Cretaceous: Albian) of Kansas Author(S): Rodney M

Total Page:16

File Type:pdf, Size:1020Kb

Cretaceous: Albian) of Kansas Author(S): Rodney M Paleontological Society Huhatanka, a New Genus of Lobster (Decapoda: Mecochiridae) from the Kiowa Formation (Cretaceous: Albian) of Kansas Author(s): Rodney M. Feldmann and Ronald R. West Source: Journal of Paleontology, Vol. 52, No. 6 (Nov., 1978), pp. 1219-1226 Published by: SEPM Society for Sedimentary Geology Stable URL: http://www.jstor.org/stable/1303932 Accessed: 22/02/2009 21:33 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=sepm. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that promotes the discovery and use of these resources. For more information about JSTOR, please contact [email protected]. Paleontological Society and SEPM Society for Sedimentary Geology are collaborating with JSTOR to digitize, preserve and extend access to Journal of Paleontology. http://www.jstor.org JOURNAL OF PALEONTOLOGY,V. 52, NO. 6, P. 1219-1226, 1 PL., 3 TEXT-FIGS., NOVEMBER 1978 HUHATANKA, A NEW GENUS OF LOBSTER (DECAPODA: MECOCHIRIDAE) FROM THE KIOWA FORMATION (CRETACEOUS: ALBIAN) OF KANSAS RODNEY M. FELDMANN AND RONALDR. WEST Kent State University, Kent, Ohio 44242 and Kansas State University, Manhattan 66506 ABSTRACT-Reexamination of the type material of Squilla? kiowana Scott, 1970 and study of addi- tional specimens of the same taxon indicates that it is a mecochirid decapod referable to a new genus, Huhatanka. This assignment brings to five the number of North American species referable to the Mecochiridae. INTRODUCTION Formation but have yet to be verified and de- R. com- THE Kiowa Formation has been the subject scribed (Frederick Schram, pers. The of in the of a number of recent papers dealing with var- mun.). majority species family have been described from and the ious aspects of Cretaceous stratigraphy and Germany British Isles in addition to these lo- paleontology. In 1970, Scott described the or- although calities and North American ganisms collected from the unit, carefully de- occurrences, spe- cies have been described also from localities in fined their position in the stratigraphic se- New Zealand and Antarctica quence and detailed the paleoecological Africa, (Forster, this broad distribu- setting of the unit. One of the forms collected 1971). Notwithstanding mecochirids are rare fossils. was a small, poorly preserved arthropod rep- tion, resented two which Scott by specimens (1970, SYSTEMATIC PALEONTOLOGY p. 85) referred to the Squillidae, a family of 1803 stomatopods. Subsequently, the senior author Order DECAPODALatreille, received five specimens of equally poorly pre- Infraorder PALINURALatreille, 1803 1883 served specimens from Loren Avis, then a stu- Superfamily GLYPHEOIDEA Winckler, 1925 dent at Wichita State University. The speci- Family MECOCHIRIDAEvan Straelen, mens remained a curiosity until, in 1976, the Genus HUHATANKAn. gen. junior author brought together ten specimens Type species.--Squilla? kiowana Scott, which had been collected by students at Kan- 1970, by original designation. sas State University. This material, some of Description.-Cephalothorax with short, which was better preserved than the earlier smooth rostrum; median, subdorsal and sub- discoveries, permitted us to accurately identify orbital pustulose ridges; oblique, subparallel the organisms for the first time, refer them to cervical and postcervical grooves; branchio- the proper order and frame a more complete cardiac groove weak or absent. Abdomen gen- and detailed description of the animals. erally smooth; pleuron of first abdominal so- The placement of this species in the Meco- mite quadrate; that of remaining somites chiridae brings to five the total number of spe- elongate oval to nearly circular. Pereiopods cies in this family described from North Amer- long, slender, achelate throughout, generally ica. Two species of Pseudoglyphea, P. mulleri smooth. van Straelen, 1936 and P. bordenensis (Cope- Remarks.-Forster recently (1971) sum- land), 1960 have been described from the Ju- marized information on known representa- rassic of Nevada and Borden Island, Canada, tives of the Mecochiridae. He recognized only respectively and two species of Meyeria, M. Pseudoglyphea Oppel, 1861, and Mecochirus mexicanus (Rathbun) 1935 and M. ? harveyi German, 1827, as valid genera and considered Woodward, 1900 have been described from Meyeria M'Coy, 1849, synonymous with Me- the Cretaceous of Mexico and British Colum- cochirus; Selenisca von Meyer, 1847, synon- bia, respectively. The only other possible rep- ymous with Glyphea thereby placing it in the resentatives of the family are three specimens Glypheidea; and Praeatya Woodward, 1868, which have been collected from the Sundance synonymous with Pseudoglyphea. Selenisca Copyright ? 