Basic Goals Digital Signatures

Total Page:16

File Type:pdf, Size:1020Kb

Basic Goals Digital Signatures CHAPTER 7: Digital signatures Digital signatures are one of the most important inventions/applications of modern cryptography. The problem is how can a user sign a message such that everybody (or the intended addressee only) can verify the digital signature and the signature is good enough also for legal purposes. Example: Assume that each user A uses a public-key cryptosystem (e ,d ). Part VII A A Signing a message w by a user A, so that any user can verify the signature; Digital signatures dA(w) Signing a message w by a user A so that only user B can verify the signature; eB (dA(w)) Sending a message w, and a signed message digest of w, obtained by using a hash function h: (w, dA(h(w))) Example Assume Alice succeeds to factor the integer Bob used, as modulus, to sign his will, using RSA, 20 years ago. Even the key has already expired, Alice can rewrite Bob’s will, leaving fortune to her, and date it 20 years ago. Moral: It may pay off to factor a single integers using many years of many computers power. prof. Jozef Gruska IV054 7. Digital signatures 2/44 Digital signatures – basic goals Digital signatures If only signature (but not the encryption of the message) are of importance, then it suffices that Alice sends to Bob Digital sigantures should be such that each user should be able to verify signatures of other users, but that should give him/her no information how to sign a message on (w, dA(w)) behind of other users. Caution: Signing a message w by A for B by An important difference from a handwritten signature is that digital signature of a eB (dA(w)) message is always intimately connected with the message, and for different messages is different, whereas the handwritten signature is adjoined to the message and always looks is O.K., but the symmetric solution, with encoding first: the same. c = dA(eB (w)) Technically, a digital signature signing is performed by a signing algorithm and a digital signature is verified by a verification algorithm. is not good. A copy of a digital (classical) signature is identical (usually distinguishable) to (from) the An active enemy, the tamperer, can intercept the message, then can compute origin. A care has therefore to be taken that a classical signature is not misused. dT (eA(c)) = dT (eB (w)) This chapter contains some of the main techniques for design and verification of digital and can send the outcome to Bob, pretending that it is from him/tamperer (without signatures (as well as some attacks to them). being able to decrypt/know the message). Any public-key cryptosystem in which the plaintext and cryptotext spaces are the same can be used for digital signature. prof. Jozef Gruska IV054 7. Digital signatures 3/44 prof. Jozef Gruska IV054 7. Digital signatures 4/44 Digital Signature Schemes I Digital Signature Schemes II Digital signatures are basic tools for authentication and non-repudiation of messages. A digital signature scheme allows anyone to verify signature of any sender S without Correctness: providing any information how to generate signatures of S. For each messagem fromM and public keyk in Kv , it holds A Digital Signature Scheme (M, S, Ks , Kv ) is given by: verk (m, s) = true M - a set of messages to be signed if there is anr from 0, 1 ∗ such that S - a set of possible signatures { } s = sigl (r, m) Ks - a set of private keys for signing Kv - a set of public keys for verification for a private keyl from Ks corresponding to the public keyk. Moreover, it is required that: Security: For each k from Ks , there exists a single and easy to compute signing mapping For anyw fromM andk in Kv , it is computationally infeasible, without the knowledge sigk : 0, 1 ∗ M S { } × → of the private key corresponding tok, to find a signatures fromS such that For each k from Kv there exists a single and easy to compute verification mapping verk (w, s) = true. verk : M S true, false × → { } such that the following two conditions are satisfied: prof. Jozef Gruska IV054 7. Digital signatures 5/44 prof. Jozef Gruska IV054 7. Digital signatures 6/44 Attacks on digital signatures A digital signature of one bit Let us start with a very simple but much illustrating (though non-practical) example how to sign a single bit. Design of the signature scheme: Total break of a signature scheme: The adversary manages to recover the secret key from A one-way function f(x) is chosen. the public key. Two