Re Sedimentation of the Late Holocene White River Ash, Yukon Territory, Canada and Alaska, Usa

Total Page:16

File Type:pdf, Size:1020Kb

Re Sedimentation of the Late Holocene White River Ash, Yukon Territory, Canada and Alaska, Usa RE SEDIMENTATION OF THE LATE HOLOCENE WHITE RIVER ASH, YUKON TERRITORY, CANADA AND ALASKA, USA by Kim D. West A thesis submitted to The Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Earth Sciences Carleton University Ottawa, Ontario May 16, 2007 ©2007, Kim D. West Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Library and Bibliotheque et Archives Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A 0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-33516-1 Our file Notre reference ISBN: 978-0-494-33516-1 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library permettant a la Bibliotheque et Archives and Archives Canada to reproduce,Canada de reproduire, publier, archiver, publish, archive, preserve, conserve,sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lnternet, preter, telecommunication or on the Internet,distribuer et vendre des theses partout dans loan, distribute and sell theses le monde, a des fins commerciales ou autres, worldwide, for commercial or non­ sur support microforme, papier, electronique commercial purposes, in microform,et/ou autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in et des droits moraux qui protege cette these. this thesis. Neither the thesis Ni la these ni des extraits substantiels de nor substantial extracts from it celle-ci ne doivent etre imprimes ou autrement may be printed or otherwise reproduits sans son autorisation. reproduced without the author's permission. In compliance with the Canadian Conformement a la loi canadienne Privacy Act some supporting sur la protection de la vie privee, forms may have been removed quelques formulaires secondaires from this thesis. ont ete enleves de cette these. While these forms may be includedBien que ces formulaires in the document page count, aient inclus dans la pagination, their removal does not represent il n'y aura aucun contenu manquant. any loss of content from the thesis. i * i Canada Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Abstract The White River ash is one of the most distinct and widely dispersed pyroclastic deposits in Yukon-Alaska. It was produced from volcanic eruptions ca. 1887 (north lobe; Lerbekmo et al. 1975) and 1147 years B.P. (east lobe; Clague et al. 1995). The source of the deposit, Mount Churchill, is an ice-covered stratovolcano located 25 km west of the Yukon-Alaska border (6l°25’N, 141°70’W). Distal deposits of ash occur as primary airfall over much of Alaska, Yukon, and Northwest Territories. Locally resedimented deposits of ash are common closer to the volcanic source and occur in highly glaciated regions. Distal deposits of White River ash provide important chronostratigraphic control and are used herein to interpret the cultural and environmental impact of ancient large- magnitude eruptions. Sedimentological observations of distal deposits of ash (preserved in fluvially deposited beds) indicates that emplacement of the east lobe of ash occurred during the late fall or early winter. Knowledge of the timing of the east lobe ash is significant to archaeological studies since deposition is associated with the massive migration and expansion of Athapaskan peoples. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Locally resedimented deposits of White River ash formed near Mount Churchill when hot volcanic material mixed with snow, ice, and volcanic debris at the summit and descended down surrounding valley glaciers. Large volumes of water and volcaniclastic sediment led to catastrophic thickening of the Russell and Klutlan Glaciers and possibly, temporary lakes from which terraces of ash, up to 20 metres thick, accumulated. Pyroclastic-rich fans formed downstream from resedimented material. Eruptions of Mount Churchill are infrequent events that produce severe volcanic hazards, most notably ashfall and lahars. Future large-scale eruptions would significantly impact tourism, industry, housing and infrastructure and may devastate human and animal populations. Renewed efforts are urgently needed to advance geohazard mitigation in northern Canada and Alaska. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Acknowledgements Several people have been instrumental in helping to complete this project. I want to thank my family and friends for their support, specifically, each of my parents, who inspired me to learn about so many things as a child Without their love and encouragement of my rockhounding interests, I would not be where I am today. To my brother, for having confidence in me, and believing that I can do anything I put my mind to. To my husband, my best friend and soul mate, who made me laugh along the way, and Scout, vdto kept me company. I also want to thank all of the teachers who mentored me during my time working on this project. There have been several colleagues at Carleton University and in Yukon Territory and Alaska whom I’d specifically like to thank. L. Ray and H. Erickson provided excellent assistance during several field seasons in Yukon Territory and Alaska; T. Glazier and H. Peterschein provided excellent guidance in the field. I’d also like to thank my supervisor, J.A. Donaldson, for believing in a Ph.D. student who loves to teach. Thanks also to B. Cousens, who provided assistance in some of the initial geochemical work that was undertaken. T. Reinchardt provided assistance with some of the maps generated for this study. G. McGimsey provided comments and feedback on parts of the manuscript. This study would not have been completed without the logistical support provided by the Alaska iv Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Volcano Observatory, and the generous assistance of G. McGimsey and D. Richter during the field season of 2003. During the course of this study, I was also supported in part by research grants from the Northern Scientific Training Program (1999-2001). Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Table of Contents Chapter 1: Literature Review.....................................................................................1 Introduction .........................................................................................................1 Geologic Setting ................................................................................................ 17 Eruptive History ............................................................................................... 25 Paleoenvironment and Glacial History ............................................................26 Previous Studies ................................................................................................ 29 Chapter 2: Evidence for a Late Fall or Early Winter Emplacement of East Lobe White River Ash................................................................................40 Introduction .......................................................................................................40 The White River A sh........................................................................................ 44 Evidence for Late Fall- Early Winter Emplacement .......................................53 Bock’s Brook ............................................................................................... 54 Donjek River ...............................................................................................61 Discussion ..........................................................................................................65 Supporting Evidence for Winter Eruption ...................................................... 67 Probable Impact ................................................................................................ 70 The Athapaskan Migration ............................................................................... 75 Conclusions ........................................................................................................77 Chapter 3: Textural Analysis of Proximal Deposits ...............................................80 Introduction .......................................................................................................80 Purpose of This Study ...................................................................................... 85 Sample Collection ..............................................................................................85 Methodology ......................................................................................................86 Sphericity........................................................................................................... 87 Grain Size and Sorting ...................................................................................... 98 Discussion ........................................................................................................108 Chapter 4: Facies Analysis of Proximal Deposits .................................................I
Recommended publications
  • Extending the Late Holocene White River Ash Distribution, Northwestern Canada STEPHEN D
    ARCTIC VOL. 54, NO. 2 (JUNE 2001) P. 157– 161 Extending the Late Holocene White River Ash Distribution, Northwestern Canada STEPHEN D. ROBINSON1 (Received 30 May 2000; accepted in revised form 25 September 2000) ABSTRACT. Peatlands are a particularly good medium for trapping and preserving tephra, as their surfaces are wet and well vegetated. The extent of tephra-depositing events can often be greatly expanded through the observation of ash in peatlands. This paper uses the presence of the White River tephra layer (1200 B.P.) in peatlands to extend the known distribution of this late Holocene tephra into the Mackenzie Valley, northwestern Canada. The ash has been noted almost to the western shore of Great Slave Lake, over 1300 km from the source in southeastern Alaska. This new distribution covers approximately 540000 km2 with a tephra volume of 27 km3. The short time span and constrained timing of volcanic ash deposition, combined with unique physical and chemical parameters, make tephra layers ideal for use as chronostratigraphic markers. Key words: chronostratigraphy, Mackenzie Valley, peatlands, White River ash RÉSUMÉ. Les tourbières constituent un milieu particulièrement approprié au piégeage et à la conservation de téphra, en raison de l’humidité et de l’abondance de végétation qui règnent en surface. L’observation des cendres contenues dans les tourbières permet souvent d’élargir notablement les limites spatiales connues des épisodes de dépôts de téphra. Cet article recourt à la présence de la couche de téphra de la rivière White (1200 BP) dans les tourbières pour agrandir la distribution connue de ce téphra datant de l’Holocène supérieur dans la vallée du Mackenzie, située dans le Nord-Ouest canadien.
