaea antarctica and the Arctic Oncaea borealis were genera can reach high concentrations, exceeding 5,000 determined to provide the first data on their lipid bio- individuals m)3 (Dagg et al. 1980; Koga 1986; chemistry and to expand the present knowledge on their Paffenho¨ fer 1993; Metz 1996). The high abundance of feeding modes and life-cycle strategies. All these tiny these tiny species compensates for the low biomass and, species contained high amounts of wax esters (on average thus, the populations can reach biomass levels of the 51.4–86.3% of total lipid), except females of Oithona same order as dominant calanoid species (Metz 1996). In similis (15.2%). The fatty-acid composition was clearly the Southern Ocean, Oithonidae and Oncaeidae can dominated by 18:1(n-9), especially in the wax-ester-rich account for between 20 and 24% of the total copepod Oncaea curvata (79.7% of total fatty acids). In all species, biomass (Schnack-Schiel et al. 1998). 16:0 and the polyunsaturated fatty acids 20:5(n-3) and The epipelagic species, Oithona similis, has been de- 22:6(n-3), which are structural components of all mem- scribed as the most numerous and widely distributed branes, occurred in significant proportions.
    [Show full text]
  • Tesis Estructura Comunitaria De Copepodos .Pdf
    Universidad de Concepción Dirección de Postgrado Facultad de Ciencias Naturales y Oceanográficas Programa de Magister en Ciencias mención Oceanografía Estructura comunitaria de copépodos pelágicos asociados a montes submarinos de la Dorsal Juan Fernández (32-34°S) en el Pacífico Sur Oriental Tesis para optar al grado de Magíster en Ciencias con mención en Oceanografía PAMELA ANDREA FIERRO GONZÁLEZ CONCEPCIÓN-CHILE 2019 Profesora Guía: Pamela Hidalgo Díaz Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas Universidad de Concepción Profesor Co-guía: Rubén Escribano Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas Universidad de Concepción La Tesis de “Magister en Ciencias con mención en Oceanografía” titulada “Estructura comunitaria de copépodos pelágicos asociados a montes submarinos de la Dorsal Juan Fernández (32-34°S) en el Pacífico sur oriental”, de la Srta. “PAMELA ANDREA FIERRO GONZÁLEZ” y realizada bajo la Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, ha sido aprobada por la siguiente Comisión de Evaluación: Dra. Pamela Hidalgo Díaz Profesora Guía Universidad de Concepción Dr. Rubén Escribano Profesor Co-Guía Universidad de Concepción Dr. Samuel Hormazábal Miembro de la Comisión Evaluadora Pontificia Universidad Católica de Valparaíso Dr. Fabián Tapia Director Programa de Magister en Oceanografía Universidad de Concepción ii A Juan Carlos y Sebastián iii AGRADECIMIENTOS Agradezco a quienes con su colaboración y apoyo hicieron posible el desarrollo y término de esta tesis. En primer lugar, agradezco a los miembros de mi comisión de tesis. A mi profesora guía, Dra. Pamela Hidalgo, por apoyarme y guiarme en este largo camino de formación académica, por su gran calidad humana, contención y apoyo personal.
