Durham E-Theses

Total Page:16

File Type:pdf, Size:1020Kb

Durham E-Theses Durham E-Theses Fluorometabolite biosynthesis in streptomyces cattleya Moss, Steven J. How to cite: Moss, Steven J. (1999) Fluorometabolite biosynthesis in streptomyces cattleya, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/4603/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk Fluorometabolite Biosynthesis in Streptomyces cattleya Steven J Moss Nature has evolved the ability to form a C-F bond, as exemplified by the bacterium Streptomyces cattleya, which elaborates fluoroacetate (FAc) and 4-fluorothreonine (4- FT). The mechanism of this bond formation are unknown. This thesis probes the biosynthesis of fluoroacetate and 4-fluorothreonine and in doing so explores the C-F bond forming process. Feeding stable isotope enriched primary metabolites to S. cattleya, followed by 19F NMR and GCMS analysis of the resultant fluorometabolites, highlights the role of the glycolytic pathway in delivering a substrate for fluorination. 3-Fluoro-l- hydroxypropan-2-one was synthesised and feeding studies eliminate this as the initial product of fluorination. Fluoroacetaldehyde was identified as a common fluorinated intermediate in the biosynthesis of both FAc and 4-FT. Whole cell studies demonstrate the rapid oxidation of fluoroacetaldehyde to FAc. 4-FT is produced in low quantities by S. cattleya incubated with fluoroacetaldehyde. The synthesis and feeding of [1- H]- fluoroacetaldehyde provide evidence that the resultant 4-FT is biosynthesised from fluoroacetaldehyde. The biotransformation from fluoroacetaldehyde to FAc was shown in cell free studies to be mediated by an aldehyde dehydrogenase, requiring NAD+ as a co-factor. The substrate specificity of fluoroacetaldehyde dehydrogenase was probed by spectrophotometrically monitoring the production of NADH in the presence of different aldehydes. Further cell free experiments probed the biosynthetic origins of fluoroacetaldehyde. Glycolaldehyde phosphate and various phosphorylated glycolytic intermediates were incubated with cell free extracts of S. cattleya and a plethora of co-factors. In the absence of observing fluorination activity, it was shown that the cell free extract acts to dephosphorylate the substrates. The putative role of glycolaldehyde phosphate was explored by feeding isotopically labelled glycolaldehydes to whole cells of the bacterium. The results were not consistent with direct conversion from glycolaldehyde phosphate to fluoroacetaldehyde. Steven James Moss PhD Thesis 1999 University of Durham Department of Chemistry The copyright of tliis thesis rests with (lie author. No quotation from it should be published without the written consent of the author and information derived from it should be acknowledged. I T JAN 2000 Declaration The work contained in this thesis was carried out by the author in the Department of Chemistry, University of Durham between October 1996 and July 1999. The work was conducted in collaboration with the Queen's University of Belfast. GC-MS analyses, on samples submitted by the author, were performed by Dr Jack Hamilton at the Queen's University of Belfast. Copyright The copyright of this thesis rests with the author. No quotation from it .should be published without their prior written consent and information derived from it should be acknowledged iii Acknowledgements I wish to thank my supervisor, Professor David O'Hagan, not only for the continued support and enthusiasm that he has dedicated to the project, but also for the opportunities that he has given me. Professor David Harper