History and Evolution of 1100/2200 Mainframe Technology • UNISYS This Paper Was Prepared in Recognition of the 35Th Anniversary of USE Inc

Total Page:16

File Type:pdf, Size:1020Kb

History and Evolution of 1100/2200 Mainframe Technology • UNISYS This Paper Was Prepared in Recognition of the 35Th Anniversary of USE Inc History and Evolution of 1100/2200 Mainframe Technology • UNISYS This paper was prepared in recognition of the 35th anniversary of USE inc. and was presented at the Fall 1990 Conference in Seattle, Washington. Copyright© 1990 Unisys Corporation All rights reserved 006499-12PETSCH- BJH Printed in U S America ~. History and Evolution of 1100/2200 Mainframe Technology • UNISYS November 8, 1990 Richard J. Petschauer HISTORY AND EVOLUTION OF 1100/2200 MAINFRAME TECHNOLOGY INTRODUCTION used to solve such a wide variety of problems. However, it also required a new class of 'Phis paper covers the highlights of the history technology that the earlier calculators did not and evolution of the Unisys 1100/2200 Series need-a means to store the sequence of processor and memory technologies. The operations, or instructions, to be performed period covered spans the last 35 years and and also a place to hold the input data and the includes the recent product announcements in results. This function of "memory" presented 1990. A number of articles have already a large problem in the early days of covered the earlier years including the computers. The memory used a different computers that were developed then. Others technology than the logic for the processor, reviewed the formative time of the Eckert and the two developed on separate but Mauchly and Engineering Research Associates parallel tracks, which to some extent still (ERA) companies and their joining Remington continue today. For quite a few years, until Rand which later merged into the Sperry the mid 1970s when the semiconductor Rand organization. Still others have traced memory became so capable, memory the architectural aspects of the 1100 Series. technology greatly affected the performance, This paper instead concentrates on the capability, and cost of the computer system. internal logic and memory technologies used in the 1100/2200 systems and some of the Early in the memory technology development, industry factors present during this time. a split occurred. One technology family was developed for the program and internal data These early machines originated during a needed by the computer-which required fast period when computer designers were access; and another was developed for less searching for better ways to best do the basic frequently used data which needed to provide functions of computing and memory. This larger capacity storage at a lower cost. This computing, or logic technology as we will call "external" storage class, mostly represented it, had a time lead over that of memory since today by disk and tape storage, has seen it had been used in early digital calculators dramatic improvements over the years. and some control equipment. However these However, it is beyond the scope of this paper machines were special in nature since their which will concentrate on the central inherent construction and "hook up" processor and its internal memory. determined what function they would perform. The revolutionary concept of the computer was an idea where a general set of basic THE 1101 COMPUTER operations, which could be called out in any sequence, would operate on "data" provided, The 1101 computer is noteworthy since it was and return and store the results. The "data" the first "1100". It was a commercial offering could be numbers or codes representing letters of a version of the first stored program and words. computer designed by Engineering Research Associates (ERA) under a Navy contract and This programmability of computers, which we delivered in 1950. While this was only a 24- all now take for granted, is really what makes bit machine with no actual commercial sales, them so powerful since it allows them to be it did provide an engineering learning base for 1 the very successful 1103 which followed it. Vacuum Tubes And the old timers like to recall how the Most of the 1103 vacuum tubes were triodes. commercial model number was chosen: 1101 A triode contains a filament which is heated is the binary representation for the number by current passing through it and is placed 13, the task number the Navy assigned to the close to a "cathode" which in turn becomes hot original development contract. causing electrons to be emitted from a rare earth coating on the cathode surface. The negatively charged electrons are attracted to a THE 1103 UNIVAC SCIENTIFIC surrounding positively charged anode or COMPUTER "plate". When a fine mesh termed a "grid" is placed between the cathode and plate, it acts The 1103 was the first 1100 computer with as a control element. A negative voltage on significant