    [Show full text]
  • REVISTA 2015-1 FINAL.Indb
    Artículo Científico López, R.H.; Mojica, L.H.: O. media & O. venusta Colombian Pacific DISTRIBUTION AND ABUNDANCE OF Oncaea media AND O. venusta (CRUSTACEA: COPEPODA) IN THE COLOMBIAN PACIFIC OCEAN DURING TWO PERIODS IN 2001 DISTRIBUCIÓN Y ABUNDANCIA DE Oncaea venusta Y O. media (CRUSTACEA: COPEPODA) EN EL PACÍFICO COLOMBIANO DURANTE DOS PERIODOS EN 2001 Raúl Hernando López1*, Luz Helena Mojica2 1 Marine Biologist, D. rer. nat., Assistant Profesor, Laboratorio de Hidrobiología, Facultad de Ciencias Básicas y Aplicadas, Programa de Biología Aplicada, Campus Nueva Granada, Universidad Militar Nueva Granada, km 2 vía Cajicá-Zipaquirá, Colombia, *Autor para correspondencia, e-mail: [email protected]; 2Marine Biologist, Research Assistant, Laboratorio de Hidrobiología, e-mail: [email protected] Rev. U.D.C.A Act. & Div. Cient. 18(1): 197-206, Enero-Junio, 2015 SUMMARY RESUMEN Zooplankton of the Colombian Pacific Ocean was investigated Se investigó el zooplancton del océano Pacífico colombiano during June-July (2001a) and August-September (2001b). durante junio-julio (2001a) y agosto-septiembre (2001b). Since Oncaea venusta and O. media predominated in the Puesto que Oncaea venusta y O. media predominaron en copepod community, their distribution and abundance la comunidad de copépodos, se evaluó su distribución y were evaluated. Organisms were extracted from surface abundancia. Los organismos se extrajeron de muestras de mesozooplankton samples taken with a conic net (50cm mesozooplancton, tomadas en la superficie, con una red opening, 363µm mesh). Both species were widely distributed cónica (50cm de apertura, malla 363μm). Ambas especies se with highest abundances mainly in neritic waters (3°-5°N). distribuyeron ampliamente con las mayores abundancias, en Factor analysis revealed negative and positive correlations especial, en aguas neríticas (3°-5°N).
    [Show full text]
  • A Comparison of Copepoda (Order: Calanoida, Cyclopoida, Poecilostomatoida) Density in the Florida Current Off Fort Lauderdale, Florida
    Nova Southeastern University NSUWorks HCNSO Student Theses and Dissertations HCNSO Student Work 6-1-2010 A Comparison of Copepoda (Order: Calanoida, Cyclopoida, Poecilostomatoida) Density in the Florida Current Off orF t Lauderdale, Florida Jessica L. Bostock Nova Southeastern University, [email protected] Follow this and additional works at: https://nsuworks.nova.edu/occ_stuetd Part of the Marine Biology Commons, and the Oceanography and Atmospheric Sciences and Meteorology Commons Share Feedback About This Item NSUWorks Citation Jessica L. Bostock. 2010. A Comparison of Copepoda (Order: Calanoida, Cyclopoida, Poecilostomatoida) Density in the Florida Current Off Fort Lauderdale, Florida. Master's thesis. Nova Southeastern University. Retrieved from NSUWorks, Oceanographic Center. (92) https://nsuworks.nova.edu/occ_stuetd/92. This Thesis is brought to you by the HCNSO Student Work at NSUWorks. It has been accepted for inclusion in HCNSO Student Theses and Dissertations by an authorized administrator of NSUWorks. For more information, please contact [email protected]. Nova Southeastern University Oceanographic Center A Comparison of Copepoda (Order: Calanoida, Cyclopoida, Poecilostomatoida) Density in the Florida Current off Fort Lauderdale, Florida By Jessica L. Bostock Submitted to the Faculty of Nova Southeastern University Oceanographic Center in partial fulfillment of the requirements for the degree of Master of Science with a specialty in: Marine Biology Nova Southeastern University June 2010 1 Thesis of Jessica L. Bostock Submitted in Partial Fulfillment of the Requirements for the Degree of Masters of Science: Marine Biology Nova Southeastern University Oceanographic Center June 2010 Approved: Thesis Committee Major Professor :______________________________ Amy C. Hirons, Ph.D. Committee Member :___________________________ Alexander Soloviev, Ph.D.