integers k and k are chosen, by the signer, kept secret, and items Universal forgery: The adversary can derive from the public key an algorithm which 0 1 allows to forge the signature of any message. f, (0, s0), (1, s1) Selective forgery: The adversary can derive from the public key a method to forge are made public, where signatures of selected messages (where selection was made prior the knowledge of the public key). s0 = f (k0), s1 = f (k1) Existential forgery: The adversary is able to create from the public key a valid signature Signature of a bit b: of a message m (but has no control for which m). (b, kb). Verification of such a signature sb = f (kb) SECURITY? prof. Jozef Gruska IV054 7. Digital signatures 7/44 prof. Jozef Gruska IV054 7. Digital signatures 8/44 RSA signatures and their attacks ENCRYPTION versus SIGNATURE Let us have an RSA cryptosystem with encryption and decryption exponentse andd and modulusn. Signing of a message w s = (w, σ), where σ = w d mod n Let each user U uses a cryptosystem with encryption and decryption algorithms: eU , dU Verification of a signature s = (w, σ): Let w be a message e w = σ mod n? PUBLIC-KEY ENCRYPTIONS Attacks Encryption: eU (w) Decryption: dU (eU (w)) It might happen that Bob accepts a signature not produced by Alice. Indeed, let Eve, using Alice’s public key, compute w e and say that (w e , w) is a message signed PUBLIC-KEY SIGNATURES by Alice. Signing: dU (w) e e Everybody verifying Alice’s signature gets w = w . Verification of the signature: eU (dU (w)) Some new signatures can be produced without knowing the secret key. 1 Indeed, is σ1 and σ2 are signatures for w1 and w2, then σ1σ2 and σ1− are signatures 1 for w1w2 and w1− . prof. Jozef Gruska IV054 7. Digital signatures 9/44 prof. Jozef Gruska IV054 7. Digital signatures 10/44 DIGITAL SIGNATURE SYSTEMS – simplified version FROM PKC to DSS - again A digital signature system(DSS) consists of: Any public-key cryptosystem in which the plaintext and cryptotext space are the same, P - the space of possible plaintexts (messages). can be used for digital signature. S - the space of possible signatures. Signing of a message w by a user A so that any user can verify the signature: K - the space of possible keys. dA(w). For each k K there is a signing algorithm sigk Sa and a corresponding ∈ ∈ Signing of a message w by a user A so that only user B can verify the signature; verification algorithm verk V such that ∈ sigk : P S. eB (dA(w)). → verk : P S true, false Sending a message w and a signed message digest of w obtained by using a (standard) ⊗ → { } and hash function h: true ifs = sigk (w); , (w, dA(h(w))). verk (w, s) = (false otherwise. If only signature (but not the encryption of the message) are of importance, then it Algorithms sigk and verk should be computable in polynomial time. suffices that Alice sends to Bob Verification algorithm can be publicly known; signing algorithm (actually only its key) (w, dA(w)). should be kept secret prof. Jozef Gruska IV054 7. Digital signatures 11/44 prof. Jozef Gruska IV054 7. Digital signatures 12/44 ElGamal signatures ElGamal signatures - example Design of the ElGamal digital siganture system: choose: prime p, integers 1 q x p, where q is a primitive element of Z ∗; Example ≤ ≤ ≤ p Compute: y = qx mod p choose: p = 11, q = 2, x = 8 key K = (p, q, x, y) compute: y = 28 mod 11 = 3 public key (p, q, y) - trapdoor: x w = 5 is signed as (a,b), where a = qr mod p, w = xa + rb mod (p 1) − Signature of a message w: Let r Zp∗ 1 be randomly chosen and kept secret. ∈ − choose r = 9 – (this choice is O.K. because gcd(9, 10) = 1) sig(w, r) = (a, b), computea=2 9 mod 11 = 6 r where a = q mod p solve equation: 5 8 6 + 9b (mod 10) 1 ≡ · and b = (w xa)r − (mod (p 1)). that is 7 9b (mod 10) b=3 − − ≡ ⇒ Verification: accept a signature (a,b) of w as valid if signature: (6, 3) y aab qw (mod p) ≡ Note: equation that has to be solved: w = xa + rb mod (p 1). a b ax rb ax+w ax+k(p 1) w (Indeed: y a q q q − − q (mod p)) − ≡ ≡ ≡ prof. Jozef Gruska IV054 7. Digital signatures 13/44 prof. Jozef Gruska IV054 7. Digital signatures 14/44 Security of ElGamal signatures Forging and misusing of ElGamal signatures There are ways to produce, using ElGamal signature scheme, some valid forged Let us analyze several ways an eavesdropper Eve can try to forge ElGamal signature signatures, but they do not allow an opponent to forge signatures on messages of his/her (with x - secret; p, q and y = qx mod p - public): choice.