and Dr Cormac Murphy, at the Queen's University of Belfast, provided both technical assistance in developing the resting cell methodology in Durham and hospitality during my stay in Belfast. Sincere thanks go to Dr Jack Hamilton for the GCMS analysis that makes this project possible and for his candid discussions of the results. I acknowledge British Nuclear Fuels Ltd and the BBSRC who provided CASE funding for this work and I thank Dr Peter Binks, Dr Roy Bowden, Mr Martin Green and Dr Harry Eccles, all from BNFL, for the interest that they have shown in the project. High field I9F NMR analysis was performed by Mr Ian McKeag and I thank him and the technical support staff in the Department of Chemistry. The O'Hagan group, past and present, made the lab a vibrant and interesting place to work. I specifically would like to acknowledge Dr Jens Nieschalk and Dr Jens Fuchser, for the help and advice they imparted during this project. Finally, I would like to thank my parents for encouraging me throughout my PhD studies and education before that. iv List of Contents Table of Contents v List of Figures x List of Tables xvi List of Abbreviations xix Chapter 1: Introduction 1.1 Secondary metabolism 1 1.1.1 Primary and secondary metabolism 1 1.1.2 Fatty acid biosynthesis and P-oxidation 4 1.1.3 Microbial secondary metabolism 5 1.2 Elucidation of metabolic pathways 7 1.2.1 Biological methods 7 1.2.1.1 Mutant studies 7 1.2.1.2 Inhibition of protein biosynthesis 8 1.2.1.3 Cell free studies 8 g 1.2.2 Chemical methods 1.2.2.1 Radioisotopes 9 1.2.2.2 Stable isotopes 10 1.2.2.3 Single label feeding experiment studies 10 1.2.2.4 Double label feeding studies: 'bond labelling' 10 1.3 Halogenated secondary metabolites 12 1.3.1 Distribution of halogenated metabolites 12 1.3.2 Mechanisms for biohalogenation 13 1.4 Fluorinated secondary metabolites 15 1.4.1 Fluorine bioavailability 15 1.4.2 The Nature oftheC-F bond 15 1.4.3 Fluorinated natural products in plants 17 1.4.3.1 Fluoroacetate 17 1.4.3.2 oo-Fluorinated fatty acids 18 1.4.3.3 Fluoroacetone 19 1.4.4 Fluoroacetate metabolism: (2R, 3i?)-2-fluorocitrate 20 1.4.5 Resistance to fluoroacetate poisoning 23 1.4.6 Fluorometabolites from microorganisms 25 1.4.6.1 Nucleocidin 25 v 1.4.6.2 4-Fluorothreonine and fluoroacetate 26 1.5 Biological fluorination - proposed mechanisms 27 1.5.1 Addition to a carbon-carbon multiple bond 27 1.5.1.1 Pyridoxal phosphate assisted addition of fluoride 27 1.5.1.2 Ethylene and ethylene oxide as putative precursors 30 1.5.1.3 Nucleophilic attack on a halonium ion 30 1.5.2 Fluorination via nucleophilic substitution 32 1.6 Streptomyces cattleya and the fluorometabolites 33 1.6.1 The Streptomycetes 33 1.6.2 Streptomyces cattleya 33 1.6.3 Fluoroacetate and 4-fluorothreonine 35 1.6.4 The biosynthetic relationship between fluoroacetate and 38 4-fluorothreonine 1.6.5 Incorporation of stable isotope enriched glycolate, glycine 39 and pyruvate 1.6.6 The stereochemical processing of glycerol 41 1.6.7 Overview 43 Chapter 2: Fluorometabolite biosynthesis and primary metabolism 2.1 Maintenance and growth of Streptomyces cattleya 45 2.1.1 Preparation of a starter culture of Streptomyces cattleya 46 2.1.2 Preparation of batch cultures of Streptomyces cattleya 46 2.1.3 Time course study on fluorometabolite biosynthesis 47 2.1.3.1 Results: pH analysis 47 2.1.3.2 Results: fluoride analysis 48 2.1.3.3 Discussion 49 2.2 Studying fluorometabolite biosynthesis 50 2.2.1 Preparation of resting cells of Streptomyces cattleya 50 2.2.1.1 Resting cell experiments: controls 51 2.2.2 Studying fluoroacetate and 