commercial sales. It was introduced the grid can greatly reduce the current going in 1953 as the Univac Scientific Computer. It to the plate. Usually about 100 to 200 volts is set the standard for the 1100 36-bit word, applied to the plate, and about -20 volts on the although its internal organization was grid can cut off the tube current. Two triodes changed radically in later machines. Logic were contained in one tube envelope, and this was done with vacuum tubes and crystal pair could make one flip flop. A flip flop, diodes, mounted on many "suitcase" chassis. storing one bit of information could be set to a A total of about 3900 tubes and 9000 diodes "one", cleared to a "zero", or toggled, i.e. , were required. Total power for an installation changed to its opposite state. The later could be up to about 100 kilowatts including function was quite handy in certain logic and that for the air conditioner, chilled water arithmetic operations. Capacitors stored the supply and associated blowers. The state of the flip flop for a short time so it would recommended floor space was at least 58 by 30 not toggle twice ' with a single input pulse. feet for the 38,000 pound computer and its Another triode was usually connected to each supporting equipment. flip flop output as a "cathode follower" (with "its output taken from the cathode rather than the usual plate). This isolated the output wiring load from the flip flop allowing it to change its state faster. The 1103 used about 12 types of tubes; the most common was the 5963 dual triode, an industrial version of the 12AU7, a common part in home tele­ vision sets at the time. The 1103 "suitcase" chassis opened up easily for test and repair. 2 Another tube type that was available then was with lowered filament voltages. This reduced a pentode (so called since it had five rather the tube currents and simulated end of life than the three basic components of the triode). conditions on the weaker tubes so they could The pentode required less control grid voltage be replaced before they failed. Thus "marginal change for a corresponding plate current checking" was born and is still being used even change and has two special grids. In a though most modern parts do not fail often by modified version, the 7 AK7 dual control gradual deterioration. pentode, one of these grids was made to provide an extra control grid. Therefore, a fast One additional new problem was seen in some two-input "AND" circuit could be made since vacuum tubes. If they were held in a cutoff plate current would flow only when both grids condition for a long time, something happened were positive. This provided the basis of the at the cathode surface so that when the grid "gated pulse amplifier", widely used in the became more positive, plate current would not 1103 computer. One of the inputs was usually reach its full, normal value. Tubes were a narrow clock pulse, and the other a wider originally developed for the radio industry and logic level from another output. Diodes were did not operate in this cutoff mode, so the also used to form "AND" and "OR" circuits, but problem had not been seen there. This the pentode tube circuit was preferred for the "sleeping sickness" problem was eventually narrower pulses. A pulse transformer solved by the vacuum tube manufacturer containing one primary and two secondary changing the cathode coating process. windings on a linear ferrite core and potted in a special package was also a key feature of the Magnetism for Memory gated pulse amplifier. The two secondary Magnetism played a strong role in early windings provided the option of either a memory technology and still does for external positive or negative pulse for the output. The storage such as disks and tapes. It seemed a transformer also allowed the output to be at a natural for this since a magnetic surface could different voltage level than the plate, thereby be magnetized in small areas with each region providing the level shifting needed with a representing a one or zero determined by the vacuum tube circuit. (The plate would swing relative positions of the magnetic north and from about +100 to +200 volts, while the next south poles. Furthermore, these regions could grid needed values in the negative range). be quite small, and no power was consumed to maintain their state. So the principles of Vacuum tubes had several known failure magnetic recording, earlier used for audio, modes: the filament could open, surface were applied to digital storage. But the time particles could fall off the cathode and lodge to retrieve the data from a tape was too long between it and the grid; or, there could be a for the computer internal memory, so the gradual loss of plate current, and hence magnetic drum was invented-a cylinder reduced output signal, as the rare earth coated with an iron-oxide surface and rotating material became depleted from the cathode at high speed.
