국가생물종목록 National List of Species of Korea

Total Page:16

File Type:pdf, Size:1020Kb

국가생물종목록 National List of Species of Korea 국가생물종목록 National List of Species of Korea 원생동물 (Protozoa) 환경부 국립생물자원관 발간사 2010년 제 10차 생물다양성협약 총회에서 생물자원을 활용하여 발생되는 이익을 공유하기 위한 국제적 지침인 나고야 의정서가 채택되었습니다. 이에 따라 생물자원의 이용 및 관리에 대한 국제적 환경이 시시각각으로 변화하고 있습니다. 따라서 생물자원을 둘러싼 국가 간의 총성 없는 전쟁에서 미리 준비하여 좋은 위치를 선점하는 것이 매우 중요합니다. 이를 위해서는, 우리의 주권 영역 내에 살고 있는 모든 생물종의 명세를 상세하게 파악 하고, 국제적으로 인정받을 수 있는 과학적인 자료를 구축하는 것이 반드시 필요하리라 생각 합니다. 다시 말하면 무한한 잠재적 이용가치를 지닌 국가 생물자원에 대한 종목록을 최우선 적으로 파악하는 것입니다. 2012년에는 국가차원에서 생물다양성을 체계적으로 보전하고 관리하며 아울러 지속가능한 이용을 도모하기 위한 ‘생물다양성 보전 및 이용에 관한 법률’이 제정되었으며, 2013년부터 시행이 예정되어 있습니다. 이 법률은 정부가 국가 생물다양성 전략을 정기적으로 수립하고 국내에서 서식하는 생물종의 학명, 국내 분포 현황 등을 포함한 국가 생물종 목록을 구축하도록 의무화 하고 있습니다. 국립생물자원관에서는 이미 선제적 으로 국가 생물종 목록 구축의 중요성과 시급성을 인지하고 2008년부터 국가 생물자원 인벤토리 구축사업을 지속적으로 수행하고 있습니다. 이 사업을 통해 국립생물자원관은 그동안 기존의 자생생물과 새로 연구 발굴된 생물종을 재검토하는 연구를 수행하여 왔으며, 그 결과 2011년도에 관속식물 4,338 분류군, 선태류 903 분류군 및 척추동물 1,884 분류군을 대상으로 3권의 ‘국가생물종목록집’을 시범 발간한 바가 있습니다. 2012년에는 곤충과 무척추동물을 대상으로 내 외부 전문가들이 참여하여 국가생물종 목록집 5권을 추가로 발간하게 되었습니다. 2012년에 추가로 발간되는 국가생물종목록집은 한반도에 서식하는 자생생물의 존재를 확인하는데 큰 의의가 있으며, 생물자원 연구를 위한 참고 자료와 생물자원의 정보원으로, 그리고 정책수립에 필요한 기초 정보로 널리 활용되길 바라며, 우리나라 생물자원 및 생물 다양성 분야 발전에 크게 기여할 수 있길 기대합니다. 그동안 종목록 구축을 위해 노고를 아끼지 않으신 많은 연구자들과 감수를 맡아주신 전문가 분들께 깊은 감사를 드립니다. 2012년 12월 국립생물자원관장 이 상 팔 - i - 일러두기 국가생물종목록 원생동물편에서는 우리나라에는 출현하였거나 출현하는 것으로 알 려진 원생동물 1,573분류군의 목록을 제시하였다. 한국산 원생동물 종목록은 우리나라 에 출현하는 것으로 보고한 문헌에 근거하여 작성되었으며, 각 종에 대한 원기재문과 최초기록문헌을 제시하였다. 종목록의 분류체계는 섬모충류는 Lynn (2008)의 분류체계 를 따랐고 종속영양 편모류를 비롯한 다른 분류군은 Lee et al. (2000)의 분류체계를 따랐으며, 과(family) 보다 낮은 분류계급에서는 알파벳순으로 정리하였다. 국명이 제 안되지 않는 경우에는 ‘[국명없음]’으로 표기하였다.