    [Show full text]
  • Crary-Henderson Collection, B1962.001
    REFERENCE CODE: AkAMH REPOSITORY NAME: Anchorage Museum at Rasmuson Center Bob and Evangeline Atwood Alaska Resource Center 625 C Street Anchorage, AK99501 Phone: 907-929-9235 Fax: 907-929-9233 Email: [email protected] Guide prepared by: Mary Langdon, Volunteer, and Sara Piasecki, Archivist TITLE: Crary-Henderson Collection COLLECTION NUMBER: B1962.001, B1962.001A OVERVIEW OF THE COLLECTION Dates: circa 1885-1930 Extent: 19.25 linear feet Language and Scripts: The collection is in English. Name of creator(s): Will Crary; Nan Henderson; Phinney S. Hunt; Miles Bros.; Lyman; George C. Cantwell; Johnson; L. G. Robertson; Lillie N. Gordon; John E. Worden; W. A. Henderson; H. Schultz; Merl LaVoy; Guy F. Cameron; Eric A. Hegg Administrative/Biographical History: The Crary and Henderson Families lived and worked in the Valdez area during the boom times of the early 1900s. William Halbrook Crary was a prospector and newspaper man born in the 1870s (may be 1873 or 1876). William and his brother Carl N. Crary came to Valdez in 1898. Will was a member of the prospecting party of the Arctic Mining Company; Carl was the captain of the association. The Company staked the “California Placer Claim” on Slate Creek and worked outside of Valdez on the claim. Slate Creek is a tributary of the Chitina River, in the Chistochina District of the Copper River Basin. Will Crary was the first townsite trustee for Valdez. Carl later worked in the pharmaceutical field in Valdez and was also the postmaster. Will married schoolteacher Nan Fitch in Valdez in 1906. Carl died of cancer in 1927 in Portland, Oregon.
    [Show full text]
  • Holocene Tephras in Lake Cores from Northern British Columbia, Canada
    935 Holocene tephras in lake cores from northern British Columbia, Canada Thomas R. Lakeman, John J. Clague, Brian Menounos, Gerald D. Osborn, Britta J.L. Jensen, and Duane G. Froese Abstract: Sediment cores recovered from alpine and subalpine lakes up to 250 km apart in northern British Columbia con- tain five previously unrecognized tephras. Two black phonolitic tephras, each 5–10 mm thick, occur within 2–4 cm of each other in basal sediments from seven lakes in the Finlay River – Dease Lake area. The upper and lower Finlay tephras are slightly older than 10 220 – 10 560 cal year B.P. and likely originate from two closely spaced eruptions of one or two large volcanoes in the northern Cordilleran volcanic province. The Finlay tephras occur at the transition between deglacial sediments and organic-rich postglacial mud in the lake cores and, therefore, closely delimit the termination of the Fraser Glaciation in northern British Columbia. Sediments in Bob Quinn Lake, which lies on the east edge of the northern Coast Mountains, contain two black tephras that differ in age and composition from the Finlay tephras. The lower Bob Quinn tephra is 3–4 mm thick, basaltic in composition, and is derived from an eruption in the Iskut River volcanic field about 9400 cal years ago. The upper Bob Quinn tephra is 12 mm thick, trachytic in composition, and probably 7000–8000 cal years old. A fifth tephra occurs as a cryptotephra near the top of two cores from the Finlay River area and is correlated to the east lobe of the White River tephra (ca.