4-fluorothreonine with l9F NMR 51 2 2.2.2.1 Feeding H20 54 2.2.2.2 Incorporation of [2-l3C]-glycine into the fluorometabolites: 56 19F NMR analysis 2.2.3 GCMS analysis of fluoroacetate and 4-fluorothreonine 57 2.2.3.1 GCMS analysis of fluoroacetate 57 2.2.3.2 GCMS analysis of 4-fluorothreonine 58 2.3 Resting cell incorporation studies 60 2 2.3.1 [6,6- H2]-Glucose 60 vi 2.3.1.1 Background 60 2.3.1.2 Results and discussion 62 2.3.2 Isotopically labelled acetates 66 2.3.2.1 Background 66 2.3.2.2 Results and discussion 66 2.3.3 [2-2H]-Glycerol and [2-2H]-glycerate 71 2.3.3.1 Background 71 2.3.3.2 Results and discussion 72 2.4 Synthesis and feeding of 3-fluoro-l-hydroxypropanone 75 2.4.1 Background 75 2.4.2 3-Fluoro-l-hydroxypropanone 77 2.4.3 Synthesis of 3-fluoro-l-hydroxypropanone 78 2.4.4 Biotransformation of 3-fluoro-l-hydroxypropanone 81 2.5 Conclusions 87 Chapter 3: A role for fluoroacetaldehyde 3.1 Fluoroacetaldehyde 89 3.1.1 Synthesis of fluoroacetaldehyde 89 3.2 Whole cell studies on fluoroacetaldehyde 92 3.2.1 Preliminary studies 92 3.2.1.1 Introduction 92 3.2.1.2 Results and discussion 92 3.2.2 Oxygen requirements of fluoroacetaldehyde metabolism 95 3.2.2.1 Fluoroacetaldehyde metabolism under nitrogen 95 3.2.2.2 Fluoroacetaldehyde metabolism under 1802 96 3.2.2.3 Conclusions 97 3.3 Fluoroacetaldehyde in fluorometabolite biosynthesis 98 3.3.1 Fluoroacetaldehyde metabolism by other Streptomyces spp. 98 3.3.1.1 Growth of Streptomyces cinnamonensis 9 8 3.3.1.2 Feeding fluoroacetaldehyde to resting cells of Streptomyces 99 cinnamonensis 3.3.2 Fluoroacetaldehyde: incubation with alanine and serine 100 3.3.2.1 Experimental considerations 100 3.3.2.2 Results and discussion 101 3.3.3 The synthesis and feeding
Recommended publications
  • Conformational Landscapes of Halohydrin Dehalogenases and Their Accessible Active Site Tunnels
    catalysts Article Conformational Landscapes of Halohydrin Dehalogenases and Their Accessible Active Site Tunnels 1 1, , 1,2, Miquel Estévez-Gay , Javier Iglesias-Fernández * y and Sílvia Osuna * 1 CompBioLab Group, Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, c/Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain; [email protected] 2 ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Catalonia, Spain * Correspondence: [email protected] (J.I.-F.); [email protected] (S.O.) Present address: Nostrum Biodiscovery, Carrer de Baldiri Reixac, 10–12, 08028 Barcelona, Catalonia, Spain. y Received: 12 November 2020; Accepted: 28 November 2020; Published: 1 December 2020 Abstract: Halohydrin dehalogenases (HHDH) are industrially relevant biocatalysts exhibiting a promiscuous epoxide-ring opening reactivity in the presence of small nucleophiles, thus giving access to novel carbon–carbon, carbon–oxygen, carbon–nitrogen, and carbon–sulfur bonds. Recently, the repertoire of HHDH has been expanded, providing access to some novel HHDH subclasses exhibiting a broader epoxide substrate scope. In this work, we develop a computational approach based on the application of linear and non-linear dimensionality reduction techniques to long time-scale Molecular Dynamics (MD) simulations to study the HHDH conformational landscapes. We couple the analysis of the conformational landscapes to CAVER calculations to assess their impact on the active site tunnels and potential ability towards bulky epoxide ring opening reaction. Our study indicates that the analyzed HHDHs subclasses share a common breathing motion of the halide binding pocket, but present large deviations in the loops adjacent to the active site pocket and N-terminal regions.