1978, The Society of Economic Paleontologists and Mineralogists 1219 1220 RODNEY M. FELDMANN AND RONALD R. WEST The degree of difference shown between I forms typically assigned to the two genera ap- I pears to us to be great enough that the genus I Meyeria Meyeria should be retained to include those I 0 (0m species with thicker, spinose or pustulose, in- -kc U_ c ornamented abdomina and relative- co I tegument, .- c LUJ -v Il ly shorter first pereiopods. These types of dif- OuU ferences are comparable to those used as Huhatanka points of generic distinction in better known, I recent decapods, such as genera of the Ne- I phropidae (Holthuis, 1974). I Using generic discriminators similar to those I i used by Forster (1971), but retaining Meyeria I as a distinct genus, the specimens referred to I Huhatanka n. cannot be I gen. clearly assigned to taxa is I existing (Text-fig. 1). Pseudoglyphea u Mecochirus characterized of well Li by possession developed, I broad postcervical and branchiocardiac (1 5 I grooves, neither of which parallels the cervical a I groove; spinose rostrum; subquadrate pleura Q, on the second abdominal somite; and a flat- tened, spiney propodus on the first pereiopods. 0 A point of similarity between this genus and 7O I 3 Psud l Huhatanka is that both have propoda that do _|)*"- Pseudo lyphea not exceed the length of the cephalothorax. Both Mecochirus and Meyeria have extremely Li I long first pereiopods and in both cases, the --_ I propoda exceed the length of the cephalotho- L I rax. The pleura of the second abdominal so- mite in Mecochirus are triangular whereas TEXT-FIG.1 -Stratigraphic distribution of genera those of are reduced and referableto the Mecochiridae. data and Meyeria subquad- Range rate. The of both these morphologicsketches, with the exceptionof those groove patterns genera for Huhatanka, were taken from Forster (1971) resemble that of Huhatanka in that they are and Glaessner(1969). reduced and much more subtly expressed than in Pseudoglyphea. This character has led to quite variable interpretations of groove pat- and Praeatya had been questionably referred terns (compare, for example, Forster, 1971, to the Mecochiridae by Glaessner (1969, p. fig. 5 and Glaessner, 1969, fig. 271, 1). The R466-R467). Meyeria was placed, without branchiocardiac groove in Huhatanka is re- question, in the Mecochiridae by Glaessner duced to the point that it can no longer be (1969, p. R465) and was considered distin- identified with certainty. guishable from Mecochirus based on the or- Another aspect of the morphology of this namentation of the cephalothorax and abdo- group that has been subject to several different men as well as the length of the first pereiopod. interpretations is that of the nature of the ter- Forster (1971, p. 398) argued that the distinc- mination of the pereiopods. Forster (1971, p. tion between the two genera was primarily 404), for example, described the first two pe- stratigraphic and that because the species as- reiopods of Mecochirus as subchelate although signed to the two genera were typically pre- the widely accepted definition of subchelate served in different styles, it was difficult to (Moore & McCormick, 1969, p. R102) would make detailed morphological comparisons. not embrace them. Subchelae must be grasp- Where it is possible, he suggested that the ing structures in which the dactylus rotates characters grade from one genus into another back onto some part of the propodus to pro- and the genera are, therefore, probably syn- duce a grasping surface. In Mecochirus and, onymous. for that matter, Pseudoglyphea the backward CRETACEOUS LOBSTER FROM KANSAS 1221 rotation of the dactylus is restricted by the presence of a spine on the distal termination of the propodus but no functional occlusal sur- face results (Text-fig. 1). Rather, the termi- nations of these appendages seem to be better modified for probing and, perhaps, raking the substrate in search of food. They could better be defined as achelate to distinguish them from the truly prehensile subchelae observed on TEXT-FIG.2-Reconstruction of Huhatanka kio- some glypheids, some palinurids and some sto- wana (Scott).Details of sixth abdominalsomite, telson and are matopods, for example. If the definition was uropods conjectural. thus restricted, none of the Mecochiridae would possess subchelae. Etymology.-The generic name is derived vical groove; marginal groove distinct on pos- from two Plains Indian words; Huha = limbs, terior and posteroventral margin of carapace, and tanka = large (Riggs, 1893). unobservable on anteroventral surface.