Recommended publications
  • UNIVAC I Computer System
    Saved from the Internet on 3/9/2010 Created by Allan Reiter UNIVAC I Computer System After you look at this yellow page go to the blue page to find out how UNIVAC I really worked. My name is Allan Reiter and in 1954 began my career with a company in St Paul, Minnesota called Engineering Research Associates (ERA) that was part of the Remington Rand Corporation. I was hired with 3 friends, Paul S. Lawson, Vernon Sandoz, and Robert Kress. We were buddies who met in the USAF where we were trained and worked on airborne radar on B-50 airplanes. In a way this was the start of our computer career because the radar was controlled by an analog computer known as the Q- 24. After discharge from the USAF Paul from Indiana and Vernon from Texas drove up to Minnesota to visit me. They said they were looking for jobs. We picked up a newspaper and noticed an ad that sounded interesting and decided to check it out. The ad said they wanted people with military experience in electronics. All three of us were hired at 1902 West Minnehaha in St. Paul. We then looked up Robert Kress (from Iowa) and he was hired a few days later. The four of us then left for Philadelphia with three cars and one wife. Robert took his wife Brenda along. This was where the UNIVAC I was being built. Parts of the production facilities were on an upper floor of a Pep Boys building. Another building on Allegheny Avenue had a hydraulic elevator operated with water pressure.
    [Show full text]
  • Plated Wire Memory Usage on the UNIVAC Minuteman Weapon System Computer ©2008 by Larry D
    P.O. Box 131748 Roseville, MN 55113 Plated Wire Memory Usage on the UNIVAC Minuteman Weapon System Computer ©2008 by Larry D. Bolton, Clinton D. Crosby, and James A. Howe Larry Bolton was a component engineer assigned to the Minuteman program from 1969 to 1975. In support of the Minuteman program, we purchased a plated wire element and a raw tunnel structure. These were used by UNIVAC St. Paul to build the plated wire memory assembly. Larry Bolton’s function on the Minuteman program was to monitor suppliers to ensure that the program received plated wire and tunnel structure materials that met the specification requirements. Clint Crosby was an Applied Research engineer assigned to the Minuteman program and was part of a plated wire element analysis group from 1969 to 1980. Clint was involved with plated wire testing, plated wire manufacturing support at Bristol, and Minuteman memory module fabrication support at St. Paul. Jim Howe was the lead engineer for the three generations of plated wire memories for the Minuteman WSC computer (the EDM, ADM, and production versions), and was the lead engineer for a company-sponsored wide-margin plated wire memory design that was done as a backup to the three Minuteman memories. Unfortunately, even though it was a great success, it wasn't needed (customer political implications). PLATED WIRE PROGRAM UNIVAC Commercial in Philadelphia, PA, had developed a continuous chemical plating process to put a Ni- Fe magnetic plating over a 5 mil beryllium-copper substrate wire. Manufacturing was located at Univac Commercial in Bristol, Tennessee. The finished product was used in the 9000 series and initial 1110 commercial computers as well as on the Minuteman program.
    [Show full text]
  • 31 January 1971 J. Jurison Program Manager Distribution of This Report
    31 January 1971 J. Jurison Program Manager Distribution of this report is provided in the interest of information exchange and should not be construed as an endorsement by NASA of the material presented. Prepared Under Contract for c70-171 /301 FOR E W OR%) This final report covers the work performed by Autonetics Division of North American Rockwell Coyporation under a study contract entitled Reconfigurable GSrC computer Study for Space Station Use. The report is submitted to the National Aeronautice and Space Administration Manned Spacecraft Center under the requirements of Contract N The study program covered the period from December 29, 1969 through January 31, 1971. The NASA. Technical Monitor was Mr. E. S. Chevers. The final report consists of seven (7) volumes: Volume I Technical Summary Volume II Final Technical Report Volume IU Appendix I. Model- Specification Volume TV Appendix 2. IOP - VCS Detailed Design Volume V Appendix 3. System Analysis and Trade-offs Volume VI Appendix 4. Software and Simulation Description and Results Volume VI1 Appendix 5. D-200 Computer Family Appendix 6. System Error Analysis Appendix 7. Reliability Derivation for Candidate Computers Appendix 8. Power Converter Design Data Appendix 9. Data Transmission Medium Design PPENDIX 5 1. 208 Building Blocks . e . e e a a . e e e . e e , . a e 5-1 Page- 1.0 Introduction and Summary e , , . ., . e e e e e , e . a 6-1 2.0 Error Analysis and Mechanization Equa*'blons e. * e *. , , . *.. 6-3 3.0 Computer Program e.. -... a *. a a . e. 6-8 4.0 Results a e.I).