Recommended publications
  • Protozoan Fauna of Freshwater Habitats in South Dum Dum Municipality, North 24 Parganas, West Bengal
    Journal of Academia and Industrial Research (JAIR) Volume 3, Issue 3 August 2014 139 ISSN: 2278-5213 RESEARCH ARTICLE Protozoan Fauna of Freshwater Habitats in South Dum Dum Municipality, North 24 Parganas, West Bengal J. Chitra Protozoology Section, Lower Invertebrate Division, M Block, New Alipore, Kolkata-700053, India [email protected]; +91 98315 47265 ______________________________________________________________________________________________ Abstract Wetlands of South Dum Dum Municipality were focused to reveal the status of the planktonic protozoan fauna in detail. A total of 37 different sites were selected and plankton samples from these sites were collected. About 16 sp. of protozoa were identified from few localities from the present investigation. Eight species of rhizopoda belonged to 4 genera, 4 family (Pelomyxidae, Arcellidae, Centropyxidae and Difflugiidae) and 2 order (Pelobintida and Arcellinida), Four species of flagellate belongs to 2 genera, 1 family (Euglinidae) and 1 order (Euglenida), 4 species of ciliate belongs to 4 genera, 4 family (Colepidae, Vorticellidae, Euplotidae and Paramaeciidae), 2 order (Prorodontida and Peritrichida) and 2 suborder (Sporadotrichinia and Peniculina). Among 37 localities, protozoans were observed only in L2, L3, L8, L9, L12, L13, L15, L17, L18, L19, L21, L24, L26, L32, L33, L34 and L36 localities. Protozoan diversity and their abundance were noticed higher in L12, L18, L21, L26, L33 and L34 localities. Euglena viridis, E. acus, E. oxyuris and Phacus acumininata, Pelomyxa palustris, Vorticella companula were found to be higher in abundance and distribution. Keywords: South Dum Dum municipality, planktonic protozoan, Euglena viridis, abundance, distribution. Introduction Dumdum Park, Amarpalli, Telipukur, Nager Bazar, Protozoa are highly abundant in all aquatic habitats and Patipukur and Dum Dum were selected and the plankton greatly involved in food chain (Finlay, 1997).
    [Show full text]
  • Exposure to Parasitic Protists and Helminths Changes the Intestinal Community Structure Of
    bioRxiv preprint doi: https://doi.org/10.1101/717165; this version posted July 28, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Title: Exposure to parasitic protists and helminths changes the intestinal community structure of 2 bacterial microbiota but not of eukaryotes in a cohort of mother-child binomial from a semi-rural 3 setting in Mexico 4 Running title: Parasites affect intestinal microbiome 5 Oswaldo Partida-Rodriguez1,2, Miriam Nieves-Ramirez1,2, Isabelle Laforest-Lapointe3,4, Eric Brown2, 6 Laura Parfrey5,6, Lisa Reynolds2, Alicia Valadez-Salazar1, Lisa Thorson2, Patricia Morán1, Enrique 7 Gonzalez1, Edgar Rascon1, Ulises Magaña1, Eric Hernandez1, Liliana Rojas-V1, Javier Torres7, Marie 8 Claire Arrieta2,3,4*, Cecilia Ximenez1*#, Brett Finlay2,8,9* 9 * Senior authors, contributed equally. 10 1Laboratorio de Inmunología del Departamento de Medicina Experimental, UNAM, Mexico City, Mexico 11 2Michael Smith Laboratories, Department of Microbiology & Immunology, University of British 12 Columbia, Vancouver, British Columbia, Canada 13 3Department of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada 14 4Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada 15 5Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada 16 6Department of Botany, University
    [Show full text]
  • The Centropyxis Aerophila Complex (Protozoa: Testacea)