Recommended publications
  • A Classification of Living and Fossil Genera of Decapod Crustaceans
    RAFFLES BULLETIN OF ZOOLOGY 2009 Supplement No. 21: 1–109 Date of Publication: 15 Sep.2009 © National University of Singapore A CLASSIFICATION OF LIVING AND FOSSIL GENERA OF DECAPOD CRUSTACEANS Sammy De Grave1, N. Dean Pentcheff 2, Shane T. Ahyong3, Tin-Yam Chan4, Keith A. Crandall5, Peter C. Dworschak6, Darryl L. Felder7, Rodney M. Feldmann8, Charles H. J. M. Fransen9, Laura Y. D. Goulding1, Rafael Lemaitre10, Martyn E. Y. Low11, Joel W. Martin2, Peter K. L. Ng11, Carrie E. Schweitzer12, S. H. Tan11, Dale Tshudy13, Regina Wetzer2 1Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, United Kingdom [email protected] [email protected] 2Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA 90007 United States of America [email protected] [email protected] [email protected] 3Marine Biodiversity and Biosecurity, NIWA, Private Bag 14901, Kilbirnie Wellington, New Zealand [email protected] 4Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan, Republic of China [email protected] 5Department of Biology and Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT 84602 United States of America [email protected] 6Dritte Zoologische Abteilung, Naturhistorisches Museum, Wien, Austria [email protected] 7Department of Biology, University of Louisiana, Lafayette, LA 70504 United States of America [email protected] 8Department of Geology, Kent State University, Kent, OH 44242 United States of America [email protected] 9Nationaal Natuurhistorisch Museum, P. O. Box 9517, 2300 RA Leiden, The Netherlands [email protected] 10Invertebrate Zoology, Smithsonian Institution, National Museum of Natural History, 10th and Constitution Avenue, Washington, DC 20560 United States of America [email protected] 11Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore 117543 [email protected] [email protected] [email protected] 12Department of Geology, Kent State University Stark Campus, 6000 Frank Ave.
    [Show full text]
  • Sedimentology, Taphonomy, and Palaeoecology of a Laminated
    Palaeogeography, Palaeoclimatology, Palaeoecology 243 (2007) 92–117 www.elsevier.com/locate/palaeo Sedimentology, taphonomy, and palaeoecology of a laminated plattenkalk from the Kimmeridgian of the northern Franconian Alb (southern Germany) ⁎ Franz Theodor Fürsich a, , Winfried Werner b, Simon Schneider b, Matthias Mäuser c a Institut für Paläontologie, Universität Würzburg, Pleicherwall 1, 97070 Würzburg, Germany LMU b Bayerische Staatssammlung für Paläontologie und Geologie and GeoBio-Center , Richard-Wagner-Str. 10, D-80333 München, Germany c Naturkunde-Museum Bamberg, Fleischstr. 2, D-96047 Bamberg, Germany Received 8 February 2006; received in revised form 3 July 2006; accepted 7 July 2006 Abstract At Wattendorf in the northern Franconian Alb, southern Germany, centimetre- to decimetre-thick packages of finely laminated limestones (plattenkalk) occur intercalated between well bedded graded grainstones and rudstones that blanket a relief produced by now dolomitized microbialite-sponge reefs. These beds reach their greatest thickness in depressions between topographic highs and thin towards, and finally disappear on, the crests. The early Late Kimmeridgian graded packstone–bindstone alternations represent the earliest plattenkalk occurrence in southern Germany. The undisturbed lamination of the sediment strongly points to oxygen-free conditions on the seafloor and within the sediment, inimical to higher forms of life. The plattenkalk contains a diverse biota of benthic and nektonic organisms. Excavation of a 13 cm thick plattenkalk unit across an area of 80 m2 produced 3500 fossils, which, with the exception of the bivalve Aulacomyella, exhibit a random stratigraphic distribution. Two-thirds of the individuals had a benthic mode of life attached to hard substrate. This seems to contradict the evidence of oxygen-free conditions on the sea floor, such as undisturbed lamination, presence of articulated skeletons, and preservation of soft parts.