Recommended publications
  • Protecting Public Keys and Signature Keys
    Public-key cryptography offers certain advantages, providing the keys can be 3 adequately protected. For every security threat there must be an appropriate j countermeasure. Protecting Public Keys and Signature Keys Dorothy E. Denning, Purdue University With conventional one-key cryptography, the sender Consider an application environment in which each and receiver of a message share a secret encryption/ user has an intelligent terminal or personal workstation decryption key that allows both parties to encipher (en- where his private key is stored and all cryptographic crypt) and decipher (decrypt) secret messages transmitted operations are performed. This terminal is connected to between them. By separating the encryption and decryp- a nationwide network through a shared host, as shown in tion keys, public-key (two-key) cryptography has two at- Figure 1. The public-key directory is managed by a net- tractive properties that conventional cryptography lacks: work key server. Users communicate with each other or the ability to transmit messages in secrecy without any prior exchange of a secret key, and the ability to imple- ment digital signatures that are legally binding. Public- key encryption alone, however, does not guarantee either message secrecy or signatures. Unless the keys are ade- quately protected, a penetrator may be able to read en- crypted messages or forge signatures. This article discusses the problem ofprotecting keys in a nationwide network using public-key cryptography for secrecy and digital signatures. Particular attention is given to detecting and recovering from key compromises, especially when a high level of security is required. Public-key cryptosystems The concept of public-key cryptography was intro- duced by Diffie and Hellman in 1976.1 The basic idea is that each user A has a public key EA, which is registered in a public directory, and a private key DA, which is known only to the user.
    [Show full text]
  • Secure Remote Password (SRP) Authentication
    Secure Remote Password (SRP) Authentication Tom Wu Stanford University [email protected] Authentication in General ◆ What you are – Fingerprints, retinal scans, voiceprints ◆ What you have – Token cards, smart cards ◆ What you know – Passwords, PINs 2 Password Authentication ◆ Concentrates on “what you know” ◆ No long-term client-side storage ◆ Advantages – Convenience and portability – Low cost ◆ Disadvantages – People pick “bad” passwords – Most password methods are weak 3 Problems and Issues ◆ Dictionary attacks ◆ Plaintext-equivalence ◆ Forward secrecy 4 Dictionary Attacks ◆ An off-line, brute force guessing attack conducted by an attacker on the network ◆ Attacker usually has a “dictionary” of commonly-used passwords to try ◆ People pick easily remembered passwords ◆ “Easy-to-remember” is also “easy-to-guess” ◆ Can be either passive or active 5 Passwords in the Real World ◆ Entropy is less than most people think ◆ Dictionary words, e.g. “pudding”, “plan9” – Entropy: 20 bits or less ◆ Word pairs or phrases, e.g. “hate2die” – Represents average password quality – Entropy: around 30 bits ◆ Random printable text, e.g. “nDz2\u>O” – Entropy: slightly over 50 bits 6 Plaintext-equivalence ◆ Any piece of data that can be used in place of the actual password is “plaintext- equivalent” ◆ Applies to: – Password databases and files – Authentication servers (Kerberos KDC) ◆ One compromise brings entire system down 7 Forward Secrecy ◆ Prevents one compromise from causing further damage Compromising Should Not Compromise Current password Future passwords Old password Current password Current password Current or past session keys Current session key Current password 8 In The Beginning... ◆ Plaintext passwords – e.g. unauthenticated Telnet, rlogin, ftp – Still most common method in use ◆ “Encoded” passwords – e.g.