    NENCKI INSTITUTE OF EXPERIMENTAL BIOLOGY VOLUME 39 NUMBER ^ WARSAWhttp://rcin.org.pl, POLAND 2000 ISSN 0065-1583 Polish Academy of Sciences Nencki Institute of Experimental Biology and Polish Society of Cell Biology ACTA PROTOZOOLOGICA International Journal on Protistology Editor in Chief Jerzy SIKORA Editors Hanna FABCZAK and Anna WASIK Managing Editor Małgorzata WORONOWICZ-RYMASZEWSKA Editorial Board Andre ADOUTTE. Paris J. I. Ronny LARSSON, Lund Christian F. BARDELE, Tübingen John J. LEE, New York Magdolna Cs. BERECZKY, Göd Jiri LOM, Ceske Budejovice Jean COHEN, Gif-Sur-Yvette Pierangelo LUPORINI, Camerino John O. CORLISS, Albuquerque Hans MACHEMER, Bochum Gyorgy CSABA, Budapest Jean-Pierre MIGNOT, Aubiere Isabelle DESPORTES-LIVAGE, Paris Yutaka NAITOH, Tsukuba Tom FENCHEL, Helsing0r Jytte R. NILSSON, Copenhagen Wilhelm FOISSNER, Salsburg Eduardo ORIAS, Santa Barbara Vassil GOLEMANSKY, Sofia Dimitrii V. OSSIPOV, St. Petersburg Andrzej GRĘBECKI, Warszawa, Vice-Chairman Leif RASMUSSEN, Odense Lucyna GRĘBECKA, Warszawa Sergei O. SKARLATO, St. Petersburg Donat-Peter HÄDER, Erlangen Michael SLEIGH, Southampton Janina KACZANOWSKA, Warszawa JifiVÄVRA, Praha Stanisław L. KAZUBSKI, Warszawa Patricia L. WALNE, Knoxville Leszek KUZNICKI, Warszawa, Chairman ACTA PROTOZOOLOGICA appears quarterly. The price (including Air Mail postage) of subscription to ACTA PROTOZOOLOGICA at 2001 is: US $ 200,- by institutions and US $ 120,- by individual subscribers. Limited numbers of back volumes at reduced rate are available. TERMS OF PAYMENT: check, money oder or payment to be made to the Nencki Institute of Experimental Biology account: 111-01053-401050001074 at Państwowy Bank Kredytowy XIII Oddz. Warszawa, Poland. For matters regarding ACTA PROTOZOOLOGICA, contact Editor, Nencki Institute of Experimental Biology, ul. Pasteura 3, 02-093 Warszawa, Poland; Fax: (4822) 822 53 42; E-mail: [email protected] For more information see Web page http://www.nencki.gov.pl/ap.htm).
    [Show full text]
  • Testate Amoebae from South Vietnam Waterbodies with the Description of New Species Difflugia Vietnamicasp
    Acta Protozool. (2018) 57: 215–229 www.ejournals.eu/Acta-Protozoologica ACTA doi:10.4467/16890027AP.18.016.10092 PROTOZOOLOGICA LSID urn:lsid:zoobank.org:pub:AEE9D12D-06BD-4539-AD97-87343E7FDBA3 Testate Amoebae from South Vietnam Waterbodies with the Description of New Species Difflugia vietnamicasp. nov. Hoan Q. TRANa, Yuri A. MAZEIb, c a Vietnamese-Russian Tropical Center, 63 Nguyen Van Huyen, Nghia Do, Cau Giay, Ha Noi, Vietnam b Department of Hydrobiology, Lomonosov Moscow State University, Moscow, Russia c Department of Zoology and Ecology, Penza State University, Penza, Russia Abstract. Testate amoebae in Vietnam are still poorly investigated. We studied species composition of testate amoebae in 47 waterbodies of South Vietnam provinces including natural lakes, reservoirs, wetlands, rivers, and irrigation channels. A total of 109 species and subspe- cies belonging to 16 genera, 9 families were identified from 191 samples. Thirty-five species and subspecies were observed in Vietnam for the first time. New speciesDifflugia vietnamica sp. nov. is described. The most species-rich genera are Difflugia (46 taxa), Arcella (25) and Centropyxis (14). Centropyxis aculeata was the most common species (observed in 68.1% samples). Centropyxis aerophila sphagniсola, Arcella discoides, Difflugia schurmanni and Lesquereusia modesta were characterised by a frequency of occurrence >20%. Other spe- cies were rarer. The species accumulation curve based on the entire dataset of this work was unsaturated and well fitted by equation S = 19.46N0.33. Species richness per sample in natural lakes and wetlands were significantly higher than that of rivers (p < 0.001). The result of the Spearman rank test shows weak or statistically insignificant relationships between species richness and water temperature, pH, dissolved oxygen, and electrical conductivity.