    [Show full text]
  • Decapode.Pdf
    We are pleased and honored to welcome at the Paléospace Museum of Villers-sur-Mer the “6th Symposium on Mesozoic and Cenozoic Decapod Crustaceans”. Villers-sur-Mer is a place universally known by specialists and amateurs of palaeontology due to its famous Vaches Noires cliffs. Villers-sur-Mer has also the distinction of being the only French seaside resort located on the Greenwich Meridian line. The Paléospace is a Museum funded in 2011 with the label Musée de France. Three main animations linked to the Time are presented: palaeontology, astronomy and nature with the neighbouring marsh. The museum is in a constant evolution. For instance, an exhibition specially dedicated to dinosaurs was opened two years ago and a planetarium will open next summer. Every year a very high quality temporary exhibition takes place during the summer period with very numerous animations during all the year. The Paléospace does not stop progressing in term of visitors (56 868 in 2015) and its notoriety is universally recognized both by the other museums as by the scientific community. We are very proud of these unexpected results. We thank the dynamism and the professionalism of the Paléospace team which is at the origin of this very great success. We wish you a very good stay at Villers-sur-Mer, a beautiful visit of the Paléospace and especially an excellent congress. Jean-Paul Durand, Mayor and President of Paléospace MOT DU MAIRE DE VILLERS-SUR-MER Nous sommes très heureux et très honorés d’accueillir à Villers-sur-Mer, le « 6e Symposium on Mesozoic and Cenozoic Decapod Crustaceans » dans le cadre du Paléospace.
    [Show full text]
  • Trace Fossils from the Baltoscandian Erratic Boulders in Sw Poland
    Annales Societatis Geologorum Poloniae (2017), vol. 87: 229–257 doi: https://doi.org/10.14241/asgp.2017.014 TRACE FOSSILS FROM THE BALTOSCANDIAN ERRATIC BOULDERS IN SW POLAND Alina CHRZĄSTEK & Kamil PLUTA Institute of Geological Sciences, Wrocław University; Maksa Borna 9, 50-204 Wrocław, Poland e-mails: [email protected], [email protected] Chrząstek, A. & Pluta, K, 2017. Trace fossils from the Baltoscandian erratic boulders in SW Poland. Annales Societatis Geologorum Poloniae, 87: 229–257. Abstract: Many well preserved trace fossils were found in erratic boulders and the fossils preserved in them, occurring in the Pleistocene glacial deposits of the Fore-Sudetic Block (Mokrzeszów Quarry, Świebodzice outcrop). They include burrows (Arachnostega gastrochaenae, Balanoglossites isp., ?Balanoglossites isp., ?Chondrites isp., Diplocraterion isp., Phycodes isp., Planolites isp., ?Rosselia isp., Skolithos linearis, Thalassinoides isp., root traces) and borings ?Gastrochaenolites isp., Maeandropolydora isp., Oichnus isp., Osprioneides kamp- to, ?Palaeosabella isp., Talpina isp., Teredolites isp., Trypanites weisei, Trypanites isp., ?Trypanites isp., and an unidentified polychaete boring in corals. The boulders, Cambrian to Neogene (Miocene) in age, mainly came from Scandinavia and the Baltic region. The majority of the trace fossils come from the Ordovician Orthoceratite Limestone, which is exposed mainly in southern and central Sweden, western Russia and Estonia, and also in Norway (Oslo Region). The most interesting discovery in these deposits is the occurrence of Arachnostega gastrochaenae in the Ordovician trilobites (?Megistaspis sp. and Asaphus sp.), cephalopods and hyolithids. This is the first report ofArachnostega on a trilobite (?Megistaspis) from Sweden. So far, this ichnotaxon was described on trilobites from Baltoscandia only from the St.