    [Show full text]
  • The UNIVAC System, 1948
    5 - The WHAT*S YOUR PROBLEM? Is it the tedious record-keepin% and the arduous figure-work of commerce and industry? Or is it the intricate mathematics of science? Perhaps yoy problem is now considered im ossible because of prohibitive costs asso- ciated with co b methods of solution.- The UNIVAC* SYSTEM has been developed by the Eckert-Mauchly Computer to solve such problems. Within its scope come %fm%s as diverse as air trarfic control, census tabu- lakions, market research studies, insurance records, aerody- namic desisn, oil prospecting, searching chemical literature and economic planning. The UNIVAC COMPUTER and its auxiliary equipment are pictured on the cover and schematically pre- sented on the opposite page. ELECTRONS WORK FASTER.---- thousands of times faster ---- than re- lavs and mechanical parts. The mmuses the in- he&ently high speed *of the electron tube to obtain maximum roductivity with minimum equipment. Electrons workfaster %an ever before in the newly designed UNIVAC CO~UTER, in which little more than one-millionth of a second is needed to deal with a decimal d'igit. Coupled with this computer are magnetic tape records which can be read and classified while new records are generated at a rate of ten thousand decimal- digits per second. f AUTOMATIC OPERATION is the key to greater economies in the 'hand- ling of all sorts of information, both numerical and alpha- betic. For routine tasks only a small operating staff is re- -qured. Changing from one job to another is only a matter of a few minutes. Flexibilit and versatilit are inherent in the UNIVAC methoM o e ectronic *contro ma in9 use of an ex- tremely large storage facility for ttmemorizi@ instructions~S LOW MAINTENANCE AND HIGH RELIABILITY are assured by a design which draws on the technical skill of a group of engineers who have specialized in electronic computing techniques.
    [Show full text]
  • SŁOWNIK POLSKO-ANGIELSKI ELEKTRONIKI I INFORMATYKI V.03.2010 (C) 2010 Jerzy Kazojć - Wszelkie Prawa Zastrzeżone Słownik Zawiera 18351 Słówek
    OTWARTY SŁOWNIK POLSKO-ANGIELSKI ELEKTRONIKI I INFORMATYKI V.03.2010 (c) 2010 Jerzy Kazojć - wszelkie prawa zastrzeżone Słownik zawiera 18351 słówek. Niniejszy słownik objęty jest licencją Creative Commons Uznanie autorstwa - na tych samych warunkach 3.0 Polska. Aby zobaczyć kopię niniejszej licencji przejdź na stronę http://creativecommons.org/licenses/by-sa/3.0/pl/ lub napisz do Creative Commons, 171 Second Street, Suite 300, San Francisco, California 94105, USA. Licencja UTWÓR (ZDEFINIOWANY PONIŻEJ) PODLEGA NINIEJSZEJ LICENCJI PUBLICZNEJ CREATIVE COMMONS ("CCPL" LUB "LICENCJA"). UTWÓR PODLEGA OCHRONIE PRAWA AUTORSKIEGO LUB INNYCH STOSOWNYCH PRZEPISÓW PRAWA. KORZYSTANIE Z UTWORU W SPOSÓB INNY NIŻ DOZWOLONY NA PODSTAWIE NINIEJSZEJ LICENCJI LUB PRZEPISÓW PRAWA JEST ZABRONIONE. WYKONANIE JAKIEGOKOLWIEK UPRAWNIENIA DO UTWORU OKREŚLONEGO W NINIEJSZEJ LICENCJI OZNACZA PRZYJĘCIE I ZGODĘ NA ZWIĄZANIE POSTANOWIENIAMI NINIEJSZEJ LICENCJI. 1. Definicje a."Utwór zależny" oznacza opracowanie Utworu lub Utworu i innych istniejących wcześniej utworów lub przedmiotów praw pokrewnych, z wyłączeniem materiałów stanowiących Zbiór. Dla uniknięcia wątpliwości, jeżeli Utwór jest utworem muzycznym, artystycznym wykonaniem lub fonogramem, synchronizacja Utworu w czasie z obrazem ruchomym ("synchronizacja") stanowi Utwór Zależny w rozumieniu niniejszej Licencji. b."Zbiór" oznacza zbiór, antologię, wybór lub bazę danych spełniającą cechy utworu, nawet jeżeli zawierają nie chronione materiały, o ile przyjęty w nich dobór, układ lub zestawienie ma twórczy charakter.