    [Show full text]
  • Multigene Eukaryote Phylogeny Reveals the Likely Protozoan Ancestors of Opis- Thokonts (Animals, Fungi, Choanozoans) and Amoebozoa
    Accepted Manuscript Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opis- thokonts (animals, fungi, choanozoans) and Amoebozoa Thomas Cavalier-Smith, Ema E. Chao, Elizabeth A. Snell, Cédric Berney, Anna Maria Fiore-Donno, Rhodri Lewis PII: S1055-7903(14)00279-6 DOI: http://dx.doi.org/10.1016/j.ympev.2014.08.012 Reference: YMPEV 4996 To appear in: Molecular Phylogenetics and Evolution Received Date: 24 January 2014 Revised Date: 2 August 2014 Accepted Date: 11 August 2014 Please cite this article as: Cavalier-Smith, T., Chao, E.E., Snell, E.A., Berney, C., Fiore-Donno, A.M., Lewis, R., Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa, Molecular Phylogenetics and Evolution (2014), doi: http://dx.doi.org/10.1016/ j.ympev.2014.08.012 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. 1 1 Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts 2 (animals, fungi, choanozoans) and Amoebozoa 3 4 Thomas Cavalier-Smith1, Ema E. Chao1, Elizabeth A. Snell1, Cédric Berney1,2, Anna Maria 5 Fiore-Donno1,3, and Rhodri Lewis1 6 7 1Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
    [Show full text]
  • The Intestinal Protozoa
    The Intestinal Protozoa A. Introduction 1. The Phylum Protozoa is classified into four major subdivisions according to the methods of locomotion and reproduction. a. The amoebae (Superclass Sarcodina, Class Rhizopodea move by means of pseudopodia and reproduce exclusively by asexual binary division. b. The flagellates (Superclass Mastigophora, Class Zoomasitgophorea) typically move by long, whiplike flagella and reproduce by binary fission. c. The ciliates (Subphylum Ciliophora, Class Ciliata) are propelled by rows of cilia that beat with a synchronized wavelike motion. d. The sporozoans (Subphylum Sporozoa) lack specialized organelles of motility but have a unique type of life cycle, alternating between sexual and asexual reproductive cycles (alternation of generations). e. Number of species - there are about 45,000 protozoan species; around 8000 are parasitic, and around 25 species are important to humans. 2. Diagnosis - must learn to differentiate between the harmless and the medically important. This is most often based upon the morphology of respective organisms. 3. Transmission - mostly person-to-person, via fecal-oral route; fecally contaminated food or water important (organisms remain viable for around 30 days in cool moist environment with few bacteria; other means of transmission include sexual, insects, animals (zoonoses). B. Structures 1. trophozoite - the motile vegetative stage; multiplies via binary fission; colonizes host. 2. cyst - the inactive, non-motile, infective stage; survives the environment due to the presence of a cyst wall. 3. nuclear structure - important in the identification of organisms and species differentiation. 4. diagnostic features a. size - helpful in identifying organisms; must have calibrated objectives on the microscope in order to measure accurately.