    [Show full text]
  • British Columbia Geological Survey Geological Fieldwork 2003
    TRACKING THE ESKAY RIFT THROUGH NORTHERN BRITISH COLUMBIA - GEOLOGY AND MINERAL OCCURRENCES OF THE UPPER ISKUT RIVER AREA (TELEGRAPH CREEK NTS 104G/1, 2, 7, 8, 9, 10) By D.J. Alldrick1, M.L. Stewart1, J.L. Nelson1 and K.A. Simpson2 KEYWORDS: Targeted Geoscience Initiative-II (TGI-II), The two-year study will cover 6,250 km2, extending Bedrock mapping, Eskay Creek, Eskay Rift, Hazelton 125 km north from the Eskay Creek mine to the Spectrum Group, Stuhini Group, Mineral deposits porphyry copper-gold deposit (Figure 2). The paved Stewart-Cassiar Highway (Highway 37) runs northward through the eastern part of the map area. In 2003, the first INTRODUCTION field season, an eight-person team mapped 70 km along the rift sequence between Kinaskan Lake and More The Eskay Creek gold-silver mine, located in Creek, west of the highway (Figure 2). northwest British Columbia, is an unusually high-grade The project area straddles the eastern edge of the ore deposit. The mining industry continues to spend more Coast Mountains and the broad valley of the upper Iskut than $2 million each year on exploration for similar River. This area lies within the Tahltan First Nation deposits in the area. The geologic setting at the minesite is traditional area and they participated directly in this well studied, but large tracts in north-central British project. Topography varys from rounded glacial valleys Columbia require more detailed surveys to determine if along the upper Iskut River, to the extensive Spatsizi favourable sites exist for formation and preservation of Plateau, to high serrated ridges and peaks that are being additional deposits.
    [Show full text]
  • Marine Tephrochronology of the Mt
    Quaternary Research 73 (2010) 277–292 Contents lists available at ScienceDirect Quaternary Research journal homepage: www.elsevier.com/locate/yqres Marine tephrochronology of the Mt. Edgecumbe Volcanic Field, Southeast Alaska, USA Jason A. Addison a,b,⁎, James E. Beget a,b, Thomas A. Ager c, Bruce P. Finney d a Alaska Quaternary Center and Department of Geology and Geophysics, University of Alaska Fairbanks, 900 Yukon Drive, PO Box 755780, Fairbanks, AK 99775-5780, USA b Alaska Quaternary Center, PO Box 755940, University of Alaska Fairbanks, Fairbanks, AK 99775-5940, USA c U.S. Geological Survey, Mail Stop 980, Box 25045, Denver Federal Center, Denver, CO 80225, USA d Department of Biological Sciences, Idaho State University, Pocatello, ID 83209-8007, USA article info abstract Article history: The Mt. Edgecumbe Volcanic Field (MEVF), located on Kruzof Island near Sitka Sound in southeast Alaska, Received 30 March 2009 experienced a large multiple-stage eruption during the last glacial maximum (LGM)–Holocene transition Available online 11 December 2009 that generated a regionally extensive series of compositionally similar rhyolite tephra horizons and a single well-dated dacite (MEd) tephra. Marine sediment cores collected from adjacent basins to the MEVF contain Keywords: both tephra-fall and pyroclastic flow deposits that consist primarily of rhyolitic tephra and a minor dacitic Tephra tephra unit. The recovered dacite tephra correlates with the MEd tephra, whereas many of the rhyolitic Alaska North Pacific Ocean tephras correlate with published MEVF rhyolites. Correlations were based on age constraints and major Cryptotephra oxide compositions of glass shards. In addition to LGM–Holocene macroscopic tephra units, four marine Mt.