    [Show full text]
  • Sperry Rand's Third-Generation Computers 1964–1980
    Sperry Rand’s Third-Generation Computers 1964–1980 George T. Gray and Ronald Q. Smith The change from transistors to integrated circuits in the mid-1960s marked the beginning of third-generation computers. A late entrant (1962) in the general-purpose, transistor computer market, Sperry Rand Corporation moved quickly to produce computers using ICs. The Univac 1108’s success (1965) reversed the company’s declining fortunes in the large-scale arena, while the 9000 series upheld its market share in smaller computers. Sperry Rand failed to develop a successful minicomputer and, faced with IBM’s dominant market position by the end of the 1970s, struggled to maintain its position in the computer industry. A latecomer to the general-purpose, transistor would be suitable for all types of processing. computer market, Sperry Rand first shipped its With its top management having accepted the large-scale Univac 1107 and Univac III comput- recommendation, IBM began work on the ers to customers in the second half of 1962, System/360, so named because of the intention more than two years later than such key com- to cover the full range of computing tasks. petitors as IBM and Control Data. While this The IBM 360 did not rely exclusively on lateness enabled Sperry Rand to produce rela- integrated circuitry but instead employed a tively sophisticated products in the 1107 and combination of separate transistors and chips, III, it also meant that they did not attain signif- called Solid Logic Technology (SLT). IBM made icant market shares. Fortunately, Sperry’s mili- a big event of the System/360 announcement tary computers and the smaller Univac 1004, on 7 April 1964, holding press conferences in 1005, and 1050 computers developed early in 62 US cities and 14 foreign countries.
    [Show full text]
  • Sperry Corporation, UNIVAC Division Photographs and Audiovisual Materials 1985.261
    Sperry Corporation, UNIVAC Division photographs and audiovisual materials 1985.261 This finding aid was produced using ArchivesSpace on September 14, 2021. Description is written in: English. Describing Archives: A Content Standard Audiovisual Collections PO Box 3630 Wilmington, Delaware 19807 [email protected] URL: http://www.hagley.org/library Sperry Corporation, UNIVAC Division photographs and audiovisual materials 1985.261 Table of Contents Summary Information .................................................................................................................................... 3 Historical Note ............................................................................................................................................... 4 Scope and Content ......................................................................................................................................... 5 Arrangement ................................................................................................................................................... 6 Administrative Information ............................................................................................................................ 6 Related Materials ........................................................................................................................................... 7 Controlled Access Headings .......................................................................................................................... 8 Bibliography
    [Show full text]
  • Present and Future State of the Art in Guidance Computer Memories
    https://ntrs.nasa.gov/search.jsp?R=19670030990 2020-03-24T00:05:48+00:00Z View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by NASA Technical Reports Server J' . t. NASA TECHNICAL NOTE --NASA --__TN D-4224 PSI d N N P n 4 c/) 4 z PRESENT AND FUTURE STATE OF THE ART IN GUIDANCE COMPUTER MEMORIES by Robert C. Ricci Electronics Research Center Cambridge, M ass, NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. C. NOVEMBER 1967 .