    [Show full text]
  • A Wide Diversity of Previously Undetected Freeliving
    Environmental Microbiology (2010) 12(10), 2700–2710 doi:10.1111/j.1462-2920.2010.02239.x A wide diversity of previously undetected free-living relatives of diplomonads isolated from marine/saline habitatsemi_2239 2700..2710 Martin Kolisko,1 Jeffrey D. Silberman,2 Kipferlia n. gen. The remaining isolates include rep- Ivan Cepicka,3 Naoji Yubuki,4† Kiyotaka Takishita,5 resentatives of three other lineages that likely repre- Akinori Yabuki,4 Brian S. Leander,6 Isao Inouye,4 sent additional undescribed genera (at least). Small- Yuji Inagaki,7 Andrew J. Roger8 and subunit ribosomal RNA gene phylogenies show that Alastair G. B. Simpson1* CLOs form a cloud of six major clades basal to the Departments of 1Biology and 8Biochemistry and diplomonad-retortamonad grouping (i.e. each of the Molecular Biology, Dalhousie University, Halifax, Nova six CLO clades is potentially as phylogenetically Scotia, Canada. distinct as diplomonads and retortamonads). CLOs 2Department of Biological Sciences, University of will be valuable for tracing the evolution of Arkansas, Fayetteville, AR, USA. diplomonad cellular features, for example, their 3Department of Zoology, Faculty of Science, Charles extremely reduced mitochondrial organelles. It is University in Prague, Prague, Czech Republic. striking that the majority of CLO diversity was unde- 4Institute of Biological Sciences, Graduate School of Life tected by previous light microscopy surveys and and Environmental Sciences and 7Center for environmental PCR studies, even though they inhabit Computational Sciences and Institute of Biological a commonly sampled environment. There is no Sciences, University of Tsukuba, Tsukuba, Ibaraki, reason to assume this is a unique situation – it is Japan. likely that undersampling at the level of major lin- 5Japan Agency for Marine-Earth Science and eages is still widespread for protists.
    [Show full text]
  • Heterotrophic ¯ Agellates (Protista) from Marine Sediments of Botany Bay, Australia
    Journal of Natural History, 2000, 34, 483± 562 Heterotrophic ¯ agellates (Protista) from marine sediments of Botany Bay, Australia WON JE LEE and DAVID J. PATTERSON School of Biological Sciences, University of Sydney, NSW 2006, Australia; e-mail: [email protected] (Accepted 19 April 1999) Heterotrophic¯ agellates (protozoa) occurring in the marine sediments at Botany Bay, Australia are reported. Among the 87 species from 43 genera encountered in this survey are 13 new taxa: Cercomonas granulatus n. sp., Clautriavia cavus n. sp., Heteronema larseni n. sp., Notosolenus adamas n. sp., Notosolenus brothernis n. sp., Notosolenus hemicircularis n. sp., Notosolenus lashue n. sp., Notosolenus pyriforme n. sp., Petalomonas intortus n. sp., Petalomonas iugosus n. sp., Petalomonas labrum n. sp., Petalomonas planus n. sp. and Petalomonas virgatus n. sp.; and seven new combinations, Carpediemonas bialata n. comb., Dinema platysomum n. comb., Petalomonas calycimonoides nom. nov., Petalomonas chris- teni nom. nov., Petalomonas physaloides n. comb., Petalomonas quinquecarinata n. comb. and Petalomonas spinifera n. comb. Most ¯ agellates described here appear to be cosmopolitan.We are unable to assess if the new species are endemic because of the lack of intensive studies elsewhere. Keywords: Biogeography, endemic biota, heterotrophic ¯ agellates, taxonomy, protists. Introduction Marine heterotrophic protists are predators on bacteria and small phytoplankton, are prey for larger zooplankton, and facilitate remineralization and recycling of elements essential for phytoplankton and microbial growth (Azam et al., 1983; Porter et al., 1985; Sherr and Sherr, 1988; JuÈ rgens and GuÈ de, 1990; Kirchman, 1994; Pace and Vaque , 1994). Consequently, the role of heterotrophic protists in planktonic microbial food webs of marine environments has received increasing attention.