    [Show full text]
  • Hydrothermal Uranium Deposits Containing Molybdenum and Fluorite in the Marysvale Volcanic Field, West-Central Utah
    Mineralium Deposita (199K) 33 : 4774'14 ( . srl'lllt!~r-V~rlag 199X ARTICLE C. G. Cunningham' J. D. Rasmussen' T. A. Stcycn R. O. Rye' P. D. Rowley S. B. Romberger' J. Selverstone Hydrothermal uranium deposits containing molybdenum and fluorite in the Marysvale volcanic field, west-central Utah Received: 23 June 1997 I Accepted: 15 October 1997 Abstract Uranium deposits containing molybdenum \9-1 ~ Ma in a I km2 area. above a cupola of a com­ and fluorite occur in the Central Mining Area. near posite, recurrent. magma chamber at least 24 x 5 km Marysvale, Utah. and formed in an epithermal vein across that fed a sequence of 21- to 14-Ma hypabyssal system that is part of a volcanic/hypabyssal complex. granitic stocks. rhyolite lava flows. ash-flow tuffs. and They represent a known. but uncommon. type of de­ volcanic domes. Formation of the Central Mining Area posit; relative to other commonly described volcanic­ began when the intrusion of a rhyolite stock. and re­ related uranium deposits. they are young. well-exposed lated molybdenite-bearing, uranium-rich. glassy rhyolite and well-documented. Hydrothermal uranium-bearing dikes, lifted the fractured roof above the stock. A quartz and fluorite veins are exposed over a 300 m breccia pipe formed and relieved magmatic pressures. vertical range in the mines. Molybdenum. as jordisite and as blocks of the fractured roof began to settle back (amorphous MoS2), together with fluorite and pyrite, in place, flat-lying, concave-downward. "pull-apart" increase with depth. and uranium decreases with depth. fractures were formed. Uranium-bearing, quartz and The veins cut 23-Ma quartz monzonite, 20-Ma granite.
    [Show full text]
  • North American Notes
    268 NORTH AMERICAN NOTES NORTH AMERICAN NOTES BY KENNETH A. HENDERSON HE year I 967 marked the Centennial celebration of the purchase of Alaska from Russia by the United States and the Centenary of the Articles of Confederation which formed the Canadian provinces into the Dominion of Canada. Thus both Alaska and Canada were in a mood to celebrate, and a part of this celebration was expressed · in an extremely active climbing season both in Alaska and the Yukon, where some of the highest mountains on the continent are located. While much of the officially sponsored mountaineering activity was concentrated in the border mountains between Alaska and the Yukon, there was intense activity all over Alaska as well. More information is now available on the first winter ascent of Mount McKinley mentioned in A.J. 72. 329. The team of eight was inter­ national in scope, a Frenchman, Swiss, German, Japanese, and New Zealander, the rest Americans. The successful group of three reached the summit on February 28 in typical Alaskan weather, -62° F. and winds of 35-40 knots. On their return they were stormbound at Denali Pass camp, I7,3oo ft. for seven days. For the forty days they were on the mountain temperatures averaged -35° to -40° F. (A.A.J. I6. 2I.) One of the most important attacks on McKinley in the summer of I967 was probably the three-pronged assault on the South face by the three parties under the general direction of Boyd Everett (A.A.J. I6. IO). The fourteen men flew in to the South east fork of the Kahiltna glacier on June 22 and split into three groups for the climbs.
    [Show full text]
  • Resedimentation of the Late Holocene White River Tephra, Yukon Territory and Alaska
    Resedimentation of the late Holocene White River tephra, Yukon Territory and Alaska K.D. West1 and J.A. Donaldson2 Carleton University3 West, K.D. and Donaldson, J.A. 2002. Resedimentation of the late Holocene White River tephra, Yukon Territory and Alaska. In: Yukon Exploration and Geology 2002, D.S. Emond, L.H. Weston and L.L. Lewis (eds.), Exploration and Geological Services Division, Yukon Region, Indian and Northern Affairs Canada, p. 239-247. ABSTRACT The Wrangell region of eastern Alaska represents a zone of extensive volcanism marked by intermittent pyroclastic activity during the late Holocene. The most recent and widely dispersed pyroclastic deposit in this area is the White River tephra, a distinct tephra-fall deposit covering 540 000 km2 in Alaska, Yukon, and the Northwest Territories. This deposit is the product of two Plinian eruptions from Mount Churchill, preserved in two distinct lobes, created ca. 1887 years B.P. (northern lobe) and 1147 years B.P. (eastern lobe). The tephra consists of distal primary air-fall deposits and proximal, locally resedimented volcaniclastic deposits. Distinctive layers such as the White River tephra provide important chronostratigraphic control and can be used to interpret the cultural and environmental impact of ancient large magnitude eruptions. The resedimentation of White River tephra has resulted in large-scale terraces, which fl ank the margins of Klutlan Glacier. Preliminary analysis of resedimented deposits demonstrates that the volcanic stratigraphy within individual terraces is complex and unique. RÉSUMÉ Au cours de l’Holocène tardif, des matériaux pyroclastiques ont été projetés lors d’importantes et nombreuses éruptions volcaniques, dans la région de Wrangell de l’est de l’Alaska.