    [Show full text]
  • And Small Meso- Zooplankton in the Red Sea and Gulf of Aden, with Special Reference to Non-Calanoid Copepods
    MARINE ECOLOGY PROGRESS SERIES Vol. 118: 81-102,1995 Published March 9 Mar. Ecol. Prog. Ser. Summer distribution of micro- and small meso- zooplankton in the Red Sea and Gulf of Aden, with special reference to non-calanoid copepods Ruth Bottger-Schnack Institut fur Meereskunde an der Universitat Kiel, Dusternbrooker Weg 20, D-24105 Kiel, Germany ABSTRACT: From the Gulf of Aden along a transect to the central-northern Red Sea the abundance and taxonomic composition of metazoan plankton was studied during the southwest monsoon period (summer 1987).Samples were taken with 0.055 mm mesh nets down to a maximum depth of 1050 m. In the epipelagic zone, a distinct decrease in total plankton abundance was observed from south to north, which was much more pronounced in biomass (by a factor of up to 10) as compared to numbers (by a factor of 2). This could partly be explained by differences in the taxonomic and/or size composition of the planktonic fauna. Among non-calanoid copepods, 40 out of 75 species or taxa investigated decreased in abundance from south to north. Sixteen of these species were completely absent in the central-northern area Nineteen species or taxa, ho'ivever, showed the opposite feature of a higher abundance in the central-northern Red Sea. The stations were grouped according to sim~laritiesin the taxonomic composition of non-calanoid copepods in the epipelagic zone. The following 3 geographical regions could be separated: (1) Gulf of Aden and Strait of Bab a1 Mandab; (2) southern Red Sea, and (3) central-northern Red Sea.
    [Show full text]
  • Taxonomy of Oncaeidae (Copepoda, Cyclopoida S.L.) from the Red Sea
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE JOURNAL OF PLANKTON RESEARCH j VOLUME 31 j NUMBER 9 j PAGES 1027–1043 j 2009 provided by OceanRep Taxonomy of Oncaeidae (Copepoda, Cyclopoida s.l.) from the Red Sea. IX. Epicalymma bulbosa sp. nov., first record of the genus in the Red Sea RUTH BO¨ TTGER-SCHNACK†* LEIBNIZ-INSTITUTE FOR MARINE SCIENCES (IFM-GEOMAR), FB2 (BIOLOGICAL OCEANOGRAPHY), DU¨ STERNBROOKER WEG 20, D-24105 KIEL, GERMANY PRESENT ADDRESS: MOORSEHDENER WEG 8, D-24211 RASTORF-ROSENFELD, GERMANY. *CORRESPONDING AUTHOR: [email protected] Received April 3, 2009; accepted in principle June 1, 2009; accepted for publication June 3, 2009; published online 2 July, 2009 Corresponding editor: Mark J. Gibbons The oncaeid genus Epicalymma comprises small copepod species usually living at meso- and bath- ypelagic depth layers in oceanic areas. The genus had previously been assumed to be absent from the Red Sea, due to the unusually high deep-sea temperatures and salinities in this area. In the present account a new species, Epicalymma bulbosa, is described from the Red Sea, which appears to be the only representative of the genus in the region. The new species is the smallest Epicalymma species so far recorded, with a total body length of 0.32 and 0.29 mm in the female and male, respectively. Apart from its small size, it differs from all known Epicalymma species by an extremely long exopodal seta on P5 in both sexes, and by a free exopod segment of P5 and a very long and basally swollen spinule on the syncoxa of the maxilliped in the female.
    [Show full text]
  • AGUIDE to Frle DEVELOPMENTAL STAGES of COMMON COASTAL
    A GUIDE TO frlE DEVELOPMENTAL STAGES OF COMMON COASTAL, GeORGES BANK AND GULF OF MAINE COPEPODS BY Janet A. Murphy and Rosalind E. Cohen National Marine Fisheries Service Northeast Fisheries Center Woods Hole Laboratory Woods Hole, MA 02543 Laboratory Reference No. 78-53 Table of Contents List of Plates i,,;i,i;i Introduction '. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1 Acarti a cl aus; .. 2 Aca rtia ton sa .. 3 Aca rtia danae .. 4 Acartia long; rem; s co e"" 5 Aetidi us artllatus .. 6 A1teutha depr-e-s-s-a· .. 7 Calanu5 finmarchicus .............•............................ 8 Calanus helgolandicus ~ 9 Calanus hyperboreus 10 Calanus tenuicornis .......................•................... 11 Cal oca 1anus pavo .....................•....•....•.............. 12 Candaci a armata Ii II .. .. .. .. .. .. .. .. .. .. 13 Centropages bradyi............................................ 14 Centropages hama tus .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 15 ~ Centropages typi cus " .. " 0 16 Clausocalanus arcuicornis ..............................•..•... 17 Clytemnestra rostra~ta ................................•.•........ 18 Corycaeus speciosus........................................... 19 Eucalanus elongatu5 20 Euchaeta mar; na " . 21 Euchaeta norveg; ca III co .. 22 Euchirel1a rostrata . 23 Eurytemora ameri cana .......................................•.. 24 Eurytemora herdmani , . 25 Eurytemora hi rundoi des . 26 Halithalestris croni ..................•......................