    [Show full text]
  • Wildlife Parasitology in Australia: Past, Present and Future
    CSIRO PUBLISHING Australian Journal of Zoology, 2018, 66, 286–305 Review https://doi.org/10.1071/ZO19017 Wildlife parasitology in Australia: past, present and future David M. Spratt A,C and Ian Beveridge B AAustralian National Wildlife Collection, National Research Collections Australia, CSIRO, GPO Box 1700, Canberra, ACT 2601, Australia. BVeterinary Clinical Centre, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, Vic. 3030, Australia. CCorresponding author. Email: [email protected] Abstract. Wildlife parasitology is a highly diverse area of research encompassing many fields including taxonomy, ecology, pathology and epidemiology, and with participants from extremely disparate scientific fields. In addition, the organisms studied are highly dissimilar, ranging from platyhelminths, nematodes and acanthocephalans to insects, arachnids, crustaceans and protists. This review of the parasites of wildlife in Australia highlights the advances made to date, focussing on the work, interests and major findings of researchers over the years and identifies current significant gaps that exist in our understanding. The review is divided into three sections covering protist, helminth and arthropod parasites. The challenge to document the diversity of parasites in Australia continues at a traditional level but the advent of molecular methods has heightened the significance of this issue. Modern methods are providing an avenue for major advances in documenting and restructuring the phylogeny of protistan parasites in particular, while facilitating the recognition of species complexes in helminth taxa previously defined by traditional morphological methods. The life cycles, ecology and general biology of most parasites of wildlife in Australia are extremely poorly understood. While the phylogenetic origins of the Australian vertebrate fauna are complex, so too are the likely origins of their parasites, which do not necessarily mirror those of their hosts.
    [Show full text]
  • Extra-Intestinal Coccidians Plasmodium Species Distribution Of
    Extra-intestinal coccidians Apicomplexa Coccidia Gregarinea Piroplasmida Eimeriida Haemosporida -Eimeriidae -Theileriidae -Haemosporiidae -Cryptosporidiidae - Babesiidae (Plasmodium) -Sarcocystidae (Sacrocystis) Aconoid (Toxoplasmsa) Plasmodium species Causitive agent of Malaria ~155 species named Infect birds, reptiles, rodents, primates, humans Species is specific for host and •P. falciparum vector •P. vivax 4 species cause human disease •P. malariae No zoonoses or animal reservoirs •P. ovale Transmission by Anopheles mosquito Distribution of Malarial Parasites P. vivax most widespread, found in most endemic areas including some temperate zones P. falciparum primarily tropics and subtropics P. malariae similar range as P. falciparum, but less common and patchy distribution P. ovale occurs primarily in tropical west Africa 1 Distribution of Malaria US Army, 1943 300 - 500 million cases per year 1.5 to 2.0 million deaths per year #1 cause of infant mortality in Africa! 40% of world’s population is at risk Malaria Atlas Map Project http://www.map.ox.ac.uk/index.htm 2 Malaria in the United States Malaria was quite prevalent in the rural South It was eradicated after world war II in an aggressive campaign using, treatment, vector control and exposure control Time magazine - 1947 (along with overall improvement of living Was a widely available, conditions) cheap insecticide This was the CDCs initial DDT resistance misssion Half-life in mammals - 8 years! US banned use of DDT in 1973 History of Malaria Considered to be the most
    [Show full text]
  • Protist Phylogeny and the High-Level Classification of Protozoa