    [Show full text]
  • Jeffrey Hoffstein Jill Pipher Joseph H. Silverman
    Undergraduate Texts in Mathematics Je rey Ho stein Jill Pipher Joseph H. Silverman An Introduction to Mathematical Cryptography Second Edition Undergraduate Texts in Mathematics Undergraduate Texts in Mathematics Series Editors: Sheldon Axler San Francisco State University, San Francisco, CA, USA Kenneth Ribet University of California, Berkeley, CA, USA Advisory Board: Colin Adams, Williams College, Williamstown, MA, USA Alejandro Adem, University of British Columbia, Vancouver, BC, Canada Ruth Charney, Brandeis University, Waltham, MA, USA Irene M. Gamba, The University of Texas at Austin, Austin, TX, USA Roger E. Howe, Yale University, New Haven, CT, USA David Jerison, Massachusetts Institute of Technology, Cambridge, MA, USA Jeffrey C. Lagarias, University of Michigan, Ann Arbor, MI, USA Jill Pipher, Brown University, Providence, RI, USA Fadil Santosa, University of Minnesota, Minneapolis, MN, USA Amie Wilkinson, University of Chicago, Chicago, IL, USA Undergraduate Texts in Mathematics are generally aimed at third- and fourth- year undergraduate mathematics students at North American universities. These texts strive to provide students and teachers with new perspectives and novel approaches. The books include motivation that guides the reader to an appreciation of interre- lations among different aspects of the subject. They feature examples that illustrate key concepts as well as exercises that strengthen understanding. More information about this series at http://www.springer.com/series/666 Jeffrey Hoffstein • Jill Pipher Joseph
    [Show full text]
  • NSS: an NTRU Lattice –Based Signature Scheme
    ISSN(Online) : 2319 - 8753 ISSN (Print) : 2347 - 6710 International Journal of Innovative Research in Science, Engineering and Technology (An ISO 3297: 2007 Certified Organization) Vol. 4, Issue 4, April 2015 NSS: An NTRU Lattice –Based Signature Scheme S.Esther Sukila Department of Mathematics, Bharath University, Chennai, Tamil Nadu, India ABSTRACT: Whenever a PKC is designed, it is also analyzed whether it could be used as a signature scheme. In this paper, how the NTRU concept can be used to form a digital signature scheme [1] is described. I. INTRODUCTION Digital Signature Schemes The notion of a digital signature may prove to be one of the most fundamental and useful inventions of modern cryptography. A digital signature or digital signature scheme is a mathematical scheme for demonstrating the authenticity of a digital message or document. The creator of a message can attach a code, the signature, which guarantees the source and integrity of the message. A valid digital signature gives a recipient reason to believe that the message was created by a known sender and that it was not altered in transit. Digital signatures are commonly used for software distribution, financial transactions etc. Digital signatures are equivalent to traditional handwritten signatures. Properly implemented digital signatures are more difficult to forge than the handwritten type. 1.1A digital signature scheme typically consists of three algorithms A key generationalgorithm, that selects a private key uniformly at random from a set of possible private keys. The algorithm outputs the private key and a corresponding public key. A signing algorithm, that given a message and a private key produces a signature.
    [Show full text]
  • Basics of Digital Signatures &
    > DOCUMENT SIGNING > eID VALIDATION > SIGNATURE VERIFICATION > TIMESTAMPING & ARCHIVING > APPROVAL WORKFLOW Basics of Digital Signatures & PKI This document provides a quick background to PKI-based digital signatures and an overview of how the signature creation and verification processes work. It also describes how the cryptographic keys used for creating and verifying digital signatures are managed. 1. Background to Digital Signatures Digital signatures are essentially “enciphered data” created using cryptographic algorithms. The algorithms define how the enciphered data is created for a particular document or message. Standard digital signature algorithms exist so that no one needs to create these from scratch. Digital signature algorithms were first invented in the 1970’s and are based on a type of cryptography referred to as “Public Key Cryptography”. By far the most common digital signature algorithm is RSA (named after the inventors Rivest, Shamir and Adelman in 1978), by our estimates it is used in over 80% of the digital signatures being used around the world. This algorithm has been standardised (ISO, ANSI, IETF etc.) and been extensively analysed by the cryptographic research community and you can say with confidence that it has withstood the test of time, i.e. no one has been able to find an efficient way of cracking the RSA algorithm. Another more recent algorithm is ECDSA (Elliptic Curve Digital Signature Algorithm), which is likely to become popular over time. Digital signatures are used everywhere even when we are not actually aware, example uses include: Retail payment systems like MasterCard/Visa chip and pin, High-value interbank payment systems (CHAPS, BACS, SWIFT etc), e-Passports and e-ID cards, Logging on to SSL-enabled websites or connecting with corporate VPNs.