    [Show full text]
  • Using Volcaniclastic Rocks to Constrain Sedimentation Ages
    Using volcaniclastic rocks to constrain sedimentation ages: To what extent are volcanism and sedimentation synchronous? Camille Rossignol, Erwan Hallot, Sylvie Bourquin, Marc Poujol, Marc Jolivet, Pierre Pellenard, Céline Ducassou, Thierry Nalpas, Gloria Heilbronn, Jianxin Yu, et al. To cite this version: Camille Rossignol, Erwan Hallot, Sylvie Bourquin, Marc Poujol, Marc Jolivet, et al.. Using vol- caniclastic rocks to constrain sedimentation ages: To what extent are volcanism and sedimentation synchronous?. Sedimentary Geology, Elsevier, 2019, 381, pp.46-64. 10.1016/j.sedgeo.2018.12.010. insu-01968102 HAL Id: insu-01968102 https://hal-insu.archives-ouvertes.fr/insu-01968102 Submitted on 2 Jan 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript Using volcaniclastic rocks to constrain sedimentation ages: To what extent are volcanism and sedimentation synchronous? Camille Rossignol, Erwan Hallot, Sylvie Bourquin, Marc Poujol, Marc Jolivet, Pierre Pellenard, Céline Ducassou, Thierry Nalpas, Gloria Heilbronn, Jianxin Yu, Marie-Pierre
    [Show full text]
  • Radiogenic Age and Isotopic Studies: Report 3
    GSCAN-P—89-2 CA9200982 GEOLOGICAL SURVEY OF CANADA PAPER 89-2 RADIOGENIC AGE AND ISOTOPIC STUDIES: REPORT 3 1990 Entity, Mtnat and Cnargi*, Mint* M n**ouroaa Canada ftoaioweat Canada CanadS '•if S ( >* >f->( f STAFF, GEOCHRONOLOGY SECTION: GEOLOGICAL SURVEY OF CANADA Research Scientists: Otto van Breemen J. Chris Roddick Randall R. Parrish James K. Mortensen Post-Doctoral Fellows: Francis 6. Dudas Hrnst Hegncr Visiting Scientist: Mary Lou Bevier Professional Scientists: W. Dale L<neridj:e Robert W. Sullivan Patricia A. Hunt Reginald J. Theriaul! Jack L. Macrae Technical Staff: Klaus Suntowski Jean-Claude Bisson Dianne Bellerive Fred B. Quigg Rejean J.G. Segun Sample crushing and preliminary mineral separation arc done by the Mineralogy Section GEOLOGICAL SURVEY OF CANADA PAPER 89-2 RADIOGENIC AGE AND ISOTOPIC STUDIES: REPORT 3 1990 ° Minister of Supply and Services Canada 1990 Available in Canada through authorized bookstore agents and other bookstores or by mail from Canadian Government Publishing Centre Supply and Services Canada Ottawa, Canada Kl A 0S9 and from Geological Survey of Canada offices: 601 Booth Street Ottawa, Canada Kl A 0E8 3303-33rd Street N.W., Calgary, Alberta T2L2A7 100 West Pender Street Vancouver, B.C. V6B 1R8 A deposit copy of this publication is also available for reference in public libraries across Canada Cat. No. M44-89/2E ISBN 0-660-13699-6 Price subject to change without notice Cover Description: Aerial photograph of the New Quebec Crater, a meteorite impact structure in northern Ungava Peninsula, Quebec, taken in 1985 by P.B. Robertson (GSC 204955 B-l). The diameter of the lake is about 3.4km and the view is towards the east-southeast.