    [Show full text]
  • Molecular Basis of Two Novel Dehalogenating Activities in Bacteria
    Molecular basis of two novel dehalogenating activities in bacteria Structure/function relationships in an evolutionary context 1 Foto’s omslag: Dinanda Lutikhedde, MFA Druk: Digital Printing Partners Utrecht bv The research presented in this work was performed in the protein crystallography group at the Laboratory of Biophysical Chemistry of the University of Groningen. This work was supported by The Netherlands Foundation of Chemical Research (CW) with financial aid from The Netherlands Foundation for Scientific Research (NWO). 2 RIJKSUNIVERSITEIT GRONINGEN Molecular basis of two novel dehalogenating activities in bacteria Structure/function relationships in an evolutionary context Proefschrift ter verkrijging van het doctoraat in de Wiskunde en Natuurwetenschappen aan de Rijksuniversiteit Groningen op gezag van de Rector Magnificus, dr. F. Zwarts, in het openbaar te verdedigen op vrijdag 30 januari 2004 om 14.15 uur door René Marcel de Jong geboren op 22 maart 1976 te Heerenveen 3 Promotor: Prof. dr. B. W. Dijkstra Beoordelingscommissie: Prof. dr. D. B. Janssen Prof. dr. A. E. Mark Prof. dr. J.B.F.N. Engberts 4 CONTENTS CHAPTER 1: GENERAL INTRODUCTION ..........................................................9 EVOLUTION IN THE MICROBIAL WORLD.................................................................................. 10 EVOLUTION AT THE MOLECULAR LEVEL................................................................................. 12 BACTERIAL DEHALOGENATING ACTIVITY TOWARDS ANTHROPOGENIC COMPOUNDS ................... 14 SCOPE
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 7,381,538 B2 Reardon Et Al
    US007381538B2 (12) United States Patent (10) Patent No.: US 7,381,538 B2 Reardon et al. (45) Date of Patent: Jun. 3, 2008 (54) OPTICAL BIOSENSOR WITH ENHANCED 6,060,327 A * 5/2000 Keen ..................... 204,403.14 ACTIVITY RETENTION FOR DETECTION 6,159,681 A 12/2000 Zebala .......................... 435/4 OF HALOGENATED ORGANIC COMPOUNDS OTHER PUBLICATIONS Derek W. Campbell, entitled “The Development of Biosensors for (75) Inventors: Kenneth F. Reardon, Fort Collins, CO the Detection of Halogenated Groundwater Contaminants,” avail (US); Neema Das, Murgeshpalya (IN) able from Morgan Library at the CSU in Fort Collins, Colorado, having been submitted by Derek W. Campbell in fulfillment of the (73) Assignee: Colorado State University Research requirements for the Degree of Master of Science at Colorado State Foundation (CSURF), Fort Collins, University, Spring 1998 (labeled “Attachment B” of applicants' CO (US) provisional app. filed Jun. 1, 2001 as containing general background technical information}. (*) Notice: Subject to any disclaimer, the term of this inst k Eyle A. PS SEE s past l S.s I listed under 35 12,alogenated 1998 by Reardonflydrocarbons, and Campbell, U.S. Appl. 7 pages No. (labeled,89U, “Attachment Illed Sep. M YW- (b) by ayS. C” of applicants’pp pprovisional app.pp filed Jun. 1, 2001 as containin9. general background technical information}. (21) Appl. No.: 10/478,822 Cord Müller. F. Schubert. T. Scheper,p "Multicomponentp fiberopticalp biosensor for use in hemodialysis monitoring.” Proc. SPIE vol. (22) PCT Filed: Jun. 1, 2002 2131, 555-562 Biomedical Fiber Optic Instrumentation(Jul 1994) {referenced as “Cord Müller, et al.” in applicants’ provisional app.
    [Show full text]
  • Wo 2008/127291 A2
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (43) International Publication Date PCT (10) International Publication Number 23 October 2008 (23.10.2008) WO 2008/127291 A2 (51) International Patent Classification: Jeffrey, J. [US/US]; 106 Glenview Drive, Los Alamos, GOlN 33/53 (2006.01) GOlN 33/68 (2006.01) NM 87544 (US). HARRIS, Michael, N. [US/US]; 295 GOlN 21/76 (2006.01) GOlN 23/223 (2006.01) Kilby Avenue, Los Alamos, NM 87544 (US). BURRELL, Anthony, K. [NZ/US]; 2431 Canyon Glen, Los Alamos, (21) International Application Number: NM 87544 (US). PCT/US2007/021888 (74) Agents: COTTRELL, Bruce, H. et al.; Los Alamos (22) International Filing Date: 10 October 2007 (10.10.2007) National Laboratory, LGTP, MS A187, Los Alamos, NM 87545 (US). (25) Filing Language: English (81) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of national protection available): AE, AG, AL, AM, AT,AU, AZ, BA, BB, BG, BH, BR, BW, BY,BZ, CA, CH, (30) Priority Data: CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, 60/850,594 10 October 2006 (10.10.2006) US ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, (71) Applicants (for all designated States except US): LOS LR, LS, LT, LU, LY,MA, MD, ME, MG, MK, MN, MW, ALAMOS NATIONAL SECURITY,LLC [US/US]; Los MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, Alamos National Laboratory, Lc/ip, Ms A187, Los Alamos, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, NM 87545 (US).