    [Show full text]
  • From the Upper Triassic (Norian) of Northern Carnic Pre-Alps (Udine, Northeastern Italy)
    GORTANIA. Geologia,GORTANIA Paleontologia, Paletnologia 35 (2013) Geologia, Paleontologia, Paletnologia 35 (2013) 11-18 Udine, 10.IX.2014 ISSN: 2038-0410 Alessandro Garassino ACANTHOCHIRANA TRIASSICA N. SP. Günter Schweigert Giuseppe Muscio AND ANTRIMPOS COLETTOI N. SP. (DECAPODA: AEGERIDAE, PENAEIDAE) FROM THE UPPER TRIASSIC (NORIAN) OF NORTHERN CARNIC PRE-ALPS (UDINE, NORTHEASTERN ITALY) Acanthochirana TRIASSICA N. SP. E AntrimPOS COLETTOI N. SP. (DECAPODA: AEGERIDAE, PENAEIDAE) DAL TRIASSICO SUPERIORE (NORICO) DELLA PREALPI CARNICHE SETTENTRIONALI (UDINE, ITALIA NORDORIENTALE) Riassunto breve - I crostacei decapodi del Triassico superiore (Norico) della Dolomia di Forni sono stati descritti da Ga- rassino et al. (1996). La recente scoperta di un piccolo campione, rivenuto nella Valle del Rio Seazza e in quella del Rio Rovadia, ha permesso un aggiornamento relativo ai crostacei decapodi delle Prealpi Carniche. Gli esemplari studiati sono stati assegnati a Acanthochirana triassica n. sp. (Aegeridae Burkenroad, 1963) e Antrimpos colettoi n. sp. (Penaeidae Rafinesque, 1815). Acanthochirana triassica n. sp. estende il range stratigrafico di questo genere nel Triassico superiore, mentre Antrimpos colettoi n. sp. rappresenta la seconda specie di questo genere segnalata nel Triassico superiore d’Italia. La scoperta di queste due nuove specie incrementa il numero delle specie di peneidi conosciuti nel Norico dell’alta Val Ta- gliamento (Prealpi Carniche settentrionali). Parole chiave: Crustacea, Decapoda, Aegeridae, Penaeidae, Triassico superiore, Prealpi Carniche. Abstract - The decapod crustaceans from the Upper Triassic (Norian) of the Dolomia di Forni Formation were reported by Garassino et al. (1996). The recent discovery of a small sample from this Formation between Seazza and Rovadia brooks allowed updating the decapod assemblages from the Norian of Carnic Pre-Alps.
    [Show full text]
  • 1 Crustaceans in Cold Seep Ecosystems: Fossil Record, Geographic Distribution, Taxonomic Composition, 2 and Biology 3 4 Adiël A
    1 Crustaceans in cold seep ecosystems: fossil record, geographic distribution, taxonomic composition, 2 and biology 3 4 Adiël A. Klompmaker1, Torrey Nyborg2, Jamie Brezina3 & Yusuke Ando4 5 6 1Department of Integrative Biology & Museum of Paleontology, University of California, Berkeley, 1005 7 Valley Life Sciences Building #3140, Berkeley, CA 94720, USA. Email: [email protected] 8 9 2Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA 92354, USA. 10 Email: [email protected] 11 12 3South Dakota School of Mines and Technology, Rapid City, SD 57701, USA. Email: 13 [email protected] 14 15 4Mizunami Fossil Museum, 1-47, Yamanouchi, Akeyo-cho, Mizunami, Gifu, 509-6132, Japan. 16 Email: [email protected] 17 18 This preprint has been submitted for publication in the Topics in Geobiology volume “Ancient Methane 19 Seeps and Cognate Communities”. Specimen figures are excluded in this preprint because permissions 20 were only received for the peer-reviewed publication. 21 22 Introduction 23 24 Crustaceans are abundant inhabitants of today’s cold seep environments (Chevaldonné and Olu 1996; 25 Martin and Haney 2005; Karanovic and Brandão 2015), and could play an important role in structuring 26 seep ecosystems. Cold seeps fluids provide an additional source of energy for various sulfide- and 27 hydrocarbon-harvesting bacteria, often in symbiosis with invertebrates, attracting a variety of other 28 organisms including crustaceans (e.g., Levin 2005; Vanreusel et al. 2009; Vrijenhoek 2013). The 29 percentage of crustaceans of all macrofaunal specimens is highly variable locally in modern seeps, from 30 0–>50% (Dando et al. 1991; Levin et al.