-- TECH LIBRARY KAFB. NM 0330893----- NASA TN D-4224 PRESENT AND FUTURE STATE OF THE ART IN GUIDANCE COMPUTER MEMORIES By Robert C. Ricci Electronics Research Center Cambridge, Mass. NATIONAL AERONAUT ICs AND SPACE ADMINISTRATION For sale by the Clearinghouse for Federal Scientific and Technical Information Springfield, Virginia 22151 - CFSTI price $3.00 PRESENT AND FUTURE STATE OF THE ART IN GUIDANCE COMPUTER MEMORIES by Robert C. Ricci Electronics Research Center ABSTRACT A survey of the present and anticipated state of the art for 1970-1972 in guidance computer main memories is presented. The selection of memory components for use in advanced guidance computer applications motivates the work reported. Non-destruc- tive read-out (NDRO) vs. destructive read-out (DRO) type memory techniques and tech- nologies are discussed, with particular reference to six types of advanced solid-state memory devices: magnetic cores, plated wire, planar-magnetic thin films, etched- permalloy toroids, monolithic ferrites, and integrated-circuit memories. Present characteristics of these devices are compared, and a summary of anticipated charac- teristics of memory devices for 1970-1972 is detailed.
    [Show full text]
  • UNIX Operating System Porting Experiences*
    UNIX Operating System Porting Experiences* D. E. BODENSTAB, T. F. HOUGHTON, K. A. KELLEMAN, G. RONKIN, and E. P. SCHAN ABSTRACT One of the reasons for the dramatic growth in popularity of the UNIX(TM) operating sys- tem is the portability of both the operating system and its associated user-level programs. This paper highlights the portability of the UNIX operating system, presents some gen- eral porting considerations, and shows how some of the ideas were used in actual UNIX operating system porting efforts. Discussions of the efforts associated with porting the UNIX operating system to an Intel(TM) 8086-based system, two UNIVAC(TM) 1100 Series processors, and the AT&T 3B20S and 3B5 minicomputers are presented. I. INTRODUCTION One of the reasons for the dramatic growth in popularity of the UNIX [1, 2] operating system is the high degree of portability exhibited by the operating system and its associated user-level programs. Although developed in 1969 on a Digital Equipment Corporation PDP7(TM), the UNIX operating system has since been ported to a number of processors varying in size from 16-bit microprocessors to 32-bit main- frames. This high degree of portability has made the UNIX operating system a candidate to meet the diverse computing needs of the office and computing center environments. This paper highlights some of the porting issues associated with porting the UNIX operating system to a variety of processors. The bulk of the paper discusses issues associated with porting the UNIX operat- ing system kernel. User-level porting issues are not discussed in detail.
    [Show full text]
  • Creativity – Success – Obscurity
    Author Gerry Pickering CREATIVITY – SUCCESS – OBSCURITY UNIVAC, WHAT HAPPENED? A fellow retiree posed the question of what happened. How did the company that invented the computer snatch defeat from the jaws of victory? The question piqued my interest, thus I tried to draw on my 32 years of experiences in the company and the myriad of information available on the Internet to answer the question for myself and hopefully others that may still be interested 60+ years after the invention and delivery of the first computers. Computers plural, as there were more than one computer and more than one organization from which UNIVAC descended. J. Presper Eckert and John Mauchly, located in Philadelphia PA are credited with inventing the first general purpose computer under a contract with the U.S. Army. But our heritage also traces back to a second group of people in St. Paul MN who developed several computers about the same time under contract with the U.S. Navy. This is the story of how these two companies started separately, merged to become one company, how that merged company named UNIVAC (Universal Automatic Computers) grew to become a main rival of IBM (International Business Machines), then how UNIVAC was swallowed by another company to end up in near obscurity compared to IBM and a changing industry. Admittedly it is a biased story, as I observed the industry from my perspective as an employee of UNIVAC. It is also biased in that I personally observed only a fraction of the events as they unfolded within UNIVAC. This story concludes with a detailed account of my work assignments within UNIVAC.