    [Show full text]
  • University of Groningen Biocatalytic Conversion of Epoxides De Vries, Erik
    University of Groningen Biocatalytic conversion of epoxides de Vries, Erik; Janssen, DB Published in: Current Opinion in Biotechnology DOI: 10.1016/S0958-1669(03)00102-2 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2003 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): de Vries, E., & Janssen, DB. (2003). Biocatalytic conversion of epoxides. Current Opinion in Biotechnology, 14(4), 414-420. https://doi.org/10.1016/S0958-1669(03)00102-2 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
    [Show full text]
  • Aquaculture Journals – Table of Contents April 2012
    Aquaculture Journals – Table of Contents With the financial support of Flemish Interuniversity Councel Aquaculture Journals – Table of Contents April 2012 Information of interest !! Animal Feed Science and Technology * Antimicrobial Agents and Chemotherapy Applied and Environmental Microbiology Applied Microbiology and Biotechnology Aqua Aquaculture * Aquaculture Economics & Management Aquacultural Engineering * Aquaculture International * Aquaculture Nutrition * Aquaculture Research * Current Opinion in Microbiology * Diseases of Aquatic Organisms * Fish & Shellfish Immunology * Fisheries Science * Hydrobiologia * Indian Journal of Fisheries International Journal of Aquatic Science Journal of Applied Ichthyology * Journal of Applied Microbiology * Journal of Applied Phycology Journal of Aquaculture Research and Development Journal of Experimental Marine Biology and Ecology * Journal of Fish Biology Journal of Fish Diseases * Journal of Invertebrate Pathology* Journal of Microbial Ecology* Aquaculture Journals Page: 1 of 108 Aquaculture Journals – Table of Contents Journal of Microbiological Methods Journal of Shellfish Research Journal of the World Aquaculture Society Letters in Applied Microbiology * Marine Biology * Marine Biotechnology * Nippon Suisan Gakkaishi Reviews in Aquaculture Trends in Biotechnology * Trends in Microbiology * * full text available Aquaculture Journals Page: 2 of 108 Aquaculture Journals – Table of Contents BibMail Information of Interest - April, 2012 FAO COFI Subcommittee Aquaculture, Cape Town (South Africa),
    [Show full text]
  • Bioremediation 3.0: Engineering Pollutant-Removing Bacteria in The
    1 Bioremediation 3.0: Engineering pollutant-removing bacteria 2 in the times of systemic biology 3 4 by 5 6 Pavel Dvořák1, Pablo I. Nikel2, Jiří Damborský3,4, Víctor de Lorenzo1# 7 8 1 Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), 9 28049 Madrid, Spain 10 2 The Novo Nordisk Foundation Center for Biosustainability, 2800 Lyngby, Denmark 11 3 Loschmidt Laboratories, Centre for Toxic Compounds in the Environment RECETOX 12 and Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 13 Brno, Czech Republic 14 4 International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 15 91 Brno, Czech Republic 16 17 # E-mail: [email protected], Tel.: +34 91-585 4536 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 1 1 2 3 4 Table of Contents 5 6 1. Introduction 7 2. Approaches and tools of systems biology and metabolic engineering for tailoring 8 biodegradation pathways 9 2.1 Step 1: Get to know the contaminant and find a suitable catabolic pathway 10 2.1.1 Databases 11 2.1.2 Pathway prediction systems and toxicity prediction algorithms 12 2.1.3 Detection and quantification of pathway building blocks 13 2.2 Step2: Select and get to know a suitable microbial host 14 2.2.1 Omic techniques in studies of bacterial degraders 15 2.3 Step 3: Build the pathway and optimize its performance in the context of host 16 metabolism 17 2.3.1 Computational tools for pathway and strain optimization 18 2.3.2 Experimental tools for pathway and strain optimization 19 2.3.3 Protein engineering to eliminate bottlenecks of biodegradation pathways 20 3.