    [Show full text]
  • Decapod Crustaceans from the Middle Jurassic Opalinus Clay of Northern Switzerland, with Comments on Crustacean Taphonomy
    0012-9402/04/030381-12 Eclogae geol. Helv. 97 (2004) 381–392 DOI 10.1007/s00015-004-1137-2 Birkhäuser Verlag, Basel, 2004 Decapod crustaceans from the Middle Jurassic Opalinus Clay of northern Switzerland, with comments on crustacean taphonomy WALTER ETTER Key words: Decapoda, Peracarida, Jurassic, Switzerland, ecology, crustacean taphonomy ABSTRACT ZUSAMMENFASSUNG Four species of decapod crustaceans from the Middle Jurassic Opalinus Clay Aus dem Opalinuston (Mittlerer Jura, Aalenian) der Nordschweiz werden vier (Aalenian) of Northern Switzerland are described. Of these, Mecochirus cf. Arten von decapoden Krebsen beschrieben. Von Aeger sp., Eryma cf. bedelta eckerti is the most common one, while Eryma cf. bedelta, Glyphea sp. and und Glyphaea sp. wurden nur ganz wenige Exemplaren gefunden, während Aeger sp. were present as individuals, or only a few specimens. The preserva- Mecochirus cf. eckerti etwas häufiger ist. Die Erhaltungsbedingungen waren tion of these crustaceans ranges from moderate to excellent, reflecting the während der Ablagerung des Opalinustones günstig, was sich in einer geringen favourable taphonomic conditions of the depositional environment. An inter- Disartikulations- und Fragmentationsrate der Krebse widerspiegelt. Ein in- esting aspect of the taphocoenosis in the Opalinus Clay is that the decapod teressanter Aspekt der Taphocoenose ist die deutliche Dominanz der Klein- crustaceans are by far outnumbered by small peracarid crustaceans (isopods krebse (Peracarida: Isopoden und Tanaidaceen). Dies dürfte die Zahlenver- and tanaids). This is interpreted as reflecting the original differences in abun- hältnisse der ehemaligen Lebensgemeinschaft widerspiegeln. In den meisten dance. Yet this distribution is not frequently encountered in sedimentary se- Ablagerungen dominieren jedoch die decapoden Krebse, wogegen Peracarida quences where decapods (although rare) are far more common than isopods äusserst selten sind.
    [Show full text]
  • Galicia Marianae N. Gen., N. Sp. (Crustacea, Decapoda, Astacidea) from the Oxfordian (Upper Jurassic) of the Southern Polish Uplands
    Bulletin of the Mizunami Fossil Museum, no. 29 (2002), p. 51-59, 8 figs. Galicia marianae n. gen., n. sp. (Crustacea, Decapoda, Astacidea) from the Oxfordian (Upper Jurassic) of the Southern Polish Uplands Alessandro Garassino* and Michal Krobicki** *Invertebrate Palaeontology Department, Natural History Museum, Corso Venezia, 55, 20121 Milano, Italy <[email protected]> **Department of Stratigraphy and Regional Geology, University of Mining and Metallurgy, al. Mickiewicza 30, 30-059 Kraków, Poland <[email protected]> Abstract Galicia marianae n. gen., n. sp. is described from the Middle Oxfordian limestones of the Southern Polish Uplands, in vicinity of Kraców. Glyphea (Glyphea) muensteri (Voltz), together with numerous dromiacean prosopid crabs, are associated with the decapod lobster described in this study. The decapod fauna occupied sponge megafacies, well known from throughout Europe, from Portugal, Spain, France, Germany, Poland and Romania. The decapods prefer inter- and/or peri (or extra)- bioherm environments surrounding the cyanobacteria-sponge bioherms. Streszczenie Z utworów wapieni plytowych s´rodkowego oksfordu okolic Krakowa opisano nowy gatunek (nalez˙ a˛cy do nowego rodzaju) dziesie˛cionogiego homara Galicia marianae, oraz gatunek Glyphea (Glyphea) muensteri (Voltz, 1835), znany wczes´niej z obszaru Polski centralnej. Zilustrowano równiez˙ zespól krabów (z rodziny Prosopidae) który dominuje w obre˛bie malych bioherm wapieni ga˛bkowych, znajduja˛cych sie˛ w obre˛bie wapieni plytowych tych samych stanowisk (np. dolina Szklarki). Opisana fauna homarów preferowala paleos´rodowiska s´ródbiohermowe lub peryferycznych cze˛s´ci bioherm cjanobakteryjno-ga˛bkowych, szeroko rozprzestrzenionej w Europie oksfordzkiej megafacji ga˛bkowej znanej w calej Europie (od Portugali, poprzez Hiszpanie˛, Francje˛, Niemcy, Polske˛ az˙ do Rumunii).