    [Show full text]
  • 11 Digital Signatures
    This is a Chapter from the Handbook of Applied Cryptography, by A. Menezes, P. van Oorschot, and S. Vanstone, CRC Press, 1996. For further information, see www.cacr.math.uwaterloo.ca/hac CRC Press has granted the following specific permissions for the electronic version of this book: Permission is granted to retrieve, print and store a single copy of this chapter for personal use. This permission does not extend to binding multiple chapters of the book, photocopying or producing copies for other than personal use of the person creating the copy, or making electronic copies available for retrieval by others without prior permission in writing from CRC Press. Except where over-ridden by the specific permission above, the standard copyright notice from CRC Press applies to this electronic version: Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage or retrieval system, without prior permission in writing from the publisher. The consent of CRC Press does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific permission must be obtained in writing from CRC Press for such copying. c 1997 by CRC Press, Inc. Chapter 11 Digital Signatures Contents in Brief 11.1 Introduction :::::::::::::::::::::::::::::425 11.2 A framework for digital signature mechanisms ::::::::::426 11.3 RSA and related signature schemes :::::::::::::::::433 11.4 Fiat-Shamir signature schemes :::::::::::::::::::447 11.5 The DSA and related signature schemes ::::::::::::::451 11.6 One-time digital signatures :::::::::::::::::::::462 11.7 Other signature schemes ::::::::::::::::::::::471 11.8 Signatures with additional functionality ::::::::::::::474 11.9 Notes and further references ::::::::::::::::::::481 11.1 Introduction This chapter considers techniques designed to provide the digital counterpart to a handwrit- ten signature.
    [Show full text]
  • A Study on the Security of Ntrusign Digital Signature Scheme
    A Thesis for the Degree of Master of Science A Study on the Security of NTRUSign digital signature scheme SungJun Min School of Engineering Information and Communications University 2004 A Study on the Security of NTRUSign digital signature scheme A Study on the Security of NTRUSign digital signature scheme Advisor : Professor Kwangjo Kim by SungJun Min School of Engineering Information and Communications University A thesis submitted to the faculty of Information and Commu- nications University in partial fulfillment of the requirements for the degree of Master of Science in the School of Engineering Daejeon, Korea Jan. 03. 2004 Approved by (signed) Professor Kwangjo Kim Major Advisor A Study on the Security of NTRUSign digital signature scheme SungJun Min We certify that this work has passed the scholastic standards required by Information and Communications University as a thesis for the degree of Master of Science Jan. 03. 2004 Approved: Chairman of the Committee Kwangjo Kim, Professor School of Engineering Committee Member Jae Choon Cha, Assistant Professor School of Engineering Committee Member Dae Sung Kwon, Ph.D NSRI M.S. SungJun Min 20022052 A Study on the Security of NTRUSign digital signature scheme School of Engineering, 2004, 43p. Major Advisor : Prof. Kwangjo Kim. Text in English Abstract The lattices have been studied by cryptographers for last decades, both in the field of cryptanalysis and as a source of hard problems on which to build encryption schemes. Interestingly, though, research about building secure and efficient
    [Show full text]
  • Elliptic Curve Cryptography and Digital Rights Management