    [Show full text]
  • 148240825.Pdf
    University of Groningen Novel Dehalogenase Mechanism for 2,3-Dichloro-1-Propanol Utilization in Pseudomonas putida Strain MC4 Arif, Muhammad Ilan; Samin, Ghufrana; van Leeuwen, Jan G. E.; Oppentocht, Jantina; Janssen, Dick Published in: Applied and Environmental Microbiology DOI: 10.1128/AEM.00760-12 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2012 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Arif, M. I., Samin, G., van Leeuwen, J. G. E., Oppentocht, J., & Janssen, D. B. (2012). Novel Dehalogenase Mechanism for 2,3-Dichloro-1-Propanol Utilization in Pseudomonas putida Strain MC4. Applied and Environmental Microbiology, 78(17), 6128-6136. DOI: 10.1128/AEM.00760-12 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 11-02-2018 Novel Dehalogenase Mechanism for 2,3-Dichloro-1-Propanol Utilization in Pseudomonas putida Strain MC4 Muhammad Irfan Arif, Ghufrana Samin,* Jan G.
    [Show full text]
  • Engineering of the Synthetic Metabolic Pathway for Biodegradation of Environmental Pollutant
    MASARYK UNIVERSITY FACULTY OF SCIENCE LOSCHMIDT LABORATORIES DEPARTMENT OF EXPERIMENTAL BIOLOGY Engineering of the synthetic metabolic pathway for biodegradation of environmental pollutant Doctoral dissertation Pavel Dvořák Supervisors: Prof. Mgr. Jiří Damborský, Dr. Doc. RNDr. Zbyněk Prokop, Ph.D. BRNO 2014 Poděkování Na tomto místě bych chtěl poděkovat svému školiteli Jiřímu Damborskému za profesionální vedení, schopnost a odhodlání dělat kvalitní, nepodlézavou vědu, ochotu setkávat se, diskutovat a radit, která není ani mezi školiteli postgraduálních studentů zcela automatická, a konečně za jeho víru ve zdárné konce, která mě dovedla až k sepsání této práce. Velmi děkuji i Zbyňku Prokopovi, mému školiteli specialistovi, za jeho optimismus a cenné rady a všem svým současným i minulým kolegům, kteří přispívali a přispívají k tomu, že Loschmidtovy laboratoře jsou nejenom špičkovým vědeckým týmem, ale i příjemným místem pro práci, kvůli kterému se člověk každé pondělní ráno rád přiměje vstát z postele. Největší dík ale patří mé ženě Monice za její lásku, přátelství, toleranci a schopnost vracet mě z badatelských výšin zpátky nohama na zem. Bibliographic entry Author: Mgr. Pavel Dvořák Loschmidt Laboratories Department of Experimental Biology Faculty of Science Masaryk University Title of dissertation: Engineering of the synthetic metabolic pathway for biodegradation of environmental pollutant Study Programme: Biology Field of study: Molecular and Cellular Biology Supervisor: Prof. Mgr. Jiří Damborský, Dr. Supervisor-specialist: doc. RNDr.
    [Show full text]
  • Enantioselective Formation and Ring-Opening of Epoxides Catalysed by Halohydrin Dehalogenases
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UniversityBiocatalysis of Groningen Digital 291 Archive Enantioselective formation and ring-opening of epoxides catalysed by halohydrin dehalogenases D.B. Janssen*1, M. Majeric-Elenkov*´ 2, G. Hasnaoui*, B. Hauer† and J.H. Lutje Spelberg*3 *Biochemical Laboratory, Groningen Biomolecular Sciences and Biotechnology Institute, Groningen, The Netherlands, and †BASF AG, Fine Chemicals Research, Ludwigshafen, Germany Abstract Halohydrin dehalogenases catalyse the conversion of vicinal halohydrins into their corresponding epoxides, while releasing halide ions. They can be found in several bacteria that use halogenated alcohols or com- pounds that are degraded via halohydrins as a carbon source for growth. Biochemical and structural studies have shown that halohydrin dehalogenases are evolutionarily and mechanistically related to enzymes of the SDR (short-chain dehydrogenase/reductase) superfamily. In the reverse reaction, which is epoxide-ring opening, different nucleophiles can be accepted, including azide, nitrite and cyanide. This remarkable catalytic promiscuity allows the enzymatic production of a broad range of β-substituted alcohols from epoxides. In these oxirane-ring-opening reactions, the halohydrin dehalogenase from Agrobacterium radiobacter displays high enantioselectivity, making it possible to use the enzyme for the preparation of enantiopure building blocks for fine chemicals. Introduction and stopped flow fluorescence measurements have indicated The bacterial degradation of epichlorohydrin, 2,3-dibromo- that the release of the halide ion from the active site is the 1-propanol, 1,2-dibromoethane and some related compounds slowest step in the catalytic cycle [4]. Based on phylogenetic involves a step in which a vicinal halohydrin is converted relationships, the known halohydrin dehalogenases can be into the corresponding epoxide and free halide.