    Europ. J. Protistol. 39, 338–348 (2003) © Urban & Fischer Verlag http://www.urbanfischer.de/journals/ejp Protist phylogeny and the high-level classification of Protozoa Thomas Cavalier-Smith Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK; E-mail: [email protected] Received 1 September 2003; 29 September 2003. Accepted: 29 September 2003 Protist large-scale phylogeny is briefly reviewed and a revised higher classification of the kingdom Pro- tozoa into 11 phyla presented. Complementary gene fusions reveal a fundamental bifurcation among eu- karyotes between two major clades: the ancestrally uniciliate (often unicentriolar) unikonts and the an- cestrally biciliate bikonts, which undergo ciliary transformation by converting a younger anterior cilium into a dissimilar older posterior cilium. Unikonts comprise the ancestrally unikont protozoan phylum Amoebozoa and the opisthokonts (kingdom Animalia, phylum Choanozoa, their sisters or ancestors; and kingdom Fungi). They share a derived triple-gene fusion, absent from bikonts. Bikonts contrastingly share a derived gene fusion between dihydrofolate reductase and thymidylate synthase and include plants and all other protists, comprising the protozoan infrakingdoms Rhizaria [phyla Cercozoa and Re- taria (Radiozoa, Foraminifera)] and Excavata (phyla Loukozoa, Metamonada, Euglenozoa, Percolozoa), plus the kingdom Plantae [Viridaeplantae, Rhodophyta (sisters); Glaucophyta], the chromalveolate clade, and the protozoan phylum Apusozoa (Thecomonadea, Diphylleida). Chromalveolates comprise kingdom Chromista (Cryptista, Heterokonta, Haptophyta) and the protozoan infrakingdom Alveolata [phyla Cilio- phora and Miozoa (= Protalveolata, Dinozoa, Apicomplexa)], which diverged from a common ancestor that enslaved a red alga and evolved novel plastid protein-targeting machinery via the host rough ER and the enslaved algal plasma membrane (periplastid membrane).
    [Show full text]
  • Diversity and Prevalence of Gastrointestinal Parasites in Seven Non-Human Primates of the Taï National Park, Côte D’Ivoire
    Parasite 2015, 22,1 Ó R.Y.W. Kouassi et al., published by EDP Sciences, 2015 DOI: 10.1051/parasite/2015001 Available online at: www.parasite-journal.org RESEARCH ARTICLE OPEN ACCESS Diversity and prevalence of gastrointestinal parasites in seven non-human primates of the Taï National Park, Côte d’Ivoire Roland Yao Wa Kouassi1,2,4,6,*, Scott William McGraw3, Patrick Kouassi Yao1, Ahmed Abou-Bacar4,6, Julie Brunet4,5,6, Bernard Pesson4, Bassirou Bonfoh2, Eliezer Kouakou N’goran1, and Ermanno Candolfi4,6 1 Unité de Formation et de Recherche Biosciences, Université Félix Houphouët Boigny, 22 BP 770, Abidjan 22, Côte d’Ivoire 2 Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, 01 BP 1303, Abidjan 01, Côte d’Ivoire 3 Department of Anthropology, Ohio State University, 4064 Smith Laboratory, 174 West 18th Avenue, Columbus, Ohio 43210, USA 4 Laboratoire de Parasitologie et de Mycologie Médicale, Plateau Technique de Microbiologie, Hôpitaux Universitaires de Strasbourg, 1 rue Koeberlé, 67000 Strasbourg, France 5 Laboratoire de Parasitologie, Faculté de Pharmacie, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch cedex, France 6 Institut de Parasitologie et de Pathologie Tropicale, EA 7292, Fédération de Médecine Translationnelle, Université de Strasbourg, 3 rue Koeberlé, 67000 Strasbourg, France Received 25 July 2014, Accepted 14 January 2015, Published online 27 January 2015 Abstract – Parasites and infectious diseases are well-known threats to primate populations. The main objective of this study was to provide baseline data on fecal parasites in the cercopithecid monkeys inhabiting Côte d’Ivoire’s Taï National Park. Seven of eight cercopithecid species present in the park were sampled: Cercopithecus diana, Cercopithecus campbelli, Cercopithecus petaurista, Procolobus badius, Procolobus verus, Colobus polykomos, and Cercocebus atys.
    [Show full text]