    Lecture 14: Elliptic Curve Cryptography and Digital Rights Management Lecture Notes on “Computer and Network Security” by Avi Kak ([email protected]) March 9, 2021 5:19pm ©2021 Avinash Kak, Purdue University Goals: • Introduction to elliptic curves • A group structure imposed on the points on an elliptic curve • Geometric and algebraic interpretations of the group operator • Elliptic curves on prime finite fields • Perl and Python implementations for elliptic curves on prime finite fields • Elliptic curves on Galois fields • Elliptic curve cryptography (EC Diffie-Hellman, EC Digital Signature Algorithm) • Security of Elliptic Curve Cryptography • ECC for Digital Rights Management (DRM) CONTENTS Section Title Page 14.1 Why Elliptic Curve Cryptography 3 14.2 The Main Idea of ECC — In a Nutshell 9 14.3 What are Elliptic Curves? 13 14.4 A Group Operator Defined for Points on an Elliptic 18 Curve 14.5 The Characteristic of the Underlying Field and the 25 Singular Elliptic Curves 14.6 An Algebraic Expression for Adding Two Points on 29 an Elliptic Curve 14.7 An Algebraic Expression for Calculating 2P from 33 P 14.8 Elliptic Curves Over Zp for Prime p 36 14.8.1 Perl and Python Implementations of Elliptic 39 Curves Over Finite Fields 14.9 Elliptic Curves Over Galois Fields GF (2n) 52 14.10 Is b =0 a Sufficient Condition for the Elliptic 62 Curve6 y2 + xy = x3 + ax2 + b to Not be Singular 14.11 Elliptic Curves Cryptography — The Basic Idea 65 14.12 Elliptic Curve Diffie-Hellman Secret Key 67 Exchange 14.13 Elliptic Curve Digital Signature Algorithm (ECDSA) 71 14.14 Security of ECC 75 14.15 ECC for Digital Rights Management 77 14.16 Homework Problems 82 2 Computer and Network Security by Avi Kak Lecture 14 Back to TOC 14.1 WHY ELLIPTIC CURVE CRYPTOGRAPHY? • As you saw in Section 12.12 of Lecture 12, the computational overhead of the RSA-based approach to public-key cryptography increases with the size of the keys.
    [Show full text]
  • PFLASH - Secure Asymmetric Signatures on Smartcards
    PFLASH - Secure Asymmetric Signatures on Smartcards Ming-Shing Chen 1 Daniel Smith-Tone 2 Bo-Yin Yang 1 1Academia Sinica, Taipei, Taiwan 2National Institute of Standards and Technology, Gaithersburg, MD, USA 20th July, 2015 20th July, 2015 M-S Chen, D Smith-Tone & B-Y Yang PFLASH - Secure Asymmetric Signatures on Smartcards 1/20 Minimalism Low power 20th July, 2015 M-S Chen, D Smith-Tone & B-Y Yang PFLASH - Secure Asymmetric Signatures on Smartcards 2/20 Minimalism Low power No arithmetic coprocessor 20th July, 2015 M-S Chen, D Smith-Tone & B-Y Yang PFLASH - Secure Asymmetric Signatures on Smartcards 2/20 Minimalism Low power No arithmetic coprocessor Minimalist Architecture 20th July, 2015 M-S Chen, D Smith-Tone & B-Y Yang PFLASH - Secure Asymmetric Signatures on Smartcards 2/20 Minimalism Low power No arithmetic coprocessor Minimalist Architecture Little Cost 20th July, 2015 M-S Chen, D Smith-Tone & B-Y Yang PFLASH - Secure Asymmetric Signatures on Smartcards 2/20 SFLASH In 2003, the NESSIE consortium considered SFLASH the most attractive digital signature algorithm for use in low cost smart cards. 20th July, 2015 M-S Chen, D Smith-Tone & B-Y Yang PFLASH - Secure Asymmetric Signatures on Smartcards 3/20 SFLASH In 2003, the NESSIE consortium considered SFLASH the most attractive digital signature algorithm for use in low cost smart cards. Very Fast 20th July, 2015 M-S Chen, D Smith-Tone & B-Y Yang PFLASH - Secure Asymmetric Signatures on Smartcards 3/20 SFLASH In 2003, the NESSIE consortium considered SFLASH the most attractive digital signature algorithm for use in low cost smart cards.