    [Show full text]
  • Glenn Highway Tok Cutoff (GJ-125 to GJ-0) to Milepost a 160
    Map GLENN HIGHWAY • TOK CUTOFF Glenn Highway To Chicken and Eagle © The MILEPOST To Delta Junction (see TAYLOR HIGHWAY section) Key to mileage boxes ver (see ALASKA HIGHWAY section) Tanana Ri miles/kilometres G miles/kilometres Tanacross 5 from: la A L c A Swb T-Tok V-Valdez ia S K 2 Tok Map Location G-Glennallen ted A ® GJ-Gakona Junction A re A-Anchorage a R 2 A 1 Tetlin Junction J-Junction N HJ-Haines Junction Mount Kimball G T-0 a To Haines DJ-Delta Junction in 10,300 ft./3,139m E ch r w GJ-125/201km Junction Chisto cie G la A-328/528km (see ALASKA Principal Route Logged Key to Advertiser er HIGHWAY Services T iv DJ-108/174km C -Camping ok R section) Paved Unpaved R HJ-296/476km D -Dump Station iv ok Other Roads Logged d -Diesel er T G -Gas (reg., unld.) Tetlin I -Ice Lake Other Roads Scenic Byway L -Lodging M -Meals T Refer to Log for Visitor Facilities P -Propane Tok Cutoff ok Cu L R -Car Repair (major) na i Scale Sla R Mineral Lakes t iv t r -Car Repair (minor) e l 0 10 Miles r e S -Store (grocery) 0 10 Kilometres T -Telephone (pay) . t Cr t Bartell off (GJ-125 r Mentasta Lake e r e t T r. o v iv C i R Mentasta Lake S t ation k R Mentasta Summit n T-65/105km 2,434 ft./742m M a . i r E N d J-0 t C T A n e S I .
    [Show full text]
  • Detrital Zircon U-Pb Provenance of the Colorado River: a 5 M.Y
    Research Paper THEMED ISSUE: CRevolution 2: Origin and Evolution of the Colorado River System II GEOSPHERE Detrital zircon U-Pb provenance of the Colorado River: A 5 m.y. record of incision into cover strata overlying the GEOSPHERE; v. 11, no. 6 doi:10.1130/GES00982.1 Colorado Plateau and adjacent regions David L. Kimbrough1, Marty Grove2, George E. Gehrels3, Rebecca J. Dorsey4, Keith A. Howard5, Oscar Lovera6, Andres Aslan7, P. Kyle House8, 19 figures; 5 tables; 1 supplemental file and Philip A. Pearthree9 1Department of Geological Sciences, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, USA CORRESPONDENCE: [email protected] 2School of Earth, Energy & Environmental Sciences, Stanford University, 450 Serra Mall, Building 320, Stanford, California 94305, USA 3Department of Geosciences, University of Arizona, 1040 4th Street, Tucson, Arizona 85721, USA CITATION: Kimbrough, D.L., Grove, M., Gehrels, 4Department of Geological Sciences, 1272 University of Oregon, Eugene, Oregon 97403-1272, USA G.E., Dorsey, R.J., Howard, K.A., Lovera, O., Aslan, 5U.S. Geological Survey, 345 Middlefield Road, Menlo Park, California 94025-3591, USA A., House, P.K., and Pearthree, P.A., 2015, Detrital 6Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, 595 Charles Young Drive East, Los Angeles, California 90095, USA zircon U-Pb provenance of the Colorado River: A 7Colorado Mesa University, 1100 North Avenue, Grand Junction, Colorado 81501, USA 5 m.y. record of incision into cover strata overlying the 8U.S. Geological Survey, 2255 N. Gemini Drive, Flagstaff, Arizona 86001, USA Colorado Plateau and adjacent regions: Geosphere, 9Arizona Geological Survey, 416 W.
    [Show full text]