    [Show full text]
  • Correctional Data Analysis Systems. INSTITUTION Sam Honston State Univ., Huntsville, Tex
    I DocdnENT RESUME ED 209 425 CE 029 723 AUTHOR Friel, Charles R.: And Others TITLE Correctional Data Analysis Systems. INSTITUTION Sam Honston State Univ., Huntsville, Tex. Criminal 1 , Justice Center. SPONS AGENCY Department of Justice, Washington, D.C. Bureau of Justice Statistics. PUB DATE 80 GRANT D0J-78-SSAX-0046 NOTE 101p. EDRS PRICE MF01fPC05Plus Postage. DESCRIPTORS Computer Programs; Computers; *Computer Science; Computer Storage Devices; *Correctional Institutions; *Data .Analysis;Data Bases; Data Collection; Data Processing; *Information Dissemination; *Iaformation Needs; *Information Retrieval; Information Storage; Information Systems; Models; State of the Art Reviews ABSTRACT Designed to help the-correctional administrator meet external demands for information, this detailed analysis or the demank information problem identifies the Sources of teguests f6r and the nature of the information required from correctional institutions' and discusses the kinds of analytic capabilities required to satisfy . most 'demand informhtion requests. The goals and objectives of correctional data analysis systems are ontliled. Examined next are the content and sources of demand information inquiries. A correctional case law demand'information model is provided. Analyzed next are such aspects of the state of the art of demand information as policy considerations, procedural techniques, administrative organizations, technology, personnel, and quantitative analysis of 'processing. Availa4ie software, report generators, and statistical packages
    [Show full text]
  • History Timeline by Jeff Drobman (C) 2015 === 1889 - Punch Cards - Herman Hollerith (Of IBM Forerunner) Invented "IBM" Punch Cards to Be Used for the 1890 Census
    Computer Memory History Timeline by Jeff Drobman (C) 2015 === 1889 - Punch cards - Herman Hollerith (of IBM forerunner) invented "IBM" punch cards to be used for the 1890 census. 1932 - Drum memory 1947 - Delay line memory 1949 - Magnetic CORE memory 1950 - Magnetic TAPE memory 1955 - Magnetic DISK memory - IBM RAMAC was first one 1957 - Plated wire memory 1962 - Thin film memory 1968 (ca) - Paper tape - Had beginnings dating back to 1846, but became widely used with teletype machines such as the Teletype Model 33 ASR, which were adopted early on by minicomputers as a primitive terminal. 1970 - Bubble memory 1970 - DRAM - Invented by Intel, first device was the 1101, organized as 256x1, followed by the 4x larger (1024x1) 1103(A) -- regarded as the world's first commercial DRAM (intro in October 1970). 1971 - Bipolar SRAM - Fairchild 256x1 (note IBM made a 16-bit SRAM in late 1960s. AMD made a second source of a 64x1 SRAM by Fairchild in 1971.) 1971 - EPROM - Invented by Dov Frohman of Intel as the i1702, a 2K-bit (256x8) EPROM. 1971 - "Floppy" disks -- First were 8-inch, hence very flexible ("floppy"). The 8" became commercially available in 1971. 1973 (ca) - Magnetic TAPE CASSETTE memory 1976 - Shugart Associates introduced the first 5¼-inch floppy (flexible) disk drive 1977 - EEPROM - invented by Eli Harari at Hughes - a BYTE erasable device 1979 - CMOS SRAM (static RAM, 4T/6T cell, implemented as a latch) - first introduced by HP then its spinoff as Integrated Device Technology. I believe first devices were 1K (1024x1), and later organized as x4 then x8.
    [Show full text]