    [Show full text]
  • A Non-Exchanged Password Scheme for Password-Based Authentication in Client-Server Systems
    American Journal of Applied Sciences 5 (12): 1630-1634, 2008 ISSN 1546-9239 © 2008 Science Publications A Non-Exchanged Password Scheme for Password-Based Authentication in Client-Server Systems 1Shakir M. Hussain and 2Hussein Al-Bahadili 1Faculty of IT, Applied Science University, P.O. Box 22, Amman 11931, Jordan 2Faculty of Information Systems and Technology, Arab Academy for Banking and Financial Sciences, P.O. Box 13190, Amman 11942, Jordan Abstract: The password-based authentication is widely used in client-server systems. This research presents a non-exchanged password scheme for password-based authentication. This scheme constructs a Digital Signature (DS) that is derived from the user password. The digital signature is then exchanged instead of the password itself for the purpose of authentication. Therefore, we refer to it as a Password-Based Digital Signature (PBDS) scheme. It consists of three phases, in the first phase a password-based Permutation (P) is computed using the Key-Based Random Permutation (KBRP) method. The second phase utilizes P to derive a Key (K) using the Password-Based Key Derivation (PBKD) algorithm. The third phase uses P and K to generate the exchanged DS. The scheme has a number of features that shows its advantages over other password authentication approaches. Keywords: Password-based authentication, KBRP method, PBKD algorithm, key derivation INTRODUCTION • Encrypted key exchange (EKE) algorithm[1] • Authenticated key exchange secure against The client-server distributed system architecture dictionary attacks (AKE)[2] consists of a server, which has a record of the • Threshold password-authenticated key exchange[3] username-password database and a number of clients • Password-based authentication and key distribution willing to exchange information with the server.
    [Show full text]
  • Fault Analysis of the Ntrusign Digital Signature Scheme
    Cryptogr. Commun. (2012) 4:131–144 DOI 10.1007/s12095-011-0061-3 Fault analysis of the NTRUSign digital signature scheme Abdel Alim Kamal · Amr M. Youssef Received: 11 December 2010 / Accepted: 14 December 2011 / Published online: 6 January 2012 © Springer Science+Business Media, LLC 2012 Abstract We present a fault analysis of the NTRUSign digital signature scheme. The utilized fault model is the one in which the attacker is assumed to be able to fault a small number of coefficients in a specific polynomial during the signing process but cannot control the exact location of the injected transient faults. For NTRUsign with parameters (N, q = pl, B, standard, N ), when the attacker is able to skip the norm-bound signature checking step, our attack needs one fault, ≈ − 1 (( )t) succeeds with probability 1 p and requires O qN steps when the number of faulted polynomial coefficients is upper bounded by t. The attack is also applicable to NTRUSign utilizing the transpose NTRU lattice but it requires double the number of fault injections. Different countermeasures against the proposed attack are investigated. Keywords Side channel attacks · Lattice-based public key cryptosystems · Fault analysis and countermeasures · Digital signature schemes · NTRU Mathematics Subject Classification (2010) 94A60 1 Introduction NTRUSign [1–4] is a parameterized family of lattice-based public key digital signa- ture schemes that is currently under consideration for standardization by the IEEE P1363 working group. It was proposed after the original NTRU signature scheme (NSS) [5] was broken [6, 7]. Similar to the GGH cryptosystem [8], the security of A. A.
    [Show full text]
  • Subliminal Channels in High-Speed Signatures
    Die approbierte Originalversion dieser Diplom-/ Masterarbeit ist in der Hauptbibliothek der Tech- nischen Universität Wien aufgestellt und zugänglich. http://www.ub.tuwien.ac.at institute of telecommunications The approved original version of this diploma or master thesis is available at the main library of the Vienna University of Technology. http://www.ub.tuwien.ac.at/eng Subliminal Channels in High-Speed Signatures Master’s Thesis for obtaining the academic degree Diplom-Ingenieur as part of the study Electrical Engineering and Information Technology carried out by Alexander Hartl student number: 01125115 Institute of Telecommunications at TU Wien Supervision: Univ. Prof. Dipl.-Ing. Dr.-Ing. Tanja Zseby Dipl.-Ing. Robert Annessi, B.Sc Acknowledgments I want to express my gratitude for everyone who assisted or encouraged me in various ways during my studies. In particular, I would like to thank Prof. Tanja Zseby and Dipl.-Ing. Robert Annessi for giving me the opportunity to write this thesis, for supporting me actively while I was working on it and for many valuable comments and suggestions. I owe special thanks to my family, especially my parents Edith and Rudolf, for their endless support during all these years. Thank you, Sabrina, for encouraging me and for so many cheerful hours in my life. Abstract One of the fundamental building blocks for achieving security in data networks is the use of digital signatures. A digital signature is a bit string which allows the receiver of a message to ensure that the message indeed originated from the apparent sender and has not been altered along the path.
    [Show full text]