    [Show full text]
  • New Studies of Decapod Crustaceans from the Upper Jurassic Lithographic Limestones of Southern Germany
    Contributions to Zoology, 72 (2-3) 173-179 (2003) SPB Academic Publishing bv, The Hague New studies of decapod crustaceans from the Upper Jurassic lithographic limestones of southern Germany Günter Schweigert¹ & Alessandro Garassino² 2 1 Staatliches Museum fiir Naturkunde, Rosenstein I, D-70I91 Stuttgart, Germany; Museo civico di Storia naturale, Corso Venezia 55, 1-20121 Milano, Italy Keywords:: Crustacea, Decapoda, lithographic limestones, Upper Jurassic, Solnhofen, fossil record, diversity Abstract Introduction The Upper Jurassic lithographic limestones ofsouthern Germany TheUpper Jurassic lithographic limestones in south- have long been known for their exceptional preservation of ern Germany outcrop at numerous localities are of decapod crustaceans (Glaessner, 1965), similar to the Upper and differentage setting and span an area of sev- Cretaceous of Lebanon (Hakel, Hadjoula) and the still poorly eral hundreds of kilometers (Fig. 1, Table 1) with known Callovian strataat La Voulte-sur-Rhône (France). In these localities in the Frankische Alb often summarized non-bioturbatedlimestones, the decay of decapod skeletons is that mineralized and reduced, so besides the heavily chelae as ‘Solnhofen Lithographic Limestones’. Many fos- often even delicate structures such as pleopods and carapace sils, both in old and new collections (fossil traders), antennae are preserved. Recently, new decapod material has which is are labeled ‘Solnhofen’, highly mislead- been obtained from both scientific and commercial excavations, ing and precludes recognition of evolutionary trends in part in reopened lithographic limestone quarries. I. Fossiliferous lithographic limestones in southern Germany. Downloaded from Brill.com09/24/2021 08:25:23AM via free access 174 G. Schweigert & A. Garassino - New studies of Jurassic limestones from Germany Table I.
    [Show full text]
  • Systematics, Phylogeny, and Taphonomy of Ghost Shrimps (Decapoda): a Perspective from the Fossil Record
    73 (3): 401 – 437 23.12.2015 © Senckenberg Gesellschaft für Naturforschung, 2015. Systematics, phylogeny, and taphonomy of ghost shrimps (Decapoda): a perspective from the fossil record Matúš Hyžný *, 1, 2 & Adiël A. Klompmaker 3 1 Geological-Paleontological Department, Natural History Museum Vienna, Burgring 7, 1010 Vienna, Austria; Matúš Hyžný [hyzny.matus@ gmail.com] — 2 Department of Geology and Paleontology, Faculty of Natural Sciences, Comenius University, Mlynská dolina, Ilkovičova 6, SVK-842 15 Bratislava, Slovakia — 3 Florida Museum of Natural History, University of Florida, 1659 Museum Road, PO Box 117800, Gaines- ville, FL 32611, USA; Adiël A. Klompmaker [[email protected]] — * Correspond ing author Accepted 06.viii.2015. Published online at www.senckenberg.de/arthropod-systematics on 14.xii.2015. Editor in charge: Stefan Richter. Abstract Ghost shrimps of Callianassidae and Ctenochelidae are soft-bodied, usually heterochelous decapods representing major bioturbators of muddy and sandy (sub)marine substrates. Ghost shrimps have a robust fossil record spanning from the Early Cretaceous (~ 133 Ma) to the Holocene and their remains are present in most assemblages of Cenozoic decapod crustaceans. Their taxonomic interpretation is in flux, mainly because the generic assignment is hindered by their insufficient preservation and disagreement in the biological classification. Fur- thermore, numerous taxa are incorrectly classified within the catch-all taxonCallianassa . To show the historical patterns in describing fos- sil ghost shrimps and to evaluate taphonomic aspects influencing the attribution of ghost shrimp remains to higher level taxa, a database of all fossil species treated at some time as belonging to the group has been compiled: 250 / 274 species are considered valid ghost shrimp taxa herein.