    [Show full text]
  • Ocean and Polar Research the First Record of Monothula Subtilis
    Vol. 40(1):23−35 Ocean and Polar Research March 2018 http://dx.doi.org/10.4217/OPR.2018.40.1.023 Article The First Record of Monothula subtilis (Giesbrecht, 1893 [“1892”]) (Cyclopoida, Oncaeidae) in the Equatorial Pacific Ocean Kyuhee Cho1* and Woong-Seo Kim2 1Envient Inc., Daejeon 34052, Korea 2Deep-Sea and Seabed Mineral Resources Research Center, KIOST Busan 49111, Korea Abstract : A small cyclopoid copepod M. subtilis (Giesbrecht, 1893 [“1892”]) belonging to the genus Monothula Böttger-Schnack and Huys, 2001 was collected by using 60 µm mesh net and firstly recorded in the epipelagic layer of the equatorial Pacific Ocean. We redescribed its morphological characteristics for both female and male, comparing with those of previous studies. Specimens of M. subtilis from the equatorial Pacific Ocean differ from those previously reported by others in terms of the length of the seta G on antenna, being much shorter than setae E and F; in the distal spine on the swimming leg 4, being longer than the length of the third segment on P4. The outer spine of the P3 enp-3 in male is slightly over the tip of conical process. The spine lengths of the distal endopods of P2−P4 for both sexes showed variations among individuals, and the proportions of spine lengths in female are higher than those in male. Key words : taxonomy, copepod, tropical Pacific, zooplankton, Monothula subtilis 1. Introduction southern Korean waters, the East China Sea, and adjacent waters of Japan (Chen et al. 1974; Itoh 1997; Wi et al. The family Oncaeidae Giesbrecht, 1893 [“1892”] is 2009, 2011, 2012).
    [Show full text]
  • Seasonal Dynamics and Allometric Considerations of Feeding and Food
    AN ABSTRACT OF THE THESIS OF Steven G. Ellis for the degree of Doctor of Philosphy in Oceanography presented on July 26. 1991. Title:Seasonal Dynamics and Allometric Considerations of Feeding and Food Processing for Macrozooplankton in the Northeast Pacific Ocean Redacted for privacy Abstract Assumptions inherent in the use of a popular method for estimating in situ feeding rates of herbivorous copepods, the gut fluorescence method,were examined by comparing gut evacuation rates (GERs) of feeding and non-feeding Calanus marshallae. Copepods were fed four concentrations of the diatom, Thalassiosira weissflogii, labelled with 68-germanium,a radioactive analog of silicon. GERs of copepods transferred to either filtered seawateror to identical concentrations of unlabelled T. weissflogii were not significantly different, although the rates of each tended to decline with time following transfer from the labelled food. GERs calculated over the initial 90mminterval following transfer were on average 11.5 % lower than GERs calculated over the initial 20 mm. GERs measured at 500, 1000, 2000, and 4000 cells ml-1were not significantly different, although rates tended to decrease for food concentrations lessthan 2000 cells mi-i. GERs of the dominant herbivorous copepodsnear 33°N, 139°W were measured during four seasonal VERTEX cruises conducted betweenJuly 1987 and May 1988. GERs decreased with copepod body size and ranged from0.50 to 7.43 % mm-I. The power function GER = aLt provided the best. fitto these data, using total body length (L) as the independent variable. This equation explained between 54 and 73% of the variation observedon individual cruises and 44% of the variation for the pooled data from all cruises.
    [Show full text]