    [Show full text]
  • Enhancing the Biocatalytic Manufacture of the Key Intermediate
    www.nature.com/scientificreports OPEN Enhancing the biocatalytic manufacture of the key intermediate of atorvastatin by Received: 04 August 2016 Accepted: 05 January 2017 focused directed evolution of Published: 06 February 2017 halohydrin dehalogenase Yu Luo1,2, Yangzi Chen1, Hongmin Ma3, ZhenHua Tian2, Yeqi Zhang3 & Jian Zhang1 Halohydrin dehalogenases (HHDHs) are biocatalytically interesting enzymes due to their ability to form C-C, C-N, C-O, and C-S bonds. One of most important application of HHDH was the protein engineering of HheC (halohydrin dehalogenase from Agrobacterium radiobacter AD1) for the industrial manufacturing of ethyl (R)-4-cyano-3-hydroxybutanoate (HN), a key chiral synthon of a cholesterol-lowering drug of atorvastatin. During our development of an alternative, more efficient and economic route for chemo-enzymatic preparation of the intermediate of atorvastatin, we found that the HheC2360 previously reported for HN manufacture, had insufficient activity for the cyanolysis production of tert-butyl (3 R,5 S)-6-cyano-3,5-dihydroxyhexanoate (A7). Herein, we present the focused directed evolution of HheC2360 with higher activity and enhanced biocatalytic performance using active site mutagenesis. Through docking of the product, A7, into the crystal structure of HheC2360, 6 residues was selected for combined active sites testing (CASTing). After library screening, the variant V84G/W86F was identified to have a 15- fold increase in activity. Time course analysis of the cyanolysis reaction catalyzed by this variant, showed 2- fold increase in space time productivity compared with HheC2360. These results demonstrate the applicability of the variant V84G/W86F as a biocatalyst for the efficient and practical production of atorvastatin intermediate.
    [Show full text]
  • The Role of Allosteric Scaffolds and Protein Dynamics in Enzyme Function – Lessons Learned by NMR
    The Role of Allosteric Scaffolds and Protein Dynamics in Enzyme Function – Lessons Learned by NMR By Keith Thomas Taverner A thesis submitted in conformity with the requirements for the degree of Master of Science Department of Chemistry University of Toronto University of Toronto Department of Chemistry April 2020 © Copyright by Keith Taverner, 2020 The Role of Allosteric Scaffolds and Protein Dynamics in Enzyme Function – Lessons Learned by NMR Keith Thomas Taverner Master of Science Department of Chemistry University of Toronto 2020 Abstract Most proteins undergo significant cooperative processes over timescales spanning microseconds to many milliseconds. These dynamic processes allow the protein to span the entire reaction coordinate and accomplish its function. Thus, protein function is generally not achieved by a single conformer but rather through a functional ensemble of conformers. Here, we focus on a homodimeric enzyme, fluoroacetate dehalogenase (FAcD) which cleaves the CF bond - one of the strongest covalent bonds in nature - generating fluoride, water, and glycolate from fluoroacetate. The enzyme functions through half-of-sites reactivity where only one protomer is catalytically active. The empty protomer releases ~30 bound water molecules during the catalytic step, thereby entropically favouring the forward reaction. This thesis focuses on using NMR, crystallography and computational studies to study protein dynamics. Specifically, evaluating substrate and product-based regulation, asymmetry in a homodimeric enzyme, disruptions to the allosteric network, and inhibited dynamics due to induced stiffness. ii Acknowledgements I would like to start by thanking my supervisor Robert Scott Prosser for giving me the opportunity to do research in his lab and for all the help/advice along the way.
    [Show full text]