    [Show full text]
  • On Unreported Historical Specimens of Marine Arthropods from The
    On unreported historical specimens of marine arthropods from the Solnhofen and Nusplingen Lithographic Limestones (Late Jurassic, Germany) housed at the Muséum national d’Histoire naturelle, Paris Giliane P. Odin, Sylvain Charbonnier, Julien Devillez, Günter Schweigert To cite this version: Giliane P. Odin, Sylvain Charbonnier, Julien Devillez, Günter Schweigert. On unreported historical specimens of marine arthropods from the Solnhofen and Nusplingen Lithographic Limestones (Late Jurassic, Germany) housed at the Muséum national d’Histoire naturelle, Paris. Geodiversitas, Museum National d’Histoire Naturelle Paris, 2019, 41 (1), pp.643. 10.5252/geodiversitas2019v41a17. hal- 02332523 HAL Id: hal-02332523 https://hal.archives-ouvertes.fr/hal-02332523 Submitted on 24 Oct 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. On unreported historical specimens of marine arthropods from the Solnhofen and Nusplingen Lithographic Limestones (Late Jurassic, Germany) housed at the Muséum national d’Histoire naturelle, Paris Sur des spécimens historiques inédits d’arthropodes marins des Calcaires Lithographiques de Solnhofen et Nusplingen (Jurassique supérieur, Allemagne) conservés au Muséum national d’Histoire naturelle, Paris Unreported specimens of marine arthropods from Solnhofen Giliane P. ODIN Centre de Recherche en Paléontologie – Paris (CR2P, UMR 7207), Sorbonne Université, MNHN, CNRS, Muséum national d'Histoire naturelle, Département Origines & Evolution (CP38), 8 rue Buffon, 75005 Paris (France).
    [Show full text]
  • Les Glyphéides Actuels Et Leur Relation Avec Les Formes Fossiles (Decapoda, Reptantia)
    LES GLYPHÉIDES ACTUELS ET LEUR RELATION AVEC LES FORMES FOSSILES (DECAPODA, REPTANTIA) THE RECENT GLYPHEIDS AND THEIR RELATIONSHIP WITH THEIR FOSSIL RELATIVES (DECAPODA, REPTANTIA) PAR JACQUES FOREST1) Institut océanographique, 195, rue Saint-Jacques, F-75005 Paris, France ABSTRACT Until recently, the family Glypheidae (Decapoda, Reptantia) was known from fossils only, and consequently presumed extinct for 50 million years. However, in 1975 scientists of the Muséum National d’Histoire Naturelle in Paris recognized a Recent specimen as belonging to this family. The specimen had been collected in the Phillippines in 1908 at approx. 200 m depth, and had remained unidentified in the collections of the Smithsonian Institution, Washington, D.C., since. That same year, the species was described as Neoglyphea inopinata Forest & de Saint Laurent, thus testifying the actual persistence of the group in today’s marine fauna. Three expeditions in the same region, in 1976, 1980, and 1985, yielded another 20 specimens, all caught alive. The subsequent study of those specimens would indicate that the phylogenetic position assigned to the glypheids until then had, in fact, been erroneous. The same applied to the other mesozoic families included in the superfamily Glypheoidea. The glypheoids had usually been placed next to the Scyllaridae and Eryonidae in the infraorder Palinura, and been considered probable ancestors of part of the remaining Decapoda Reptantia. However, their similarities would come out to result rather from analogous resemblances than from actual morphological affinities. In fact, after comparison of the principal characters of the three groups, we have been able to confirm that the Glypheoidea did not exhibit any true relationship with the two others.
    [Show full text]